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Abstract: 
The leading global cause of death remains cardiovascular diseases (CVDs) compounded by complications such 
as thrombosis, hypertension, and myocardial infarction. The rising burden of CVDs further underscores the 
call for effective and safer treatment alternatives. Nattokinase from natto, the fermented Japanese food, shows 
promise in managing cardiocerebrovascular health due to its anticoagulant anti-hypertensive and circulation-
enhancing properties. However, full knowledge of its mechanism of action will help optimize its therapeutic 
potential. This research work attempted an in-silico study on the models of nattokinase targeting cardiovascular 
disorders. The study addressed the molecular interactions of nattokinase with some vital protein targets in 
cardiovascular diseases using computational techniques like molecular docking and molecular dynamics 
simulations. Among the key receptor targets for which binding affinity was determined were β1 and β2 
adrenergic receptors as well as M1 and M2 muscarinic receptors. These are integral parts of cardiophysiology 
– particularly in regulating heart rate responses, contractility of myocardium vasodilation processes. The 
findings from docking and dynamics studies provide strong binding affinities. These results offer substantial 
evidence that nattokinase has a promising targeted therapeutic approach for CVDs. 
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Introduction: 
Cardiovascular diseases (CVDs) comprise a wide range of disorders affecting the heart and blood vessels, 
including but not limited to coronary artery disease, cerebrovascular disease, and rheumatic heart disease. 
CVDs are among the leading causes of death in the world; nearly 17.9 million deaths were reported annually, 
representing 31% of total global mortality (https://www.who.int/news-room/fact-sheets/detail/cardiovascular-
diseases). Common complications include heart failure, in which the cardiac muscle fails to pump blood 
properly; myocardial infarction or 'heart attack,' due to obstruction of blood flow to the heart muscle from clots 
or ruptured plaques; and stroke resulting from interrupted blood supply to the brain, often caused by 
atherosclerosis [1]. The role of CVDs as major health determinants is further emphasized by complications like 
arrhythmias, characterized by irregular heartbeat patterns, and peripheral artery disease, associated with 
reduced blood flow to extremities [2]. 
Risk factors for cardiovascular complications can be classified into non-modifiable and modifiable. The 
presence of modifiable risk factors such as hypertension, smoking, diabetes, obesity, physical inactivity, 
unhealthy diet patterns, and excessive alcohol consumption has an alarming increase in the prevalence of 
diseases [3]. On the contrary, non-modifiable risk factors that include age, gender, and family history are also 
significantly involved. Prevention and control require effective strategies that involve modifications in 
lifestyles by means of healthy dietary practices as well as regular physical activity smoking cessation and 
reduced consumption of alcohol [4]. Apart from that, medical interventions to include management of blood 
pressure, regulation of cholesterol levels; control of diabetes; screening health periodically must be performed 
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so as to reduce the burden CVDs. It is hoped that these focused approaches will lower the high-level impact of 
cardiovascular diseases on human beings and enhance general health outcomes [5]. 
Understanding the mechanisms of drugs, especially in polypharmacology and cardiovascular complications, is 
multifaceted. Traditional experimental methods, including in vitro and in vivo models, are not only labor-
intensive and costly but also often fail to mimic the complexity of human physiology [6]. Moreover, as most 
drugs are polypharmacological with actions at multiple targets, it becomes exceedingly difficult to predict what 
a drug's specific mechanism of action is supposed to be [7]. Additionally, individual variation within a 
population due to factors such as genetic variation makes it even more difficult to determine how drugs interact 
with biological pathways in different groups of people [8]. The inadequacies of experimental approaches 
provide a case for applying modern in-silico techniques that can more efficiently and accurately gather and 
analyze data; simulate drug-target interactions; and predict mechanisms. These valuable computational tools 
can significantly supplement traditional approaches by providing critical information about the efficacy and 
safety of a drug [9]. 
Computational techniques have revolutionized the way drug mechanisms are predicted by offering inexpensive 
and efficient alternatives to traditional experimental approaches [10]. Molecular docking, molecular dynamics 
simulations, and machine learning allow researchers to investigate drug-target interactions at the molecular 
level, thereby providing valuable information on binding affinity, stability, and possible off-target interactions 
[11]. Bioinformatics tools sift through huge biological databases and determine pathways and networks affected 
by the drug. The methods not only speed up the drug discovery process but also increase the reliability of 
predictions regarding a drug's efficacy and safety, which makes them essential in any modern pharmaceutical 
research [12]. Computational modeling reveals new mechanisms of action for existing drugs when used in 
repurposing; this is particularly relevant for complex diseases like cardiovascular complications [13]. 
Nattokinase, a serine protease enzyme sourced from the traditional Japanese fermented food natto, has recently 
attracted interest for potential therapeutic applications in cardiovascular health [14]. Nattokinase is known to 
have fibrinolytic activity; it can dissolve fibrin clots, reduce blood viscosity, and improve circulation. This 
makes the enzyme a promising candidate to manage thrombotic disorders such as stroke, deep vein thrombosis, 
and myocardial infarction [15]. Further support for its use in hypertension management comes from its ability 
to degrade angiotensin-converting enzyme [16]. 
As a natural compound with a good safety profile and oral bioavailability, nattokinase represents an interesting 
option compared to synthetic anticoagulants, which are often associated with bleeding risks and require tight 
monitoring [14]. In-depth silico exploration of the mechanism of action of nattokinase may further elucidate 
its diverse effects on cardiovascular systems and hence facilitate its development as a targeted therapeutic 
agent. 
The prediction of the mechanism of action for a drug is very important in helping to understand the therapeutic 
potential of a drug, its off-target effects, and also its safety and efficacy. The accurate prediction of the 
mechanism allows scientists to determine the molecular interactions and pathways that are modified by a drug, 
which in turn facilitates rational drug design and also an approach to personalized medicine [17]. This is 
especially important in complex conditions like cardiovascular complications where pharmacotherapy involves 
multiple targets as well as pathways. In addition, predictions about mechanisms can play a role in drug 
repurposing, wherein pre-existing drugs are identified for new therapeutic uses [18]. Computational methods 
constitute an essential part of this endeavor by bringing together information from biological databases, 
simulating interactions between drugs and targets, and predicting outcomes with great accuracy; thus in silico 
studies reduces dramatically the cost as well as time associated with developing new drugs [19]. 
The present study attempts to predict the possible mechanisms through which nattokinase, a fibrinolytic 
enzyme, acts in the treatment of cardiovascular complications by using in-silico methods. Cardiovascular 
diseases constitute one of the leading causes of mortality in the world arising from complications such as 
thrombosis, hypertension, and myocardial infarction; thus, there is a significant demand for effective and safe 
therapeutic interventions. Nattokinase has been demonstrated to possess anticoagulant, anti-hypertensive as 
well as circulation-enhancing properties; thus, it would be a promising candidate for treating these disorders. 
This study employs cap-ex computational techniques to reveal intricate mechanisms by which nattokinase 
operates molecular targeting pathways and potential off-target effects. Molecular docking and molecular 
dynamics simulations will play an instrumental role in discovering and validating probable protein targets as 
well as probing into binding affinities and molecular stability while predicting biological pathways downstream 
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of nattokinase interaction. It is justified that this will further clarify its therapeutic potential toward realizing 
development as a targeted treatment for cardiovascular disorders. 
 
2. Methods 
2.1 Selection and preparation of protein and ligand 
Thirty-two Three-dimensional (3D) X-ray crystal structures of targets related to cardiovascular disease with 
less than 2.5Å was acquired from the RCSB Protein Data Bank. For the study Three -dimensional (3D) X-ray 
crystal structure of ligand protein with less than 2.5Å was acquired from PDB database. The proteins were 
subjected to pre-processing and minimized using CHARMM-GUI server. Processed files were systematically 
renamed and organized for further molecular docking and simulation studies [20, 21] 
 
2.2 Protein-Protein docking 
The different target proteins of cardiovascular diseases were docked with natto kinase utilizing ZDOCK server 
[22] (https://zdock.umassmed.edu/). It promotes global docking search on a 3D grid employing the rigid‐body 
FFT algorithm through its user-friendly web interface that includes shape complementarity, electro statistics 
and statistical potential terms for scoring of the complex structures [23]. The selected protein–protein complex 
will be determined by the highest quantity of intermolecular hydrogen bonds, non-covalent interactions, bond 
distance and interacting residues formed between the proteins. The structures are visualized using Discovery 
Studio 3.5 [24]. 
 
2.3 Molecular dynamics simulations of docked complexes 
MD simulation was done by using GROMACS software (https://www.gromacs.org/) [25, 26] binding stability 
of the protein complexes was assessed using CHARMM 27 force field. The MD simulation was finalized 
following the completion of three phases: (i) system neutralization, (ii) system energy minimization, and (iii) 
system equilibration.  protein complexes or system was solvated using the TIP3P water model within a cubic 
box measuring 1.0 nanometer (nm). Sodium and chloride ions (Na+, Cl-) was introduced to balance the system 
for energy minimization. The steepest descent minimization algorithm was employed to establish the system's 
energy minimization, ensuring the maximum force remained below 1000 kJ/mol for a maximum of 50,000 
steps. The system's equilibration was conducted over 50 picoseconds (ps) utilizing the Particle Mesh Ewald 
(PME) method for long-range electrostatics, hence enhancing the accuracy of energy estimations [27]. The 
complexes were maintained at a constant temperature of 300 Kelvin (K). The trajectory files of root-mean-
square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), and solvent 
accessible surface area (SASA)was analyzed to measure the binding affinity between protein complexes. 
Xmgrace (https://plasma-gate.weizmann.ac.il/Grace/) is utilized for visualizing RMSD, RMSF, Rg and SASA 
[28]. 
 
3. Results and discussion 
3.1 Retrieval of ligand protein 
Three -dimensional (3D) X-ray crystal structure of ligand protein with PDB Id 5GL8 with less than 2.5Å   was 
retrieved from PDB database and was taken in to consideration for the docking the proteins were subjected to 
pre-processing and minimized using CHARMM-GUI server and saved for docking studies. 
 
3.2 Molecular docking studies 
Molecular docking simulations were conducted using the ZDOCK server to assess the binding potential of 
nattokinase against 32 target proteins associated with cardiovascular disease (CVD). The binding energies for 
the protein-ligand complexes were observed in the range of 2948.68 to 1312.87. Table 1 gives a detailed 
ZDOCK binding score presented in descending order. Out of the 32 targets, nattokinase showed remarkable 
binding affinity with four major proteins, which are M1 receptor, β1 receptor, β2 receptor, and M2 receptor. 
These receptors are crucial to the cardiovascular physiologies because they control the vasoconstriction present 
in the smooth muscle cells of blood vessels, increase the heart rate, enhance contractility of the myocardium, 
increase stroke volume, and thereby increase cardiac output. Because they are so integral to the CVD 
pathophysiology, they are frequently targeted therapeutically in the treatment of conditions like hypertension, 
angina, and heart failure. The 3D structures of top four complexes are shown in Fig 1 
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Table 1: Z Dock score results of the CVD targets with natto kinase 

Sl. No Target PDB ID Score 

1 M1 receptor 6ZFZ 2948.688 

2 Beta 1 2Y03 2896.789 

3 Beta 2 5D5A 2868.121 

4 M2 receptor 3UON 2825.543 

5 M3 receptor 4U15 2653.571 

6 Alpha 2 6UKX 2356.105 

7 Cyclooxygenase 2 5IKT 2290.783 

8 Serum paraoxonase 1V04 2096.426 

9 HMG CoA 1HW9 2046.254 

10 CASP 9 3V3K 2028.411 

11 NOS3 3EAH 1935.869 

12 BAX 2LR1 1897.392 

13 Renin 2V0Z 1863.433 

14 NOS2 3E7G 1841.535 

15 Thermolysin 5DPF 1795.248 

16 CASP 3 1NME 1782.684 

17 Aldosterone synthase 4ZGX 1767.711 

18 TP53 1GZH 1757.542 

19 ESR 1 1A52 1753.344 

20 CASP 8 2K7Z 1727.186 

21 MAP Kinase 4DLI 1636.284 

22 MAP Kinase Latest 6QYX 1630.273 

23 AKT1 7NH4 1582.504 

24 ACE 1R42 1565.861 

25 JUN 5T01 1547.899 

26 Carbonic anhydrase II 1BN1 1532.965 

27 Coagulation Factor Xa 1XKB 1518.802 

28 VEGFA 6D3O 1516.453 

29 Human Annexin 1B09 1506.471 

30 FOS 2WT7 1483.206 

31 Voltage Ca2+ alpha 1 3LV3 1407.816 

32 L Ca2+ channel 2VAY 1312.87 

 
3.3 Interpretation of protein-protein interactions 
Biovia discovery studio visualizer software was used to anticipate the interactions between the selected target 
and ligand proteins 
 
3.3.1 Binding mode of muscarinic acetylcholine receptor(M1): 
Natto kinase showed maximum binding affinity and ligand interaction with M1 receptor with a score of 2948.68 
as compared to other target proteins. The natto kinase showed nine conventional hydrogen bonds and twelve 
carbon-hydrogen bonds with M1 receptor respectively showed in fig 1 (a) and table 2 
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3.3.2 Binding mode of beta-1 adrenergic receptor (β1): 
Natto kinase showed ligand interaction and binding affinity with β1 receptor with a score of 2896.78. The natto 
kinase showed five conventional hydrogen bonds and ten carbon-hydrogen bonds and 1 Pi-Donor hydrogen 
bond with β1 receptor respectively showed in fig1(b) and table 2 
 
3.3.3 Binding mode of beta-2 adrenergic receptor (β2): 
Natto kinase showed ligand interaction and binding affinity with β2 receptor with a score of 2868.12. The natto 
kinase showed twelve conventional hydrogen bonds and ten carbon-hydrogen bonds with β2 receptor 
respectively showed in fig 1(c) and table 2 
 
3.3.4 Binding mode of muscarinic acetylcholine receptor (M2): 
The natto kinase showed twelve conventional hydrogen bonds and fifteen carbon-hydrogen bonds with β2 
receptor respectively showed in fig1(d) and table2 
 

 
Figure 1: Representation of Nattokinase complex with (a) M1 receptor (b) beta1 receptor (c) M2 receptor 

(d) beta 2 receptors 
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Table 2: List of bonding interactions between Top four ligand protein complexes 

Protein name & ID 
Interacting residues 

Category 
Bond 
distance 
(Å) 

From              To 

M1 receptor(6ZFZ) 

LYS136 ASN43 Conventional Hydrogen Bond 0.58476 
ARG141 VAL44 Conventional Hydrogen Bond 2.74205 
ALA195 SER53 Conventional Hydrogen Bond 2.58874 
ARG210 GLY211 Conventional Hydrogen Bond 2.21772 
ARG213 ALA1 Conventional Hydrogen Bond 2.73918 
ARG213 ALA1 Conventional Hydrogen Bond 2.6475 
SER63 THR202 Conventional Hydrogen Bond 1.29704 
GLY102 THR389 Conventional Hydrogen Bond 2.93644 
ASN218 LEU372 Conventional Hydrogen Bond 2.9558 
LEU156 SER49 Conventional Hydrogen Bond 2.91751 
PRO200 GLN59 Carbon Hydrogen Bond 2.36132 
THR206 TYR214 Carbon Hydrogen Bond 2.58876 
TRP209 GLN206 Carbon Hydrogen Bond 2.69255 
PRO380 ASN155 Carbon Hydrogen Bond 2.77315 
LEU386 SER101 Carbon Hydrogen Bond 2.66974 
VAL387 GLY127 Carbon Hydrogen Bond 3.07651 
PHE390 GLY102 Carbon Hydrogen Bond 2.92735 
THR55 ASN110 Carbon Hydrogen Bond 2.08355 
THR99 PHE190 Carbon Hydrogen Bond 2.34096 
SER101 THR389 Carbon Hydrogen Bond 2.12694 
GLY215 CYS205 Carbon Hydrogen Bond 2.48268 
  Carbon Hydrogen Bond  
  Carbon Hydrogen Bond  

Beta-1(2Y03) 

GLN70 GLU156 Conventional Hydrogen Bond 2.27996 
GLN70 SER158 Conventional Hydrogen Bond 1.4543 
GLN73 GLU156 Conventional Hydrogen Bond 2.71964 
THR164 SER62 Conventional Hydrogen Bond 2.60657 
ALA167 TYR217 Conventional Hydrogen Bond 2.77862 
ARG229 ASN117 Conventional Hydrogen Bond 2.89286 
SER188 ILE63 Conventional Hydrogen Bond 1.44008 
GLY67 SER188 Carbon Hydrogen Bond 1.62674 
SER68 SER188 Carbon Hydrogen Bond 2.87712 
ARG157 THR99 Carbon Hydrogen Bond 2.33205 
ALA170 TYR214 Carbon Hydrogen Bond 2.84922 
ILE214 SER37 Carbon Hydrogen Bond 2.56728 
ILE218 VAL44 Carbon Hydrogen Bond 2.42857 
GLY157 GLY67 Carbon Hydrogen Bond 2.40717 
SER188 ALA64 Carbon Hydrogen Bond 2.02972 
PHE189 GLY67 Carbon Hydrogen Bond 2.31066 
SER38 ILE214 Carbon Hydrogen Bond 2.54558 
ALA216 TRP166  3.3266 
  Pi-Donor Hydrogen Bond  

Beta 2 (5D5A) 

GLU62 GLY100 Conventional Hydrogen Bond 2.86811 
GLN65 THR99 Conventional Hydrogen Bond 2.65227 
LEU1013 SER161 Conventional Hydrogen Bond 1.84055 
LEU1015 SER194 Conventional Hydrogen Bond 2.92908 
LEU1015 GLU195 Conventional Hydrogen Bond 2.43994 
LYS1016 GLU195 Conventional Hydrogen Bond 1.6979 
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LYS267 SER159 Conventional Hydrogen Bond 1.87425 
GLY102 GLU62 Conventional Hydrogen Bond 2.59811 
GLY127 GLU62 Conventional Hydrogen Bond 2.7411 
SER161 ARG1008 Conventional Hydrogen Bond 2.8821 
SER161 ILE1009 Conventional Hydrogen Bond 3.08817 
SER163 LEU1013 Conventional Hydrogen Bond 2.56113 
LYS60 THR99 Carbon Hydrogen Bond 1.96789 
ILE1009 SER161 Carbon Hydrogen Bond 3.05085 
ASP331 ASN155 Carbon Hydrogen Bond 2.2392 
CYS341 ALA216 Carbon Hydrogen Bond 1.48187 
THR99 ALA59 Carbon Hydrogen Bond 1.65492 
GLY100 LYS60 Carbon Hydrogen Bond 2.24837 
SER101 GLU62 Carbon Hydrogen Bond 2.8114 
GLU156 ASP331 Carbon Hydrogen Bond 1.5004 
SER161 ILE1009 Carbon Hydrogen Bond 2.88384 
TYR217 GLU338 Carbon Hydrogen Bond 2.61059 

M2 (3U0N) 

ARG211 GLY127 Conventional Hydrogen Bond 2.93945 
ARG211 GLY100 Conventional Hydrogen Bond 2.5833 
ARG211 SER125 Conventional Hydrogen Bond 0.97978 
ARG211 SER125 Conventional Hydrogen Bond 2.5006 
ARG216 ASN155 Conventional Hydrogen Bond 2.75872 
ARG216 GLU156 Conventional Hydrogen Bond 1.65233 
ALA1093 THR55 Conventional Hydrogen Bond 2.68598 
ARG1096 THR55 Conventional Hydrogen Bond 1.8787 
GLU382 SER158 Conventional Hydrogen Bond 1.93805 
ARG387 SER159 Conventional Hydrogen Bond 2.75763 
SER158 SER380 Conventional Hydrogen Bond 1.61512 
THR164 GLU382 Conventional Hydrogen Bond 2.93294 
SER210 GLY127 Carbon Hydrogen Bond 1.3436 
SER213 GLU156 Carbon Hydrogen Bond 2.43702 
PRO1086 GLY47 Carbon Hydrogen Bond 2.90319 
ASP1092 THR55 Carbon Hydrogen Bond 2.04127 
LYS1124 ASN56 Carbon Hydrogen Bond 2.3278 
LYS1124 ASN56 Carbon Hydrogen Bond 2.86446 
ARG381 SER158 Carbon Hydrogen Bond 2.84345 
ARG387 SER159 Carbon Hydrogen Bond 1.34606 
ARG387 SER159 Carbon Hydrogen Bond 2.92178 
SER49 ASP1089 Carbon Hydrogen Bond 2.49131 
THR55 LEU1091 Carbon Hydrogen Bond 2.79531 
ASN56 SER1090 Carbon Hydrogen Bond 1.89435 
ASN56 LEU1091 Carbon Hydrogen Bond 3.01086 
PRO57 ASP1089 Carbon Hydrogen Bond 1.91166 
GLY128 TYR206 Carbon Hydrogen Bond 2.51183 

 
3.4 Molecular dynamics studies 
MD simulations for 100 ns were carried out for the top four Protein–Protein complexes obtained from the 
docking studies, that is Beta1, Beta 2, M1, M2 receptors. Trajectory analysis was performed by using 
GROMACS simulation package of root mean square deviation (RMSD), root mean square fluctuation (RMSF), 
radius of gyration (RG) and Solvent Accessible Surface Area (SASA) 
RMSD is an important parameter to analyze the equilibration of MD trajectories and check the stability of 
complex systems during the simulation process. RMSD of the protein backbone atoms were plotted against 
time to assess its variations in structural conformation 
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Figure 2: RMSD plot of Natto kinase with Beta1, Beta2, M1, and M2 

 
The RMSD plot from the molecular dynamics simulation gives an idea about the structural stability of the four 
systems, Beta1, Beta2, M1, and M2, over a time period of 100 ns. For Beta1, represented by the black curve, 
there is a gradual stabilization as RMSD values remain consistently below 1 nm, which implies that this 
structure is stable and there is not much deviation from the initial conformation. For M1 (green curve), 
deviation is least; it stabilizes early in the simulation with an RMSD value around 0.5-0.6 nm indicating a 
rather stable structure. In contrast to this, Beta2 (red curve) shows slight conformational changes initially but 
then stabilizes around 2 nm and seems to be most stable at that value though some moderate changes in 
conformation are shown. 
On the contrary, M2 (blue curve) shows exceptional fluctuation throughout the entire simulation and RMSD 
values shoot up repeatedly up to 3–4 nm. This is a sign of structural instability or perhaps conformational 
changes occurring in the system. While the other systems reach stability within the first 10–20 ns, M2 neither 
stabilizes nor shows any tendency to do so, which may be due to intrinsic flexibility or unresolved structural 
problems. The low RMSD values for M1 and Beta1 suggest that these systems remained close to their initial 
conformations, probably due to some good interactions or constraints. For Beta2, moderate RMSD values 
indicate small deviations from the starting conformation; for M2, high and fluctuating RMSD values might 
denote flexible loops, unstable regions, or transitions between multiple conformations. 
Root Mean Square Fluctuation (RMSF) is a measure used to determine the flexibility of the residues in the 
molecular dynamics (MD) simulations done with GROMACS. The RMSF plot has residue number on the X-
axis and fluctuation values in nanometers on the Y-axis, therefore provides information regarding the dynamic 
behavior of the protein or molecular system being studied. Simulations were performed for four different 
conditions or systems, which are labeled Beta1, Beta2, M1, and M2. 
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Figure 3: RMSF plot of Natto kinase with Beta1, Beta2, M1, and M2 

 
The results show that Beta1 and Beta2, depicted by the black and red lines, respectively, show consistently low 
RMSF values over the entire range of residues. This indicates that the systems maintain their structural rigidity 
throughout the simulation. M1, represented by the green line, shows higher but somewhat stable fluctuations 
while M2 exhibits exceptional flexibility in certain regions with peaks of RMSF values between residues 0–
200 and 1000–1200 compared to other regions. These regions are likely corresponding to loop regions or 
termini which are generally less compacted and more mobile. In contrast, residue values in the middle range 
(200–800) were low across all systems indicating that those regions might be stable secondary structural 
elements like alpha-helices or beta-sheets. 
The Increased flexibility observed In the M2 system as Indicated by the higher RMSF values may be due to 
particular environmental factors, structural changes, or interactions at the molecular level that influence the 
dynamics of those regions. This kind of flexibility would indeed be critical in functional processes, for example, 
ligand binding, enzymatic activity, or conformational change. The more rigid behavior exhibited by Beta1 and 
Beta2 systems might result from such stabilizing interactions-higher hydrogen bonding or binding constraints, 
for instance-which could restrict molecular mobility in general. 
The Radius of Gyration (Rg) graph is a perfect Indicator of the closeness and relative structural robustness of 
the molecular systems throughout the MD simulations. The X-axis in the graph corresponds to simulation time 
measured in nanoseconds, while the Y-axis represents the radius of gyration, noted in nanometers. 
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Figure 4: Radius of Gyration (Rg) of Natto kinase with Beta1, Beta2, M1, and M2 

 
The Rg values for Beta1 (black) the average Rg is about 3.0 nm with really slight variation that would indicate 
a rather compact and homogeneous structure and M1(green) The green plot corresponding to gives similar Rg 
values, around 3.0 nm, as observed for Beta1, indicating a compact structure with rather negligible deviations. 
Beta2 (red) are constant during the simulation. For Beta2, the average Rg is around 3.4 nm, which denotes a 
system slightly less compact than the previous one but still of rather good structural stability over time. 
In contrast, Rg values for M2 (blue plot) are significantly higher and average about 3.6–3.8 nm with large 
fluctuation rates, particularly during the initial phase of the simulation. The fluctuations would imply a more 
dynamic structure, possibly undergoing conformational changes or structural rearrangements during the 
simulation. Rg of M2 stabilizes somewhat after initial fluctuations but remains higher than that for the other 
systems, indicating a less compact and probably more flexible system. 
The overall analysis of the Rg graph shows that the systems have different structural characteristics. Beta1, 
Beta2, and M1 are found to be stable and compact in contrast to M2 which is more fluctuating with higher Rg 
values, probably due to the influence of environmental factors, conformational changes, or ligand interactions. 
Such variability may imply that a grasped role either in flexibility or conformational change might be involved 
for M2 and its relevance. 
The SASA analysis, done with GROMACS, tells how the surfaces of the molecules are exposed to the solvent 
throughout the simulation. The X-axis represents time during the simulation, measured in nanoseconds, and 
the Y-axis corresponds to SASA values, measured in square nanometers (𝑛𝑚2). 
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Figure 5: SASA analysis of Natto kinase with Beta1, Beta2, M1, and M2 

 
Beta1, Beta2, M1, and M2 exhibit varying SASA values. Beta1 has the lowest average SASA values of around 
340–350 𝑛𝑚2, which implies that it has a very compact structure with less access to the solvent. This indicates 
that Beta1 does not fluctuate much in its conformation but rather maintains a stable folded form throughout the 
simulation. Beta2 and M1 have moderate SASA values that oscillate around 400–420 𝑛𝑚2, indicative of a 
compromise between conformational rigidity and flexibility with ample solvent accessibility over time. In 
sharp contrast to the latter, M2 exhibited the highest SASA values ranging from 420–440 𝑛𝑚2 with huge 
fluctuations indicating a non-compact and more mobile structure than the others. The increased solvent 
exposure in M2 could be due either to its conformational freedom or partial unfolding which may expose 
regions that are crucial for interactions with ligands or other biomolecules. The overall profiles of SASA reveal 
different behaviors in terms of structures; Beta1 is the most compact while M2 shows most flexibility and 
solvent exposure, probably correlating with their functional roles. Such variations in SASA may reflect the 
functional and structural characteristics of the systems. For instance, the larger SASA in M2 may imply that 
regions or sites of interaction exposed to solvent are accessible, which could promote interactions with ligands 
or other biomolecules. In contrast, the lower SASA in Beta1 suggests a more rigid, folded structure with fewer 
regions accessible to solvent. 
 
Conclusion: 
This study carried out protein-protein docking analysis of 32 protein targets relating to CVD with natto kinase 
as the ligand. Natto kinase showed remarkable binding activity and important molecular interactions with 
several targets. More importantly, natto kinase had not only strong binding affinities but also stable interactions 
with β1, β2, M1, and M2 receptors which would possibly be therapeutic relevance by modulation of these key 
cardiovascular targets. further detailed assessment of MD simulation results, which includes graphs of RMSD, 
RMSF, Rg, and SASA, significant differences are observed in the dynamic behaviors among the four systems: 
Beta1, Beta2, M1, and M2. 
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A detailed analysis of RMSD, RMSF, Rg, and SASA reveals significant differences in the structural and 
dynamic behaviors of the four systems. Beta1 is the most stable and compact with less solvent exposure. Beta2 
and M1 present moderate stability with more accessible solvent, showing rather balanced structural 
characteristics. Conversely, M2 is much more flexible with higher solvent exposure and conformational 
variability, which might imply its functional versatility under adaptability, such as ligand binding. Such 
information gives profound insight into the dynamics of structure formation in those systems studied and paves 
the way for further exploring their functional roles and structures. 
In silico validation thus indicates that natto kinase is a probable candidate for significant inhibition of β1, β2, 
M1, and M2 receptors which are integral parts of the major pathways driving forward CVD. This will support 
the concept of natto kinase as a targeted therapeutic agent in the management of CVD; further experimental 
and clinical investigation is warranted to confirm its mechanism of action and therapeutic efficacy. 
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