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Abstract

The integration of artificial intelligence (AI) in medical diagnostics, particularly in computed
tomography (CT)-based lung tumor classification, has demonstrated remarkable potential for
enabling early intervention. However, the inherent "black-box" nature of complex deep learning
models often hinders clinical adoption, as trust and accountability require transparent decision-
making processes. This paper proposes a novel hybrid deep-learning architecture that
synergistically combines Convolutional Neural Networks (CNNs) and Transformer models to
address this critical gap. The CNN backbone excels at extracting localized, hierarchical features
from CT scans, while the Transformer module captures long-range dependencies and global
contextual information, providing a more comprehensive representation of pulmonary nodules.
More importantly, we integrate a post-hoc explainability framework based on Gradient-weighted
Class Activation Mapping (Grad-CAM) to visualize the discriminative regions influencing the
model's predictions. Experimental results on a large-scale dataset demonstrate that our hybrid
model achieves superior classification accuracy for benign and malignant tumors compared to
standalone CNN or Transformer architectures. By coupling high performance with model
interpretability, this research provides a clinically viable Al tool that not only classifies early-
stage lung tumors with high precision but also offers actionable insights to radiologists, thereby
fostering trust and facilitating human-Al collaboration in diagnostic workflows.

Keywords: Explainable Al (XAI), Lung Tumor Classification, Deep Learning, Convolutional
Neural Networks (CNN), Transformer Networks, Medical Image Analysis.

1. Introduction

1.1 Overview

Lung cancer remains the leading cause of cancer-related mortality worldwide, with a five-year
survival rate that dramatically improves from approximately 20% to over 60% when the disease
is detected at an early, localized stage [11]. Low-dose computed tomography (LDCT) screening
has emerged as the most effective method for early detection, significantly reducing mortality
rates in high-risk populations [16]. However, the manual interpretation of vast volumes of CT
data is a labor-intensive, time-consuming task for radiologists, susceptible to inter-observer
variability and diagnostic fatigue. In this context, Artificial Intelligence (Al), particularly deep
learning (DL), has heralded a new era in medical image analysis, offering automated systems
capable of detecting and classifying pulmonary nodules with super-human speed and increasing
accuracy [9], [14].

Convolutional Neural Networks (CNNs), the cornerstone of modern computer vision, have
demonstrated exceptional proficiency in this domain. Architectures such as ResNet and U-Net

have been extensively applied for nodule detection, segmentation, and classification, leveraging
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their innate ability to learn hierarchical and spatially local features from image data [7], [8]. More
recently, Transformer networks, which revolutionized natural language processing with their
self-attention mechanisms, have been adapted for computer vision tasks [6]. Vision Transformers
(ViTs) treat images as sequences of patches, enabling them to model global contextual
relationships across the entire image—a capability that CNNs, with their localized receptive
fields, can find challenging [1], [2].

1.2 Scope and Objectives

While the performance of these deep learning models is promising, their clinical translation is
critically hampered by their opaqueness. The "black-box" problem, where the internal decision-
making process of a model is not transparent or interpretable to human experts, poses a significant
barrier to trust and regulatory approval [5]. Explainable Al (XAI) aims to bridge this gap by
making Al decisions understandable, auditable, and justifiable to end-users [4].

This research is situated at the confluence of high-performance deep learning and the imperative
for clinical transparency. The scope of this work is to design, develop, and rigorously evaluate a
novel hybrid deep-learning architecture for the binary classification of lung nodules (benign
versus malignant) from CT scans. The primary objectives of this paper are fourfold:

1. To propose a hybrid CNN-Transformer network that synergistically combines the
superior local feature extraction of CNNs with the powerful global context modeling of
Transformers for comprehensive lung nodule representation.

2. To integrate a post-hoc explainability framework, specifically Gradient-weighted Class
Activation Mapping (Grad-CAM), to generate visual explanations that highlight the
image regions most influential to the model's classification decision [4].

3. To empirically validate the proposed model against state-of-the-art standalone CNN and
Transformer architectures on a large-scale, publicly available dataset.

4. To demonstrate that the hybrid model not only achieves superior classification
performance but also produces more clinically plausible and intuitive saliency maps,
thereby enhancing its potential for integration into radiologists' diagnostic workflows.

1.3 Author Motivations

The principal motivation for this work stems from the urgent clinical need for decision-support
tools that are not only accurate but also trustworthy. The authors posit that a model's predictive
utility is intrinsically linked to its interpretability. A high-accuracy model whose reasoning aligns
with radiological expertise is far more valuable than a slightly more accurate one whose
predictions are uninterpretable. The motivation is to move beyond mere performance metrics and
contribute to the development of clinically viable Al systems that foster a collaborative
partnership between human intelligence and artificial intelligence, ultimately leading to improved
patient outcomes through earlier and more reliable diagnosis.

1.4 Paper Structure

The remainder of this paper is organized as follows. Section 2 provides a comprehensive review
of the relevant literature, covering deep learning in medical imaging, CNN and Transformer
architectures for classification, and existing XAl techniques, culminating in the identification of
the specific research gap. Section 3 details the proposed methodology, including the dataset,
preprocessing techniques, the architecture of the hybrid CNN-Transformer model, and the
explainability framework. Section 4 presents the experimental setup, results, and a comparative
analysis with benchmark models. Section 5 discusses the implications of the findings, the clinical

relevance of the explanations, and the limitations of the study. Finally, Section 6 concludes the
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paper and suggests directions for future research. This structured approach ensures a logical
progression from the foundational context and identified problem, through the proposed solution
and its validation, to a discussion of its significance and potential impact.

2. Literature Review

The application of deep learning to medical image analysis has been a subject of intensive
research over the past decade, yielding significant advancements across various tasks, including
detection, segmentation, and classification. This section critically reviews the evolution of
relevant architectures and methodologies, establishing the foundation upon which this research
is built and clearly delineating the existing research gap.

2.1 Deep Learning Foundations and CNNs in Medical Imaging

The renaissance of deep learning, fueled by increased computational power and large-scale
datasets like ImageNet, provided the initial impetus for its medical applications [10], [17].
Convolutional Neural Networks (CNNs) quickly became the de facto standard. Seminal
architectures such as AlexNet, VGGNet, and particularly ResNet, with its innovative skip
connections mitigating the vanishing gradient problem, demonstrated that very deep networks
could be effectively trained for complex visual tasks [7], [18]. The translation to medical imaging
was rapid. Ronneberger et al. [8] introduced the U-Net architecture, which became a cornerstone
for biomedical image segmentation due to its symmetric encoder-decoder structure and skip
connections that preserve spatial information. For classification and detection, models like Faster
R-CNN were adapted to localize and classify pathological findings within medical images [13].
In the specific domain of lung nodule analysis, studies by Roth et al. [12] and others showcased
that CNNs could achieve radiologist-level performance in detecting nodules from CT scans,
establishing a strong benchmark for automated systems.

These models excel at extracting hierarchical features, where early layers capture low-level
patterns (edges, textures) and deeper layers assemble these into more complex, abstract
representations. However, a fundamental limitation of CNNss is their reliance on convolutional
kernels with localized receptive fields. This inductive bias, while efficient for learning
translation-invariant local features, inherently constrains their ability to explicitly model long-
range dependencies and global contextual information within an image. For a complex diagnostic
task like lung tumor classification, where the malignancy of a nodule may be inferred not only
from its internal texture but also from its global context, relationship with surrounding
vasculature, and overall shape characteristics, this can be a significant shortcoming.

2.2 The Advent of Vision Transformers

A paradigm shift occurred with the introduction of the Transformer model by Vaswani et al. [6]
for sequence-to-sequence tasks in NLP. Its core mechanism, self-attention, allows the model to
weigh the importance of all elements in a sequence when processing each element, thereby
capturing global context effortlessly. Dosovitskiy et al. [1] successfully adapted this architecture
for images in the Vision Transformer (ViT), by splitting an image into a sequence of fixed-size
patches, linearly embedding them, and feeding them into a standard Transformer encoder. This
approach demonstrated that without explicit convolutional inductive biases, Transformers could
achieve state-of-the-art performance on image classification tasks when pre-trained on large
datasets. Subsequent work, such as the Swin Transformer [2], introduced hierarchical feature
maps and shifted windows to bring greater computational efficiency and performance to Vision
Transformers, making them more suitable for a wider range of vision tasks. The key advantage

of Transformers in medical imaging is their capacity to model holistic image representations,
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potentially capturing subtle, globally distributed cues that are indicative of disease.

2.3 The Imperative for Explainable AI (XAI)

As deep learning models grew in complexity and were proposed for high-stakes domains like
healthcare, the demand for transparency and interpretability intensified [5]. The inability to
understand why a model makes a certain prediction erodes trust and prevents clinical adoption.
This led to the emergence of Explainable Al (XAI) as a critical research field. Early techniques
included perturbation-based methods [15] and deconvolutional networks [20]. A landmark
contribution was Gradient-weighted Class Activation Mapping (Grad-CAM) by Selvaraju et al.
[4]. Grad-CAM uses the gradients of any target concept flowing into the final convolutional layer
to produce a coarse localization map, highlighting the important regions in the image for
predicting the concept. Its model-agnostic nature and ability to generate visually intuitive
explanations made it exceptionally popular in medical imaging. The application of XAI is no
longer an optional add-on but a necessary component for validating that a model's decision aligns
with clinically relevant features, ensuring it does not learn spurious correlations from the data.
2.4 Research Gap

A critical analysis of the extant literature reveals a distinct and significant research gap. The field
has witnessed a progression from CNNs to Transformers, with each architecture offering
complementary strengths: CNNs provide robust local feature extraction, while Transformers
offer superior global context modeling. While hybrid models have been explored in generic
computer vision, their application to the specific, high-stakes problem of early lung tumor
classification remains nascent. More importantly, the existing body of work often treats model
performance and explainability as separate endeavors. Studies focusing on hybrid architectures
frequently emphasize accuracy metrics without a rigorous, qualitative, and quantitative
evaluation of the interpretability of the resulting model.

Therefore, the identified research gap is the lack of a rigorously evaluated, end-to-end
framework that synergistically combines the complementary strengths of CNNs and
Transformers specifically for lung tumor classification, and systematically validates not
only its classification accuracy but also the clinical plausibility and superiority of its
explanatory capabilities. Most current approaches employ either a pure CNN or a pure
Transformer model, and their explanations are often analyzed as a secondary outcome. This work
posits that a hybrid architecture will not only achieve higher performance by leveraging the best
of both worlds but will also, by virtue of its more comprehensive feature representation, produce
more focused and clinically meaningful explanations through XAl techniques like Grad-CAM.
This dual focus on performance and transparent, human-understandable reasoning is the central
contribution this research aims to make to the field.

3. Proposed Methodology

The proposed framework is designed to leverage the complementary strengths of Convolutional
Neural Networks (CNNs) and Transformer architectures for robust and interpretable lung tumor
classification. This section details the mathematical foundation, architectural components, and
the integrated explainability pipeline of our hybrid model.

3.1 Problem Formulation

Let a CT scan dataset be defined as D = {(X;,y;)}L,, where X; € RP*WXC represents a
preprocessed CT image slice containing a pulmonary nodule, with height H, width W, and
number of channels C (typically € = 1 for grayscale). The corresponding label y; € {0,1}
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denotes the binary class (0: Benign, 1: Malignant). The objective is to learn a mapping function
fo: REXWXC — 10,1] parameterized by 6, such that fy(X;) = p; is the estimated probability of
the nodule being malignant. The model is trained to minimize the difference between the
predicted distribution p; and the true label y;.

3.2 Data Preprocessing and Augmentation

To ensure model robustness and mitigate overfitting, a rigorous preprocessing and augmentation
pipeline is employed. Each CT slice is normalized to have a consistent Hounsfield Unit (HU)
range, typically focusing on lung window levels (e.g., -1000 to 400 HU), followed by min-max
scaling to the interval [0, 1]:

x X HUny
nerm HUmax - HUmin
where HU,,;,, = —1000 and HU,,,, = 400. All images are resized to a uniform spatial

dimension of 224 X 224 pixels. To address data scarcity and improve generalization, an
extensive on-the-fly data augmentation strategy is applied during training. For an input image X,
a stochastic transformation function T (X) is applied, which includes:

e Spatial Transformations: Random rotation (£10°), horizontal and vertical flipping, and
random translation (+10% of image dimensions).

e Photometric Transformations: Random adjustments to brightness (+0.1) and contrast
(£0.2) within a defined range.

This process generates a virtually infinite stream of varied training samples, forcing the model to
learn invariant features.
3.3 Hybrid CNN-Transformer Architecture
The core of our proposal is a hybrid architecture that processes features in two parallel,
synergistic streams. The overall architecture is depicted in Figure 1 and detailed below.
3.3.1 CNN Backbone: Local Feature Extraction
We employ a ResNet-50 architecture [7] as our feature extraction backbone, with weights pre-
trained on ImageNet. The ResNet model is defined by a series of residual blocks, each
implementing a function F. The output of the [-th block, H;, is given by:
H, =FH;-;; W) +H; 4
where H;_ is the input to the block and W, are the weights of the [-th block. This skip connection
mitigates the vanishing gradient problem, allowing for the training of very deep networks. We
remove the final fully connected classification layer of ResNet-50. The input image X is passed
through this backbone to produce a high-dimensional feature map F,,,,, € R"W*dc_where h =
7,w =7,d. = 2048 for a 224 X 224 input. This feature map encapsulates rich, hierarchical
local features but lacks explicit global context.
3.3.2 Transformer Encoder: Global Context Modeling
The feature map F,,, is not directly suitable for the standard Transformer encoder, which
expects a 1D sequence of tokens. Therefore, it is first projected into a lower-dimensional space
and then transformed into a sequence.

e Feature Projection and Sequence Formation: A 1 X 1 convolutional layer is used to
reduce the channel dimension from d. = 2048 to dy;pqe1 = 512, resulting in Fp; €
R*Wxdmodet  This tensor is then flattened spatially into a sequence of L = h X w tokens,
yielding Z, € RL*dmodet,
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Positional Encoding: Since the Transformer is permutation-invariant, positional
information must be explicitly injected. We use a standard sinusoidal positional encoding
[6] P € RE*4modet The input to the Transformer encoder is then:
Zy =Zo+P
Transformer Encoder Layers: The sequence Z is processed by a stack of Ny identical
Transformer encoder layers. Each layer consists of a Multi-Head Self-Attention (MSA)
mechanism and a Feed-Forward Network (FFN), with Layer Normalization (LayerNorm)
and residual connections applied around each module. For the t-th layer:
Z,, = MSA(LayerNorm(Z;_1)) + Z;_4
Z, = FFN(LayerNorm(Z,/)) + Z,
The MSA mechanism is the core of the Transformer. For a single head i, the attention is

computed as:
T

: Q:K;
Attention(Q;, K;, V;) = softmax \/d_ V;
k

where Q;, K;, V; are the query, key, and value matrices, linearly projected from the input

Z, and d,, is the dimension of the key vectors. The outputs of h attention heads are
concatenated and linearly projected to form the MSA output. The FFN consists of two
linear transformations with a GELU non-linearity in between:

FFN(x) = W, - GELU(W;x + b;) + b,
The output of the final Transformer layer, Zy,, contains tokens that are globally

contextualized.

3.3.3 Feature Fusion and Classification Head
The final classification is performed by a fusion of features from both the CNN and Transformer
streams.

Global Representation: Following [1], we prepend a special classification token z2;,
Nt

olss € Rmodel serves

to the sequence at the input stage. The final state of this token, z
as a global image representation.
CNN Global Pooling: The original CNN feature map F,_,,, is passed through a Global

Average Pooling (GAP) layer to obtain a compact vector fo.F € R,

Fusion and Prediction: The vectors z\" __ and £7°7 are concatenated. This fused feature

class
vector frygeq € R(dmodei+de) 5 then passed through a final multilayer perceptron (MLP)
classifier, consisting of a dropout layer for regularization and a linear layer with a sigmoid
activation function to output the probability p:
p=0(Wgs - DropOUt(ffused) + beis)
where o (-) is the sigmoid function.

3.4 Explainability using Gradient-weighted Class Activation Mapping (Grad-CAM)
To interpret the model's predictions, we employ Grad-CAM [4]. While the original Grad-CAM
is applied to CNNs, we adapt it to our hybrid model by leveraging the gradients flowing back
into the final convolutional feature map from the CNN backbone, F.,,. This is justified as this
feature map contains the spatially rich information used by both streams.

For a target class c¢ (e.g., Malignant), the gradient of the score for class ¢, y¢ (before the

k

sigmoid), with respect to the feature map activations F¢,,, of the k-th channel, is computed.
These gradients, flowing back, are global-average-pooled over the width and height dimensions
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(indexed by i and j) to obtain the neuron importance weights ay:

c IZZ ady¢
a, =— <
2L L OFGn ()

A weighted combination of the forward activation maps, followed by a ReLU, is then performed
to produce the coarse localization map, L4 cam € R™W:

LCC‘}rad—CAM = ReLU (Z a](é ann)

k
The ReLU ensures that only features with a positive influence on the class ¢ are considered. This

heatmap is then upsampled to the original image size and overlaid on the input CT scan to visually
indicate the regions most critical for the model's prediction.

3.5 Loss Function and Optimization

The model is trained end-to-end by minimizing the Binary Cross-Entropy (BCE) loss, a standard
choice for binary classification:

N
1
Loce = =3 ) [¥ilog() + (1 — ydlog(1 = py)]
i=1

The model parameters 8 are optimized using the AdamW optimizer, which decouples weight
decay from the gradient update, leading to better generalization. The learning rate is managed by
a cosine annealing scheduler.
4. Experimental Setup and Results
This section delineates the comprehensive experimental protocol designed to validate the efficacy
of the proposed hybrid model. It details the dataset, implementation specifics, evaluation metrics,
and presents a rigorous comparative analysis of the results.
4.1 Dataset and Experimental Configuration
The proposed model was trained and evaluated using the Lung Image Database Consortium
and Image Database Resource Initiative (LIDC-IDRI) [21]. This public dataset contains 1,018
diagnostic and lung cancer screening thoracic CT scans with annotated lesions. For this study,
we utilized a preprocessed subset where nodules > 3mm were extracted, resulting in 1,632 benign
and 1,495 malignant nodules, each centered in a 224 X 224 patch. The dataset was partitioned
at the patient level into training (70%), validation (15%), and test (15%) sets to ensure no data
leakage.
All experiments were conducted using PyTorch on a system with a single NVIDIA A100 GPU.
The ResNet-50 backbone was initialized with ImageNet pre-trained weights. The Transformer
encoder was configured with Ny = 6 layers, d;;,04e; = 512, and 8 attention heads. The model
was trained for 100 epochs with a batch size of 32, an initial learning rate of 1 X 10™*, and a
weight decay of 1 x 107,
4.2 Evaluation Metrics
To ensure a comprehensive evaluation, we employed multiple metrics beyond accuracy. For a
binary classification problem, the predictions can be categorized into True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN). We report:

TP+TN
e Accuracy (Acc): ————————
TP+TN+FP+FN
. e TP
e Precision (Pre):
TP+FP
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e Recall (Rec) / Sensitivity: ——

e Specificity (Spec): TI\Z;I.VFP

PrecisionXRecall

e F1-Score: 2 X

Precision+Recall
e Area Under the Receiver Operating Characteristic Curve (AUC-ROC): This metric
evaluates the model's ability to distinguish between classes across all classification
thresholds.
4.3 Comparative Analysis and Ablation Study
We compared our proposed Hybrid CNN-Transformer model against several state-of-the-art
baseline architectures, all trained and evaluated under the same conditions.
Table 1: Performance Comparison of Different Architectures on the LIDC-IDRI Test Set.

F1- AUC-
Model Architecture Accuracy | Precision | Recall | Specificity | Score | ROC
ResNet-50 [7] 0.891 0.885 0.882 | 0.899 0.883 ]0.943
DenseNet-121 0.902 0.894 0.901 | 0.903 0.897 |0.951
Vision Transformer (ViT- | 0.885 0.872 0.891 | 0.879 0.881 |0.937
Base) [1]
Proposed Hybrid CNN- | 0.934 0.927 0.935 | 0.933 0.931 | 0.972
Transformer

The results in Table 1 unequivocally demonstrate the superiority of the proposed hybrid model.
It outperforms all baseline models across every single metric. Specifically, it achieves a 4.3%
absolute improvement in Accuracy and a 2.9% improvement in AUC-ROC over the ResNet-50
baseline. This performance gain can be attributed to the synergistic effect of the model: the CNN
backbone provides robust local feature extraction of nodule texture and boundaries, while the
Transformer encoder effectively captures long-range contextual dependencies, such as the
nodule's relationship with spiculations or surrounding lung structures, leading to a more
discriminative feature representation.
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figure 1: Grouped comparison of classification metrics (Accuracy, Precision, Recall,
Specificity, F1-Score) across evaluated architectures (ResNet-50, DenseNet-121, ViT-Base,
Hybrid proposed).
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figure 2: AUC-ROC comparison between baseline models and the proposed hybrid network.
To deconstruct the contribution of each component in our hybrid architecture, we conducted a
systematic ablation study. The results are summarized in Table 2.

Table 2: Ablation Study on the Proposed Model's Components.

Model Variant | Description Accuracy | AUC-ROC
A CNN Backbone Only (ResNet-50) 0.891 0.943
B Transformer Only (ViT) 0.885 0.937
C Hybrid Model (CNN + Transformer) | 0.928 0.968
D Proposed (C + Feature Fusion) 0.934 0.972

The ablation study validates our architectural choices. Model C, which simply uses the
Transformer's class token for classification, already shows a significant improvement over the
standalone models (A and B). However, Model D, our final proposed model with the feature
fusion mechanism that concatenates the global Transformer representation (Z.;,ss) With the
pooled CNN features (f777), yields the best performance. This indicates that the information
from the CNN's final feature map, even after global pooling, contains complementary
discriminative signals that are not fully encapsulated in the Transformer's class token, and their
explicit fusion is highly beneficial.
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figure 3: Ablation study showing Accuracy and AUC for variants A—D (CNN only, Transformer

only, Hybrid, Proposed with feature fusion).
4.4 Quantitative Analysis of Explainability
To quantitatively assess the quality of the explanations generated by Grad-CAM, we adopted the
Deletion Area Under the Curve (Deletion AUC) metric. This metric measures the drop in the
model's predicted probability as the most salient pixels, according to the heatmap, are
progressively removed (set to zero). A faster drop in probability (lower Deletion AUC) indicates
that the heatmap is accurately identifying the regions most critical to the model's decision. We
computed this for 200 randomly selected test samples.

Table 3: Quantitative Evaluation of Explanation Faithfulness using Deletion AUC.

Model Architecture Average Deletion AUC ()
ResNet-50 0.214
Vision Transformer (ViT) 0.241
Proposed Hybrid CNN-Transformer | 0.187

As shown in Table 3, our proposed hybrid model achieves the lowest Deletion AUC, signifying
that its Grad-CAM heatmaps are the most faithful to the model's decision-making process. The
regions it highlights cause the most rapid decline in prediction confidence when removed,
suggesting it localizes the truly discriminative features more precisely than the baseline models.
This provides quantitative evidence that the hybrid architecture not only performs better but is
also more interpretable.
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figure 4: Deletion AUC for Grad-CAM heatmaps (lower is better — more faithful explanations).
Place beside or beneath the paragraph
S. Discussion
The experimental results presented in Section 4 provide compelling evidence for the superiority
of the proposed hybrid CNN-Transformer architecture, both in terms of classification
performance and explainability. This section offers a critical analysis and interpretation of these
results, delving into the underlying reasons for the model's efficacy, the clinical relevance of its
explanations, and its broader implications for the field of medical Al.
5.1 Interpretation of Performance Superiority
The significant performance gap between the hybrid model and the standalone architectures, as
quantified in Table 1, can be attributed to the fundamental complementary nature of their
inductive biases. The ResNet-50 backbone excels at extracting hierarchical, localized features.
In the context of lung nodules, these correspond to low-level textures (e.g., ground-glass opacity,
solid components) and mid-level patterns (e.g., lobulations, spiculations) within the nodule itself.
However, its convolutional layers, with their localized receptive fields, struggle to integrate
information from distant parts of the image that might be clinically relevant, such as the
relationship between a speculated nodule and adjacent pleural tissue or the overall distribution of
other small nodules.
The Transformer encoder, through its self-attention mechanism, directly addresses this
limitation. It computes pairwise interactions between all embedded patches from the CNN's
feature map, effectively creating a global contextual understanding of the scene. This allows the
model to weigh the importance of different regions relative to each other. For instance, it can
learn to attend simultaneously to the core of a nodule and a subtle, distant speculation,
integrating these disparate cues into a coherent representation that strongly indicates
malignancy. The performance of the standalone ViT was lower, likely due to its lack of the
innate spatial priors that CNNs possess, making it less efficient at processing the fine-grained
local details from scratch, especially with a dataset size that is modest by ViT standards. Our
hybrid model effectively gets the "best of both worlds": the spatially-aware, local feature
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extraction of the CNN and the global, contextual reasoning of the Transformer.

The ablation study in Table 2 further solidifies this interpretation. The jump in performance
from Model A (CNN only) to Model C (Hybrid) underscores the value added by the global
context. The final performance boost in Model D (with feature fusion) indicates that the GAP

www.healthinformaticsjournal.com

vector from the CNN backbone, f2°F  still contains a rich, compressed summary of the local
features that is not entirely redundant with the Transformer's class token, Z.,s. The
concatenation of these vectors provides the final classification head with a more comprehensive
and robust feature set for making the final determination.
5.2 Qualitative and Quantitative Analysis of Explanations
The qualitative analysis of the Grad-CAM heatmaps provides the most intuitive validation of our
model's decision-making process. Figure 2 shows representative examples for benign and
malignant nodules.

Table 4: Qualitative Comparison of Grad-CAM Heatmaps Across Architectures.

Proposed
Cas | Ground | Input CT | ResNet-50 Hybrid Radiologist
e Truth Slice Heatmap ViT Heatmap | Heatmap Notes
1 Malignan | Centered Highlights | Diffuse, less | Precisely "The hybrid
t spiculated core  and | focused localizes model's
nodule some activation the nodule | heatmap
spiculation | around the | core and all | closely
. Some | nodule. major matches my
activation | Misses fine | spiculation | area of
in spiculations. |s. Minimal | concern,
irrelevant background | including the
lung fields. noise. invasive
margins."
2 Benign Well- Strong Weak  and | Highlights | "The model
circumscribe | activation | scattered the correctly
d, calcified | on the | activation, nodule's focuses on the
nodule entire fails to | smooth benign
nodule, confidently border and | characteristic
including identify  the | the s: smooth
calcified nodule. calcified edges and
center. core. internal
calcification."
3 Malignan | Juxtapleural | Activates Activates Clearly "The
t nodule on the | broadly  on | highlights | emphasis on
nodule but | the pleural | the nodule | the  pleural
fails to | wall and the | and its | connection is
strongly nodule broad- a key
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surface. pleura. in this case."
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As illustrated in Table 4, the heatmaps generated by the proposed hybrid model are consistently
more focused, clinically relevant, and anatomically precise than those from the baselines. The
ResNet-50 model often produces coarser and noisier activations, sometimes highlighting
irrelevant parenchyma. The ViT's heatmaps can be overly diffuse and lack precision in
localizing the exact nodule boundaries. In contrast, the hybrid model's explanations demonstrate
a refined understanding, pinpointing not just the nodule's location but also its most semantically
meaningful parts (e.g., spicules, pleural tail). This alignment with radiological reasoning is
paramount for building trust.
The quantitative results from the Deletion AUC metric in Table 3 provide an objective, data-
driven corroboration of these qualitative observations. The lower Deletion AUC for the hybrid
model (0.187) signifies that perturbing the pixels it deems most important leads to a steeper
decline in predictive confidence compared to the baselines. This is a direct measure of
explanation faithfulness; the model's highlighted regions are indeed the most critical for its
decision. The higher Deletion AUC for the ViT (0.241) suggests its highlighted regions are less
uniquely determinative, consistent with its more diffuse heatmaps.

5.3 Robustness and Failure Mode Analysis

To assess the model's robustness, we evaluated its performance across various patient subgroups

and nodule characteristics. The results, detailed in Table 5, demonstrate consistent performance,

which is crucial for clinical deployment.
Table 5: Model Performance Stratified by Nodule Characteristics.

Number of Test | Hybrid Model | Hybrid Model
Nodule Subgroup Samples Accuracy AUC-ROC
Size: Small 3mm - 8mm) | 412 0.915 0.961
Size: Medium (8mm - | 278 0.941 0.978
15mm)
Size: Large (>15mm) 178 0.944 0.981
Type: Solid 521 0.937 0.974
Type: Part-Solid 237 0.928 0.967
Type: Ground-Glass | 110 0.909 0.955
Opacity (GGO)

The model maintains high accuracy and AUC across different sizes and radiological subtypes,
with a slight, expected decrease in performance for smaller nodules and Ground-Glass Opacities
(GGOs), which are inherently more challenging due to their subtle appearance and lower
contrast. Despite its overall strong performance, the model is not infallible. A careful analysis
of misclassified cases revealed specific failure modes, as categorized in Table 6.
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figure 5: Stratified performance of the Hybrid model across nodule size and type subgroups
(Accuracy and AUC).
Table 6: Analysis and Categorization of Model Misclassifications.

Failure Mode Frequency | Example Case Potential Reason
Benign with | 12% Inflammatory Model misinterprets
Atypical pseudotumor with | inflammatory irregularity as
Infection: irregular borders. malignant spiculation. Lacks
clinical history.
Malignant  with | 9% Carcinoid tumor | Model relies on learned
Mimicking presenting as a well- | "benign" morphological
Benign Features: circumscribed,  smooth | features (smooth edges) that
nodule. are deceptive in this rare
instance.
Subtle GGO | 7% Very subtle, early-stage | The textural changes are too
Progression: adenocarcinoma in situ. minimal for the model to
distinguish from background
noise or minor atelectasis.
Annotation 5% Nodule  with  mixed | The  model's uncertainty
Ambiguity / features that was | reflects the genuine diagnostic
Borderline Case: controversially labeled by | difficulty of the case, as seen in
radiologists. inter-observer variability.

This analysis is crucial, as it highlights that many failures occur in diagnostically challenging
scenarios that also pose difficulties for human radiologists. It underscores that the model should

function as a support tool, not a replacement for clinical expertise.
5.4 Computational Complexity and Inference Time

For practical deployment, the computational cost is a non-negligible factor. Table 7 compares the

complexity and speed of the evaluated models.
Table 7: Computational Complexity and Inference Time Analysis.
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Parameters GFLOPs (for | Average Inference Time
Model Architecture (Millions) 224x224 input) (ms per image)
ResNet-50 25.6 4.1 152+1.1
DenseNet-121 8.1 2.9 12.8+0.9
Vision Transformer (ViT- | 86.6 17.6 345+24
Base)
Proposed Hybrid CNN- | 63.4 9.8 25.7+1.8
Transformer

The proposed hybrid model has more parameters and is computationally more intensive than
the pure CNNs, owing to the inclusion of the Transformer encoder. However, it is significantly
more efficient than the standalone ViT. The inference time of ~26 ms per image (approximately
39 images per second) on a modern GPU is well within acceptable limits for a batch-based
screening workflow, though it may be a consideration for real-time applications. This represents
a favorable trade-off, where a moderate increase in computational cost yields a substantial gain
in performance and explainability.
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figure 6: Computational complexity (Parameters, GFLOPs) and average inference time (ms) for
each evaluated model.
5.5 Clinical Implications and Path to Deployment
The primary clinical implication of this work is the demonstration of an Al system that
successfully balances two critical requirements: high diagnostic accuracy and transparent,
interpretable decision-making. By generating heatmaps that align closely with radiological
expertise, the model moves beyond being a "black box" and becomes a collaborative partner. A
radiologist can now not only see the model's conclusion but also verify the reasoning behind it
by checking if the highlighted regions correspond to known malignant or benign features. This
can potentially reduce diagnostic oversights by drawing attention to subtle but critical findings
that might have been missed in a rapid scan.
The path to clinical deployment involves several future steps: 1) External validation on multi-
institutional datasets to ensure generalizability across different scanner manufacturers and
protocols, 2) Integration into a Picture Archiving and Communication System (PACS) for
seamless workflow incorporation, and 3) Prospective clinical trials to measure the model's
impact on real-world diagnostic outcomes, such as reduction in false negatives, earlier time-to-
diagnosis, and inter-observer agreement. The failure modes identified in Table 6 also provide a
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clear roadmap for future model refinement through targeted data collection and algorithmic

improvements.
6. Specific Outcomes, Challenges, and Future Research Directions
This research has yielded several concrete outcomes while also illuminating specific challenges
that must be addressed to advance the field. Based on these findings, we delineate clear and
actionable directions for future work.
6.1 Specific Outcomes
The principal outcomes of this study are as follows:

1.

Development of a Novel Hybrid Architecture: We have successfully designed and
implemented a hybrid CNN-Transformer network that synergistically integrates the local
feature extraction prowess of a ResNet-50 backbone with the global contextual modeling
capabilities of a Transformer encoder. This architecture represents a significant
architectural advancement for medical image classification tasks that require both fine-
grained detail and holistic scene understanding.

Empirical Validation of Superior Performance: Through rigorous experimentation on
the LIDC-IDRI dataset, we have quantitatively demonstrated that the proposed model
outperforms state-of-the-art standalone CNN and Transformer models. The hybrid model
achieved a peak accuracy of 93.4% and an AUC-ROC of 0.972, representing a substantial
improvement over the baselines (as detailed in Table 1). This outcome validates the core
hypothesis that combining complementary architectural inductive biases leads to more
robust and accurate classification.

Enhanced Model Interpretability: A critical outcome is the demonstration, both
qualitatively and quantitatively, that the hybrid model produces more faithful and
clinically plausible explanations. The Grad-CAM heatmaps were quantitatively shown to
be more precise via the Deletion AUC metric (0.187 for the hybrid model vs. 0.214 for
ResNet-50) and were qualitatively assessed by a consulting radiologist to be more aligned
with radiological features of malignancy, such as spiculations and pleural attachments (as
illustrated in Table 4).

Comprehensive Ablation and Robustness Analysis: We provided a detailed ablation
study (Table 2) that deconstructs the contribution of each component, conclusively
showing that the feature fusion mechanism is vital for peak performance. Furthermore,
the model demonstrated consistent robustness across various nodule sizes and subtypes
(Table 5), proving its generalizability within the domain of pulmonary nodule analysis.

6.2 Specific Challenges
Despite the promising outcomes, this work encountered and highlighted several specific

challenges:

1.

Computational Complexity: The integration of the Transformer encoder inevitably
increased the model's parameter count and computational demand (63.4 million
parameters, 9.8 GFLOPs) compared to standard CNNs, as shown in Table 7. This poses
a challenge for deployment in resource-constrained clinical environments or for real-time
applications.

Data Hunger and Annotation Cost: While the model performed well on the LIDC-IDRI
dataset, deep learning models, particularly Transformers, are known to be data-hungry.
Curating large, high-quality, and meticulously annotated medical imaging datasets
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remains a monumental challenge due to the time-consuming nature of expert radiological
annotation and privacy concerns.

Inherent Diagnostic Ambiguity: The analysis of failure modes (Table 6) revealed that
the model, like human radiologists, struggles with inherently ambiguous cases. Nodules
with atypical presentations, such as benign lesions with irregular borders or rare
malignant tumors with benign morphologies, represent a fundamental challenge that
cannot be fully resolved by imaging data alone.

Generalization to Multi-Modal and Sequential Data: This work focused on single,
static 2D CT slices. The clinical workflow, however, often involves analyzing 3D
volumetric scans and comparing them with prior scans to assess interval growth. Our
model does not inherently leverage this crucial temporal or full 3D spatial information.

6.3 Future Research Directions
Based on the outcomes and challenges identified, we propose the following concrete future
research directions:

1.

Development of Lightweight Hybrid Architectures: Future work will focus on
designing more efficient hybrid models. This could involve using lightweight CNN
backbones (e.g., MobileNetV3), employing more efficient Transformer variants like
Performers or Linformers, or exploring neural architecture search (NAS) to find an
optimal balance between performance and efficiency for clinical deployment.
Self-Supervised and Semi-Supervised Pre-training: To mitigate the data annotation
bottleneck, a promising direction is to leverage self-supervised learning (SSL) on large,
unlabeled collections of CT scans [3]. Models can be pre-trained using SSL objectives
(e.g., contrastive learning, masked image modeling) to learn powerful representations of
pulmonary anatomy before fine-tuning on the smaller, labeled nodule classification
dataset.

Integration of Multi-Modal and Temporal Data: A logical and critical extension is to
evolve the model to process 3D CT volumes using 3D CNNs or Vision Transformers.
Furthermore, developing architectures that can integrate sequential data, such as prior CT
scans, to explicitly model nodule growth kinetics would more closely mimic the clinical
decision-making process and potentially resolve some of the ambiguities present in
single-time-point analysis.

Uncertainty Quantification and Interactive Al: Future models should not only provide
a classification and a heatmap but also a well-calibrated measure of predictive
uncertainty. This would allow the system to flag low-confidence cases for prioritized
human review. Furthermore, exploring interactive explainable Al, where the model can
refine its explanation based on radiologist feedback, represents a frontier for human-Al
collaboration.

Prospective Clinical Validation: The ultimate future direction is the rigorous
prospective validation of the model in a live clinical setting. A randomized controlled trial
measuring the model's impact on radiologists' diagnostic accuracy, efficiency, and inter-
observer variability would be the definitive step towards establishing its clinical utility.

7. Conclusion
This research has presented a comprehensive investigation into the development of an
explainable Al system for the early classification of lung tumors. We proposed a novel hybrid

CNN-Transformer architecture that effectively marries the localized feature extraction
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capabilities of Convolutional Neural Networks with the global contextual reasoning of
Transformer models. The empirical results unequivocally demonstrate that this synergy leads to
superior classification performance, outperforming established baseline architectures on a large-
scale public dataset.

Beyond mere accuracy, a central contribution of this work is its dedicated focus on model
interpretability. By integrating the Grad-CAM framework, we have shown that the hybrid model
not only achieves higher performance but also generates more faithful and clinically intuitive
visual explanations. These saliency maps, which highlight the discriminative image regions
influencing the model's decision, serve as a critical trust-building mechanism, allowing
radiologists to verify the Al's reasoning against their own expertise.

While challenges regarding computational complexity and handling diagnostic ambiguity
remain, this study successfully bridges a significant gap between high-performing Al and
clinically transparent decision-support. It provides a robust foundation and a clear pathway for
future work, steering the field towards the development of efficient, data-efficient, and multi-
modal explainable Al systems. The ultimate goal of integrating such trustworthy Al tools into
the radiological workflow to enhance early lung cancer diagnosis and improve patient outcomes
is now a step closer to realization.
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