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Abstract: - Parkinson's Disease (PD) is a neurodegenerative disorder that progressively deteriorates cognitive 
and motor abilities. It is imperative to detect cognitive impairment at an early stage, as it has a substantial effect 
on the quality of life of patients with Parkinson's disease. Electroencephalography (EEG) has the potential to 
detect cognitive decline by capturing brain activity, due to its non-invasive nature and high temporal resolution. 
Nevertheless, the complexity and cacophony present in EEG data necessitate the use of sophisticated 
processing methods to ensure precise analysis. This investigation investigates the most recent EEG signal 
processing methods for cognitive classification in Parkinson's disease, with an emphasis on time-frequency 
analysis, deep learning, and machine learning. Wavelet Transforms are among the techniques that offer detailed 
spectral and temporal insights, while Random Forest (RF) and Support Vector Machines (SVM) models 
facilitate effective classification. Additionally, the accuracy of feature extraction and classification is improved 
by Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). This research emphasizes 
the potential of these methodologies in the early diagnosis, personalized treatment, and continuous monitoring 
of PD patients. The significance of surmounting obstacles such as chaotic data and restricted EEG datasets to 
enhance clinical outcomes through precise cognitive assessment is underscored by the study 
 
Keywords: PD, Cognitive Impairment; Electroencephalography (EEG); Signal Processing; Time-Frequency 
Analysis 
 

I. INTRODUCTION 
 
PD is a neurodegenerative disease that is progressive and of long duration. It predominantly affects motor 
function, but it also causes a variety of non-motor symptoms, such as cognitive impairment [1]. Although 
bradykinesia, rigidity, and tremors are frequently employed in the clinical diagnosis as well as treatment of PD 
patients, cognitive decline is also acknowledged as a substantial factor that impacts the quality of life of these 
patients [2]. The early and precise identification of cognitive impairment is essential due to the increasing 
prevalence of PD worldwide, which exacerbates the disease's overall burden and increases the likelihood of 
dementia. Numerous cognitive impairments, such as deficits in executive function, memory, attention, and 
visuospatial function, can be brought on by Parkinson's disease [3]. These cognitive deficiencies are present in 
differing degrees in everyone, and they frequently deteriorate over time. Clinicians can potentially delay the 
progression of Parkinson's disease, enhance patient care, and personalize therapy regimens by identifying 
cognitive deterioration in patients at an early stage. However, the conventional neuropsychological tests that are 
employed to evaluate cognitive function are time-consuming and may overlook minor changes in the early 
phases of PD [4]. This underscores the necessity of more precise, efficient, and impartial methodologies to 
identify cognitive decline in Parkinson's patients. Electroencephalography (EEG) is a well-established 
neurophysiological instrument that provides a non-invasive, cost-effective method of monitoring brain action 
[5]. It is optimal for evaluating real-time brain dynamics, which are essential for comprehending cognitive 
processes in Parkinson's disease, due to its exceptional temporal resolution [6]. The electroencephalogram 
(EEG) is a device that records signals in various frequency bands, each of which is associated with specific 
cognitive and motor functions, and measures the electrical activity produced by the brain. However, traditional 
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analytic techniques occasionally fail to fully capture pertinent information, particularly in the context of 

neurodegenerative disorders such as Parkinson's disease, due to the complexity and noise of EEG data [7]. For 
this reason, it is imperative to employ sophisticated EEG data processing techniques to accurately evaluate and 
categorize cognitive deficits in PD. 
 
.The utilization of sophisticated signal processing techniques to enhance the classification of cognitive 
impairment in PD based on EEG has garnered increased attention in recent years [8]. Time-frequency analysis, 
deep learning, and machine learning are among the methods that offer more specific insights into the EEG patterns 
that are linked to cognitive decline [9]. The diagnosis, treatment, and monitoring of PD progression can be 
enhanced by researchers and clinicians who implement these innovative techniques to improve the identification 
of early cognitive impairments. The importance of cognitive impairment in Parkinson's disease, the utilization of 
EEG to identify these deficits, and the advanced signal processing techniques employed to enhance cognitive 
classification [10]. 
 

A. PD and Cognitive Impairment 
 
The main location of Parkinson's disease is the substantia nigra, a part of the brain that controls movement [11]. 
The gradual degradation of dopaminergic neurons is a characteristic that sets the illness apart. This leads to the 
common motor symptoms of Parkinson's disease (PD), including bradykinesia, postural instability, and tremors. 
Nevertheless, it is increasingly evident that PD is not merely a movement disorder. Other non-motor symptoms, 
cognitive deficits, sleep disruptions, and mood disorders all significantly influence the progression of the disease. 
PD can result in a variety of cognitive deficits, including MCI and PDD [12]. PDD is distinguished by a more 
severe cognitive decline that impacts memory, attention, executive function, and visuospatial processing, whereas 
MCI is defined by mild cognitive alterations that may not substantially impact daily operations [13]. These 
cognitive issues, particularly executive dysfunction, are believed to be associated with extensive 
neurodegeneration in numerous brain regions, including the dopaminergic and cholinergic systems. Cognitive 
impairment may be particularly difficult to diagnose in the early phases of PD, as it may not be as apparent as 
motor symptoms [14]. The identification of cognitive abnormalities can be facilitated by conventional clinical 
evaluations, such as neuropsychological testing. However, they may not be adequate to detect subtle as well as 
early cognitive decline. Methods that are more objective, sensitive, and non-invasive are urgently required to 
identify and monitor cognitive decline in PD patients. 

B. 1.2 Role of EEG in Cognitive Classification for Parkinson’s Disease 
 
To monitor brain activity in real time, electroencephalography (EEG) is a frequently employed technique for 
quantifying the electrical signals produced by brain neurons [15]. By recording these signals from numerous 
electrodes situated on the cranium, it is feasible to directly detect brain activity with exceptional temporal 
resolution. Delta, theta, alpha, beta, and gamma are the frequencies into which EEG signals are typically divided. 
All these regions are correlated with distinct cognitive and motor functions. 
 
In PD’s, electroencephalographic (EEG) studies have demonstrated anomalies in these frequency bands. The 
primary focus is on an enhance in power in the lower bands (delta and theta) and a decline in the higher bands 
(beta and gamma) [16]. The parietal lobe and the prefrontal cortex are often the sites of these alterations in the 
brain, which are correlated with cognitive processing. The EEG is a critical technique for the early identification 
of cognitive abnormalities in PD due to its ability to disclose neural signs of cognitive impairment that 
conventional clinical tests may overlook [17]. Despite its potential, the intricacy and cacophony of EEG present 
analytical challenges, particularly in therapeutic applications. Additional challenges are presented by Parkinson's 
disease, including the potential for motor-related abnormalities to contaminate EEG signals [18]. As a result, it is 
imperative to implement sophisticated signal processing methods to extract relevant characteristics, eliminate 
noise, and improve the precision of cognitive classification in PD cases. 
 

C. 1.3 Advanced EEG Signal Processing Techniques 
 
The examination of EEG data has been made more precise and comprehensive in recent decades because of 
advancements in signal processing [19]. In terms of cognitive classification, this is particularly applicable to PD 
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and neurodegenerative disorders. Machine learning, deep learning, and time-frequency analysis are the three 
primary methodologies that have demonstrated their effectiveness in this context. 
 
Time-Frequency Analysis: Conventional EEG analysis methods, such as Fourier Transform (FT), offer 
information regarding the frequency elements of the signal [20]. Nevertheless, they are unable to capture dynamic 
cognitive processes due to their lack of temporal resolution. There are two time-frequency analysis methods, the 
Wavelet Transform and STFT, that enable the simultaneous examination of spectral and temporal properties in 
EEG signals [21]. Specifically, the Wavelet Transform provides a multi-resolution analysis that is particularly 
well-suited for the detection of transient alterations in brain activity and is highly relevant to cognitive 
classification in PD. 
 
Machine Learning:  The ability of machine learning algorithms to categorize cognitive impairment in Parkinson's 
disease (PD) using extracted EEG data has drawn a lot of interest. Algorithms like Support Vector Machines 
(SVM), Random Forest (RF), and k-Nearest Neighbors (k-NN) are commonly used for classification problems 
[22]. To supply these models with training data, pertinent EEG metrics such as power spectral density, coherence, 
and entropy must be retrieved. Using machine learning models to differentiate between different cognitive states 
has been shown to be an effective way to detect cognitive impairment in PD patients early on. 
 
Deep Learning: Deep learning techniques, particularly Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs), have demonstrated significant potential in the field of cognitive classification using 
EEG in recent years [23]. Unlike conventional machine learning models, deep learning algorithms automatically 
extract features from raw EEG data, thereby eradicating the necessity for manual feature engineering. While 
RNNs, particularly Long Short-Term Memory (LSTM) networks, are more adept at observing long-term 
relationships in sequential data, such as EEG signals, CNNs are more adept at recognizing temporal and spatial 
patterns in the data [24]. Specifically, these models have demonstrated superior classification accuracy in 
comparison to conventional machine learning techniques, particularly when implemented for intricate cognitive 
tasks. 
 

II. LITERATURE REVIEW 
 

A. 2.1 Cognitive Impairment in PD’s  
 
Reich et.al., (2022) [25] discussed DBS was an effective treatment for PD; however, it resulted in cognitive 
impairment, which complicated patient outcomes. This investigation examined the correlation between cognitive 
decline in patients because of DBS and the connection at the stimulation site. After examining a cohort of ten 
individuals who were experiencing cognitive decline, we discovered that reprogramming effectively addressed 
cognitive issues without compromising the benefits of motor training. DBS locations were found to have 
significant connectivity with the anterior cingulate cortex, the hippocampus, and the subiculum, all of which were 
associated with memory impairment. An "heat map" was established as a result of this connectivity, which 
indicated potential for the identification of patients at risk and the direction of DBS programming to achieve 
superior cognitive outcomes. 
 
Gonzalez-Latapi et.al (2021) [26] studied Cognitive impairment, a common non-motor PD symptom, increased 
disability and caregiver burden. PD could produce normal cognition, PD-MCI, and dementia. Oxidative stress, 
neuroinflammation, traumatic brain injury, and exposure to pesticides and tobacco harmed cognition. Beta-
amyloid and tau buildup in the brain also contributed. Hereditary variables like BDNF, APOE, MAPT, and 
COMT may have also increased risk. Although exercise and a Mediterranean diet were preventative, there was 
conflicting evidence. Methodological concerns, including insufficient study assessments and conflicting criteria, 
limited conclusions. After a PD diagnosis, understanding these risk factors and gene-environment interactions 
was crucial to developing successful treatments. 
 
Fang et.al (2020) [27] discussed the PD, the second most common neurological illness, mostly affects older 
people. In addition to bradykinesia, tremors, rigidity, and postural instability, PD caused cognitive impairment. 
Cognitive impairments caused by Parkinson's disease raised the risk of dementia progression, affecting life 
expectancy, everyday functioning, and quality of life. MCI in PD may be used as a premature dementia marker 
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with significant patient variation. Appropriate Parkinson's disease treatments need cognitive impairment detection 
and prediction. Our evaluation examined pathogenic pathways, treatment methods, and future research paths to 
improve Parkinson's disease cognitive loss results. 
 
Wojtala et.al., (2019) [28] examined the relationship between Parkinson's disease motor subtypes and cognitive 
function. Cognitive decline was a hallmark of Parkinson's disease, the second most common neurodegenerative 
disease. The study found that compared to tremor-dominant patients, those with akinetic-rigid motor phenotypes 
were more likely to develop dementia and experience cognitive loss more quickly. Akinetic-rigid patients 
performed worse in executive functioning, attention, and visuospatial ability than tremor-dominant patients. The 
logistic regression study also showed that akinetic-rigid PD patients were more likely than tremor-dominant PD 
patients to suffer dementia and mild cognitive impairment. 
 

B. 2.2 The Role of EEG in Cognitive Classification 
 
Fouladi et.al (2022) [29] studied the AD prediction necessitated the early identification of MCI. In this study, two 
deep learning (DL) architectures were introduced that employed 19-channel scalp EEG to classify individuals 
into AD, MCI, and HC groups: a modified CNN and a Conv-AE. An average precision of 92% was accomplished 
for the modified CNN and 89% for the Conv-AE by combining TFR and CWT. These deep learning models 
enhanced the accuracy of classification and efficiently managed partial EEG data for enhanced analysis, 
surpassing classical machine learning techniques by 10%. 
 
Wen et.al (2022) [30] demonstrated a MHCNN that evaluated spatial cognitive ability by binary classifying EEG 
data prior to and following spatial cognitive training. By employing a multi-dimensional conditional mutual 
information method, the research isolated features from the EEG frequency spectrum and converted them into 
multispectral images. The implementation of Densenet optimized feature propagation and minimized parameters. 
Classical CNNs were outperformed by MHCNN, which achieved a maximal accuracy of 98% across a variety of 
frequency band combinations—the Theta-Beta2-Gamma band being particularly productive. To assess the 
influence of spatial cognitive training and other brain functions, the proposed approach served as a biological 
indicator. 
 
Gupta et.al (2021) [31] proposed the  high-risk scenarios and when making dynamic decisions, cognitive burden 
was essential. EEG was essential for the assessment of cognitive exertion due to its affordability and portability 
in comparison to fMRI. The classification of cognitive exertion levels (low, medium, and high) was assessed in 
this study by combining deep learning with model-free functional connectivity measurements, such as PTE, MI, 
and PLV. 
 
Plechawska-Wójcik et.al (2019) [32] discussed the subject-independent assessment of cognitive burden, as it was 
applicable to a wide range of disciplines, such as education, driver health evaluations, and high-stakes occupations 
such as air traffic controllers and aircraft pilots. The study endeavored to quantify cognitive exertion levels by 
employing standard machine learning algorithms and feature selection approaches to evaluate EEG signals 
obtained during arithmetic problems. Multiclass classification, preprocessing, and feature extraction were all 
integrated into the methodology. 
 

III. RESEARCH METHODOLOGY 
  

A. Research Design 

It examines by utilizing an experimental research design to create, evaluate, and verify cognitive classification 
techniques based on EEG for patients with PD. The aim is to utilize ML models to differentiate cognitive states 
between PD patients with healthy controls. The design is fundamentally based on feature extraction, 
preprocessing techniques, and classification models to guarantee relevance and accuracy. 

B. Participants and Data Collection 

The study employs two groups of participants to guarantee that cognitive classification using EEG data is robustly 
compared. The first group comprises patients diagnosed with PD, either with or without cognitive impairments. 
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The second group comprises healthy control subjects that are age- and gender-matched. To validate the findings, 
the sample size will be 50 to 100 participants, ensuring that there is sufficient statistical power. Specified inclusion 
criteria must be met by participants, which include a authorized diagnosis of PD's, the capacity to provide 
informed consent, and a lack of history of other neurodegenerative diseases. The exclusion criteria include 
individuals who are taking medications that could potentially impact cognitive functions or have psychiatric or 
neurological disorders in addition to Parkinson's disease.  Ethical considerations are essential to the investigation. 
All participant data will be kept confidential and anonymous during the research procedure. Two conditions will 
be used to record EEG data: resting-state EEG to capture baseline neural activity and task-based EEG during 
cognitive tasks, such as working memory or attention tests, to investigate task-related brain activity. The 10-20 
electrode placement system will be employed. Comprehensive insights into both spontaneous and task-induced 
cognitive processes are guaranteed by this dual approach.  

Table 1 Data collection Details 

Condition  EEG Duration per 
Participant 
(minutes) 

Total Data 
Sample 
(500Hz) 

Electrode 
Placement 
System  

Sampling 
Rate  

Resting-State 10  300,000 Standard 10-20 
system  

500 Hz 

Working 
Memory task  

15 450,000 Standard 10-20 
system  

500 Hz 

Attention task  20 600,000 Standard 10-20 
system  

500 Hz 

 
C. EEG Preprocessing Techniques 

The preprocessing of EEG data is an essential phase in the analysis process to guarantee that the signals are free 
of artifacts and suitable for reliable feature extraction. It commences with filtering, which involves the application 
of a band-pass filter (0.5–45 Hz) to eliminate high-frequency noise and low-frequency variations (DC offsets). 
The purpose of this phase is to guarantee that only pertinent neural oscillations are retained for subsequent 
analysis. The data's integrity is enhanced by the identification and elimination of non-cerebral signals induced by 
physiological activities, such as eye blinks and muscle movements, through the practice of artifact removal using 
ICA. A subsequent stage is to perform baseline correction, which involves normalizing the data against a 
reference to reduce individual variability in the signals. This ensures that comparisons between participants are 
meaningful. In conclusion, the continuous EEG signals are divided into brief, task-specific epochs, which 
typically last between 1 and 3 seconds. Time-domain and frequency-domain analysis are facilitated by these 
epochs, which correspond to specific cognitive tasks or resting-state intervals. It is guaranteed that the EEG data 
is clear, consistent, and prepared for subsequent feature extraction and machine learning applications by this 
structured preprocessing pipeline.  
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 Figure 1: Flowchart 
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Feature Extraction Steps: 

 EEG Preprocessing: The preprocessing phase includes band-pass filtering (0.5–45 Hz) to remove noise, 
Independent Component Analysis (ICA) for artifact removal (such as eye blinks and muscle movements), 
baseline correction to reduce variability, and segmentation into task-specific epochs. 

 Time-Frequency Analysis:  Both spectral and temporal characteristics of EEG signals are captured using 
techniques such as Wavelet Transform and STFT. 

 Machine Learning and Deep Learning Models: SVM, RF, CNN, and LSTM are used to organize the cognitive 
states based on extracted features like power spectral density, coherence, and entropy. 
Dataset Used: 

 The study includes EEG data from two groups: PD patients (with and without cognitive impairments) and healthy 
control subjects. The data is collected in both resting-state and task-based (working memory and attention tasks) 
conditions using the standard 10-20 electrode placement system, tested at 500 Hz. 

 
 

 Figure 2: Feature Extraction of EEG 

Figure 2 shows EEG data that has been feature extracted; in particular, it shows time-frequency heatmaps for 
several EEG channels with labels such as Channel 1, Channel 2, and so on. The power spectral density (PSD) 
variation over time for frequencies linked to cognitive states in Parkinson's disease is shown in detail in each 
heatmap. The horizontal axis shows time in seconds, and the vertical axis shows frequency in Hz, which includes 
several brainwave bands like delta, theta, alpha, beta, and gamma. Prominent patterns of brain activity can be 
easily identified visually thanks to the color-coding of power levels, which range from dark blue (showing low 
power) to yellow (representing high power). With the use of this visualization, researchers may decipher how 
power in particular frequency bands vary over time, providing information about indicators of cognitive 
impairment in Parkinson's patients. 

D. Classification Techniques 

To classify cognitive states from EEG data, a variety of machine learning models will be implemented, each of 
which offers unique benefits. A robust model that is employed for both linear and non-linear classification is the 
SVM. SVM can effectively identify intricate patterns within EEG features by utilizing kernels, like as polynomial 
or RBF kernels. This makes it an appropriate tool for distinguishing subtle cognitive differences among PD's 
patients and healthy individuals. In addition, RF, an ensemble learning procedure, is implemented to manage 
high-dimensional EEG data. The cognitive classification's reliability is enhanced by its capacity to manage feature 
complexity through multiple decision trees, which in turn mitigates overfitting. Time-frequency representations, 
such as spectrograms, that are derived from EEG signals will also be analyzed using DL approaches, including 
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CNNs. CNNs are particularly effective at converting EEG signals into informative feature maps and flourish at 
learning spatial patterns. In addition, RNNs specifically with LSTM cells are implemented to capture the temporal 
dependencies that are inherent in EEG sequences. With their capacity to manage long-term dependencies, LSTM 
units are optimal for modeling continuous EEG data, which reveals the evolution of cognitive states over time. A 
comprehensive analysis is guaranteed by the combination of these models, which capture both spatial and 
temporal aspects of EEG signals to facilitate precise cognitive classification. 

Table 2: Model Performance Metrics 

Model  Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

SVM 84.6 82.4 85.8 85.1 
Random 
Forest  

88.2 85.1 87.6 86.3 

CNN 91.4 89.7 92.3 91.0 
RNN 
(LSTM) 

89.5 87.2 88.1 87.6 

 

Figure 3: Time-Frequency Heatmaps for dataset 

The heatmaps (time-frequency) for each channel in the synthetic EEG dataset. Five time-frequency heatmaps are 
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illustrated in the accompanying figure 3, each of which corresponds to a distinct channel designated from Channel 
1 to Channel 5. Over a frequency range of 0 to 250 Hz, these heatmaps figure 1 illustrate the evolution of the 
power spectral density (in dB/Hz) over time. time (in sec) is signified by the horizontal axis, while frequency (in 
Hz) is denoted by the vertical axis. Power levels are represented by a color gradient in each heatmap, with yellow 
indicating higher power values (closer to -20 dB/Hz) and dark blue or purple indicating lower power values (down 
to -80 dB/Hz). Consistency in the patterns across all channels implies that the channels may be measuring similar 
activity or are highly synchronized. To investigate the dynamic behavior of signals in both the time as well as 
frequency domains, this form of visualization is frequently employed in signal processing and neuroscience 
applications, including EEG analysis. 

E. Model Evaluation Metrics 

The investigation evaluates the models based on numerous critical performance metrics. Accuracy gives a 
comprehensive assessment of the model's functioning by measuring the percentage of instances that are correctly 
classified. Precision evaluates the model's efficacy in predicting cognitive impairments when they are present, 
with an emphasis on its capacity to prevent false positives. By assessing the model's ability to identify cognitive 
impairments, recall assesses its sensitivity, thereby ensuring that genuine cases are not disregarded. A balanced 
measure, the F1-score is particularly beneficial when addressing imbalanced datasets in which either FP or FN 
could predominate. It is evaluated as the harmonic mean of precision & recall. To further improve the model's 
reliability, stratified cross-validation is implemented. 80% of the dataset is designated for training, while 20% is 
designated for testing. This ensures that the distribution of cognitive and non-cognitive cases is consistent across 
both subsets. The model is able to generalize effectively to unseen data as a result of this method, which prevents 
overfitting. By employing stratified cross-validation, the investigation guarantees that the model's performance 
metrics accurately represent its true capabilities across a variety of cognitive states and patient populations.  
 

F. Data Visualization and Interpretation 

 Data visualization is must for validating the execution of classification models and comprehending the intricate 
patterns present in EEG signals. One critical method is the utilization of time-frequency heatmaps, which offer a 
better understanding of the dynamic fluctuations in power across frequency bands (like alpha, beta, & gamma) as 
they evolve over time. The x-axis of these heatmaps represents time, the y-axis represents frequency, and the 
power intensity is represented with color-coded values in decibels (dB). They provide a comprehensive 
understanding of the evolution of neural oscillations during various cognitive tasks, which is instrumental in the 
identification of the dominant rhythms that are associated with mental states.  By examining the variations in 
brain activity between individuals with Parkinson's disease and healthy controls, this visualization allows us to 
obtain a comparative understanding of cognitive impairment. A confusion matrix is used to further interpret the 
classification performance of machine learning models across different EEG channels. The frequency of predicted 
class labels in comparison to actual class labels is represented by each matrix entry, with diagonal elements 
indicating correct classifications and off-diagonal elements indicating misclassifications. This instrument is 
indispensable for assessing the models' ability to differentiate between cognitive states across numerous channels, 
thereby offering valuable insights into the reliability of features and the consistency of the channels. The matrix 
also assists in the identification of potential biases or areas for improvement by emphasizing patterns of 
misclassification, thereby assisting researchers in the refinement of the feature extraction and model training 
processes.  
 

IV. RESULTS AND DISCUSSION 
 
Several techniques are employed to filter the EEG signals, resulting in high-quality data with minimal artifacts. 
For instance, Independent Component Analysis (ICA) successfully eliminated anomalies from muscle 
movements and eye blinks. Normalization and segmentation of all signals into epochs were implemented 
subsequent to preprocessing to facilitate additional analysis. The band-pass filter (0.5–45 Hz) effectively 
eradicated noise and preserved necessary frequency components in the delta, theta, alpha, beta, & gamma bands. 

 Accuracy:  The percentage of instances that are correctly classified (both positive and negative) in relation to the 
total number of instances. 

 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 
2024; Vol 13: Issue 4 

www.healthinformaticsjournal.com 

Open Access 

 

126  

 
 Precision (Positive Predictive Value):  the proportion of true positive predictions among all of the model's 

positive predictions. It evaluates the ability to avoid false positive results. 

Precision = 
்௉

்௉ାி௉
 

 Recall (Sensitivity):  The percentage of genuine positives that were accurately identified by the model. It indicates 
one's capacity to identify instances of positivity. 

 

Recall= 
்௉ା்ே

்௉ା ிே
 

 F1-Score:  Recall and precision are combined to form the harmonic mean. Particularly when the class distribution 
is imbalanced, it strikes a balance between precision and recall. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 
 
 
 
 

 
Table 3: Comparison of Cognitive Classification Models 
 

Metric SVM 
(%) 

Random Forest 
(%) 

CNN 
(%) 

RNN (LSTM) 
(%) 

Accuracy  85.6 88.2 91.4 89.5 
Precision  83.4 85.1 89.7 87.2 
Recall 84.8 87.6 92.3 88.1 
F1-Score  84.1 86.3 91.0 87.6 

 

 
 
 Figure 4: Comparison of Accuracy Model 
 
In Figure 4, the accuracy of four distinct machine learning models is compared: SVM, Random Forest, CNN, and 
RNN - LSTM. The accuracy in percentage is represented on the y-axis, with each bar representing the 
performance of a specific model. From figure 4, it is evident that the accuracy scores of all four models are similar, 
with a range of approximately 80% to 85%. This implies that all models are effective, but there is no substantial 
difference in their accuracies. This comparison emphasizes the resilience of both conventional ML models SVM, 
RF and DL models (CNN, RNN) in addressing the issue at hand. 
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Figure 5: Comparison of Precision Model 

Figure 5 demonstrates a comparative analysis of the precision (%) attained by four ML models:  SVM, RF, CNN, 
and RNN with LSTM. All models exhibit a high level of precision, surpassing 80%, with CNN and RNN (LSTM) 
marginally outperforming the other two. Compared to conventional ML methods such as SVM and RF, this 
comparison underscores the potential for deep learning architectures (CNN and RNN-LSTM) to offer superior 
predictive precision, particularly when dealing with intricate datasets. Although CNN and LSTM provide 
marginal precision advantages, the close precision values of all models indicate that each model performs 
consistently. 

 

Figure 6: Model Recall Comparison 

The recall performance of four models—SVM, Random Forest, CNN, and RNN (LSTM)—is compared in 
percentage terms according to figure 6. All models exhibit robust recall values that are within a narrow range, 
indicating that they are capable of accurately identifying pertinent instances. Deep learning models may have an 
advantage in capturing complex patterns, as CNN and RNN (LSTM) marginally outperform SVM and Random 
Forest. Nevertheless, all models demonstrate a high recall, which suggests that they are appropriate for tasks that 
are targeted at reducing false negatives. This comparative analysis can assist in the selection of an optimal model 
for situations in which recall is a critical metric. 
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Figure 7: Model F1-Score Comparison 

 The accompanying figure 7 displays a comparison of the F1-score performance of four ML models: SVM, RF, 
CNN, and RNN with LSTM. Each bar designates the F1-score percentage that the corresponding model has 
attained. The findings suggest that all models operate at a high level, with scores that are closely clustered around 
80-85%, indicating that their efficacy is comparable across the various architectures. CNN and RNN (LSTM) 
exhibit marginally higher scores than SVM and Random Forest, suggesting that deep learning techniques may 
have a potential advantage for the task at hand. The following comparison offers a perspective on the selection of 
models for applications that necessitate a balanced precision-recall trade-off and high accuracy. 

 

Figure 8: Comparison between Synthetic and Real EEG Signals 

Figure 8 illustrates a visual comparison between a synthetic EEG signal (top) and a genuine EEG signal (bottom). 
The synthetic signal exhibits a waveform that is smooth, repetitive, and highly consistent in amplitude and 
frequency over a 10-second period, which is indicative of the regularity of artificially generated data. On the other 
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hand, the genuine EEG signal demonstrates a greater degree of variability, which includes a prominent spike at 
the 4-second mark. This spike is indicative of the presence of anomalies or transient brain activities that are 
common in real-world EEG recordings. This comparison underscores the difficulties associated with modeling 
genuine EEG signals, which are frequently irregular, chaotic, and susceptible to spontaneous fluctuations, in 
contrast to synthetic data that exhibits a predictable pattern. 

 

Figure 9: Confusion Matrix  

The CNN model's confusion matrix demonstrated a high degree of agreement between the predicted and true 
labels. Correct classifications accounted for 91% of all cases, with minor misclassifications primarily occurring 
between control groups and modest cognitive impairment. This consistency underscores the efficacy of EEG-
based classification in the initial detection of cognitive impairment in PD's patients. This visualization is 
beneficial for feature matching or multi-channel classification, as it facilitates the evaluation of the consistency 
or agreement between two EEG channels.  

Novelty  

The research paper "Advanced EEG Signal Processing Techniques for Cognitive Classification in Parkinson's 
Disease" is unique in that it emphasizes the utilization of advanced EEG processing techniques, including ML, 
DL, and time-frequency analysis, to improve the detection and classification of cognitive impairments in PD. 
This also investigation employs contemporary methodologies, including CNNs and RNNs, to autonomously 
extract features from raw EEG signals, thereby surpassing the constraints of conventional manual feature 
engineering. Furthermore, the utilization of time-frequency analysis (e.g., Wavelet Transforms) offers more 
comprehensive insights into transient brain activity patterns. This combination of methods is designed to address 
critical challenges, including noise interference and limited datasets, to provide more precise classification, 
support early diagnosis, personalized treatment, and improved clinical outcomes for PD patients. 
 

V. CONCLUSION 
 
The study on advanced EEG signal processing techniques for cognitive classification in PD emphasizes the 
significance of early detection and monitoring of cognitive impairments. By incorporating ML and DL models, 
like SVM, RF, and CNN, the research demonstrates that these methods significantly enhance the accuracy of 
detecting subtle cognitive changes in PD patients. By utilizing EEG's capacity to record real-time neural activity, 
these methods provide a non-invasive and dependable approach to detecting early cognitive decline, which may 
be overlooked by conventional neuropsychological evaluations. 
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The results underscore the excellence of time-frequency analysis methods, like Wavelet Transforms, & advanced 
deep learning frameworks, including RNNs with LSTM, in describing the spectral and temporal dynamics of 
EEG signals. Enhanced classification accuracy is achieved by minimizing noise and artifacts, and critical insights 
into brain activity patterns associated with cognitive impairment are provided by these methodologies. This 
development enables the development of personalized treatment regimens and guarantees improved monitoring 
of PD patients. The study also recognizes the necessity of larger, more diverse datasets to further validate the 
models' efficacy across broader patient populations and the challenges associated with handling noisy EEG data. 
Moreover, even though CNNs and LSTM networks exhibit superior performance, it is still essential to ensure the 
interpretability and clinical applicability of the models for real-world implementation. In summary, the potential 
for improving cognitive assessment in PD is presented by the integration of cutting-edge EEG signal processing 
techniques with state-of-the-art ML models. By facilitating proactive interventions and enhancing patients' quality 
of life through early detection and targeted therapies, these innovations have the potential to revolutionize clinical 
practices. 
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