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ABSTRACT Skin cancer identification and categorization are still open issues in medical image analysis 
due to ambiguous boundaries, variance in shapes, and strong similarities to non-malignant lesions, 
which must be acknowledged by any framework supporting the clinical decision making. The proposed 
Quantum-Enhanced Deep Learning Framework (QDLF) is a new approach that combines Quantum 
feature encoding and Classical deep learning networks for skin lesion classification. Hereby, the QDLF 
is compared with the traditional models such as ResNet50, DenseNet, and VGG-16 showing a better 
performance on the HAM10000 dataset containing 10,015 dermoscopic images with seven lesion 
categories. Therefore, higher accuracy was achieved in the proposed framework at an accuracy level of 
96.2% with F1-score 95.1% and ROC-AUC value of 0.983 as compared to classical approaches. The 
QDLF uses quantum feature mappings with Variational Quantum Circuits (VQCs) that enables the model 
to learn abstract non-linear patterns and it incorporates global contextual features from pre-trained 
CNNs. The use of a mixture of CNN and FNN in this study not only improves the classification efficiency 
but also cuts down the time taken to train and the number of parameters involved, getting to a 
convergence point in 36 minutes with 18.5 million of parameters. To further enhance the interpretability 
of the model, Grad-CAM visualization is employed to identify clinically significant areas of the lesions 
as well as t-SNE plots showing good distinction in the quantum features space. The findings affirm the 
effectiveness of QDLF as a method for addressing class imbalance issues, with precision and recall for 
key classes such as melanoma at 92.7% and 94.1% respectively. Quantum-classical hybrid frameworks 
presented in this work reveal the uniqueness of the approach to medical image analysis in terms of 
scalability and applicability to real-life cases. Further studies will focus on implementation on quantum 
platforms and generalization of this approach to other image processing tasks in medicine. 
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INTRODUCTION 

Skin cancer is one of the most common types of cancer, albeit one of the most dangerous, proving the significance of early 
detection and reliable diagnosis. Dermoscopy is a crucial diagnostic technique in the medical and clinical field that is used 
to investigate skin lesions without an invasive procedure [1]. However, the assessment of these images by dermatologists 
is labor-intensive and suffers from inter-observer variations. This has led to the possibility of creating automated diagnostic 
systems using AI especially deep learning techniques to diagnose the dermoscopic images with improved accuracy and 
reliability. Therefore, deep learning models have impacted the dermoscopy field but challenges exist in its current models 
such as how to address class imbalance problems and how to extract features which are both complex and clinically 
relevant to dermoscopic images. Traditional convolutional neural networks commonly used in the field include ResNet50, 
DenseNet, and VGG-16, which have significant performance in skin lesion classification tasks. However, these models 
are not effective when the lesion patterns are somehow deviant from the models or maybe the shape of the lesion is 
irregular or even it may have different coloration. However, these issues are coupled with the heavy reliance on the 
significant parameter tuning and computational resources which in turn limits their scalability and performance, 
particularly when integrating them to applications of large resource constraints [2]. These challenges have called for the 
integration of quantum computing in deep learning because quantum systems are more efficient when it comes to handling 
problems involving high dimensions. 

In this research paper, there is proposed the Quantum Deep Learning Framework (QDLF) for skin lesion classification 
which is based on quantum feature encoding and the basic structures of deep learning for the improvement of accuracy, 
performance and interpretability [3]. The QDLF can therefore retain both these high-level and low-level features using 
VQCs and CNN-based feature extraction. By testing the proposed framework on the HAM10000 dataset, it is revealed 
that the framework outperforms standard models and systematically solves the five key bottlenecks in medical image 
analysis. 

1. Proposed Solution 

The proposed quantum-classical integration model is called QDLF, which has the potential to enhance the current deep 
learning models in skin lesion classification [4]. The framework incorporates the following components: 

1. Quantum Feature Encoding: Dermoscopic images are then converted into high-dimensional quantum feature 
spaces via the use of Variational Quantum Circuits. This makes the model more suitable for capturing finer details 
of the lesion patterns which often exhibit non-linear patterns. 

2. Classical Feature Extraction: CNNs like ResNet50, DenseNet and VGG-16 are pre-trained and fine-tuned to 
extract multi-level features and offer a global perception of the scene. 

3. Hybrid Integration: Quantum and classical features are combined to improve classification accuracy and output 
a vector that retains the best aspects of both the quantum and classical systems. 

4. Interpretability Tools: Although the QuiGen AI-based system makes clinical decision-making, only informative 
regions for the final prediction and t-SNE plots are used to represent the separability of the quantum features, 
which are both transparent to clinical decision-makers. 

This boosting not only enhances such aspects as accuracy, the balance between precision and recall, but minimizes such 
crucial characteristics as the training time and the number of parameters needed, which is highly beneficial for application 
in the large-scale clinical practice [5]. 

 

2. Problem Statement 
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Current deep learning models for skin lesion classification face several challenges, including: 

1. Handling Class Imbalances: On critical categories, model performance suffers due to issues like low samples 
of important classes in datasets like HAM10000. 

2. Capturing Complex Patterns: Besides, lesion borders are never perfect circles and these circles may not have 
equal pigmentation or texture which are complex for classical models to map into their frameworks. 

3. High Computational Costs: The process of training deep learning models is complex and computationally 
intensive, especially when dealing with big medical data. 

4. Lack of Interpretability: Existing models often function as black-box systems, making it difficult for clinicians 
to trust and validate their predictions. 

These challenges require the formulation of a framework that not only increases accuracy but also considers pertinent 
concerns such as efficiency and interpretability. 

3. Objectives 

The objectives of this study are as follows: 

1. To Develop a Hybrid Quantum-Classical Framework: Use quantum computing in feature enhancement then 
integrate this with deep learning techniques for improved skin lesion identification. 

2. To Address Class Imbalances: To address the issue of melanoma being sparsely included in the training data, 
use techniques like weighted loss functions and data augmentation. 

3. To Improve Computational Efficiency: Suggest a model with lower training time and number of parameters 
compared to conventional stand-alone CNN models for suitability where resources are limited. 

4. To Ensure Interpretability: When making clinical predictions, it is recommended to apply visualization 
techniques including Grad-CAM and Quantum Feature Space (QFS) analysis to enhance the model’s credibility. 

5. Significance and Contributions 

The proposed QDLF makes several significant contributions to the field of medical image analysis and AI-driven 
healthcare: 

1. Performance Improvement: Yields 96.2% accuracy, and ROC-AUC of 0.983 in a separate experiment with the 
HAM10000 dataset, and the performance is significantly better compared with conventional deep learning 
models such as ResNet50, DenseNet, and VGG-16 [6]. 

2. Quantum-Enhanced Learning: Proposes a novel algorithm that combines quantum feature map with classically 
trained deep neural networks, thus proving the viability of applying quantum computing in medical AI. 

3. Efficient Training: Reduces the training time by 18% and parameter requirements while the performance is still 
very high, thus enabling the framework to be scalable for real world use. 

4. Interpretability and Trustworthiness: Provides interpretable predictions through Grad-CAM visualizations 
and quantum feature space clustering, aligning with the requirements of clinical practice [7]. 

5. Framework for Future Research: Paves the way for employing quantum-classical systems in other medical 
image segments like histopathology and radiology besides capitalizing on improved quantum hardware. 

LITERATURE REVIEW 

New developments in deep learning have boosted the precision and speed of skin lesion identification, which is crucial 
for diagnosing skin cancer early. A range of ideas and perspectives has been suggested to develop fresh and more effective 
models and methodologies to address this field. 

Another deep learning model is SkinNet-14 developed by Mahmud et al. [8] for dermoscopic images with low resolution. 
SkinNet-14 also employed CCT with lesser image resolution at 32×32 in order to reduce the computational load. The 
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Mean Classification Accuracy of the proposed framework is approximately 92.5% on the ISIC2018 dataset, which 
confirms the success of the approach, especially when making decisions in low computational environments. Almalki et 
al. [9] proposed the integration of Residual Networks (Resu Net) and Ant Colony Optimization (ACO) to enhance the 
segmentation process in dermoscopic clinical images. The approach used ACO in hyperparameters tuning of the model 
with an accuracy of 94.3% of the PH2 dataset. In this way, high performance was achieved in cases, when it is necessary 
to segment areas of lesions with blurred or irregular boundaries of color gradients. 

Zhou et al. [10] proposed an approach for the simultaneous multi-class lesion classification using deep learning features 
integrated with machine learning classifiers. This has been done using feature extraction from deep learning models such 
as ResNet50 integrated with SVM classifiers; and it has shown an assessment result of an overall accuracy figure of 
eighty-nine point zero percent on the ISIC2018 dataset. This approach highlighted the possibility of enhancing feature 
fusion techniques as a means of address the challenges of Multiclass Classification tasks. Cheng et al. [11] proposed a 
new Efficient Mobile Network architecture called MobileNet-V2 with Squeeze-and-Excitation blocks, an Atrous Spatial 
Pyramid Pooling and a Channel Attention mechanism. The study done on a large dermoscopic database yielded an overall 
accuracy of 91.7% with a higher raise in the recognition of lesions such as melanoma and basal cell carcinoma in particular. 
MobileNet-V2 was designed to be lightweight thus making it deployable on edge devices. Several deep learning issues 
highlighted by Mendez et al. [12] in skin cancer classification are class imbalance, domain adaptation, and limited datasets. 
The review also described how the use of imaging and metadata in a multimodal manner enhanced the accuracy and 
reliability of the solution. For instance, integrating patient age and the lesion localization with dermoscopic image 
enhanced classification in the reviewed studies by up to 5%.  

Another work is by Kumar et al. [13] who developed an improved deep learning model known as SCCNet for multiclass 
skin cancer recognition. Eventually, using preprocessing techniques like removing the background noise and normalizing 
the dataset, SCCNet obtained accuracy of 94.8% and sensitivity of 95.3% on HAM10000 dataset. The preprocessing 
procedures that were implemented in this model were particularly helpful in managing noisy and artifact-rich dermoscopic 
images. Similarly, Mirikharaji et al. [14] performed a survey of 177 papers focused on deep learning for skin lesion 
segmentation and identified the input data, architectural model, and evaluation methods. The comparative analysis also 
showed that statistical measures for segmentation tasks indicated that U-Net and its variants outperformed other methods 
with average Dice coefficients above 85% for datasets like ISIC2018 and PH2. Innani et al. [15] have proposed a two-
stage framework based on the segmentation and classification of the skin lesion. Segmentation module was an encoder-
decoder network, while the classification module was in the form of a CNN. The performance of this cascaded model is 
based on the classification accuracy which was at 93.5% and the segmentation Dice coefficient of 87.9%. Steppan et al. 
[16] employed pre-trained neural networks on ImageNet for dermoscopic image classification. Based on the findings of 
the study, both ResNet50 and DenseNet121 models achieved the highest accuracy of 90.3% and 89.6% respectively on 
the HAM10000 dataset. These findings highlighted the applicability of transfer learning on pre-trained networks for skin 
lesion classification tasks. 

In their paper, Li et al.[17]recently reviewed the advancements in deeplearning for the diagnosis of skin diseases and noted 
the use of copious data sets and proper architectures. Another review also stated that the accuracies were enhanced by the 
use of data augmentation and the transfer learning methods by a margin of 5-10% on the HAM10000 and ISIC2018 
benchmarks. In Nguyen et al. [18], a multi-level CNN-based system was developed for skin lesion classification with a 
hybrid attention mechanism. Bearing in mind the appropriate methods used to handle imbalanced data, the proposed model 
achieved precision of 93.2% and recall of 94.7% in identifying potential skin diseases such as melanoma, thus reducing 
the false negatives. In another study, Hassanpour et al. [19] proposed a federative AI-based architecture for skin cancer 
detection; it provided multiple hospitals and clinics the means to train the model without compromising the patients’ data. 
Using this federated model, a classification accuracy of 91.4% was attained, which supports this model in terms of 
scalability for handling different datasets. In a more related work, Rajendran et al. [20] developed a GNN for skin lesion 
analysis based on the relational information of the features. This approach improved interpretability and had a 
classification accuracy of 92.8% using the HAM10000 dataset and at the same time, reduced the model bias in the minority 
classes. An instance, Zhang et al. [21] developed a lightweight deep learning model with adaptive pooling layers for skin 
lesion classification. The model was particularly constructed with both speed and approximation in mind and was 
successfully tested on the ISIC2018 dataset and obtained 88.7% accuracy with the model size of the model that would be 
suitable for real-time application. For instance, Patel et al. [22] recommended integrating dermoscopy data with other data 
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about the patient such as the age and the location of the lesion. This hybrid model was able to achieve an accuracy of 95 
percent on the identification of the target object and is 1 percent better than image-only models in the identification of 
high risk lesions like melanoma.  

Fang et al. [23] presented the transfer learning-based model with the ResNet architecture. Such fine-tuning of the pre-
trained networks enhanced the generalization and received test accuracy of greater than 90.6% on different datasets 
including the HAM10000 and ISIC2018. To address this issue, in [24], the authors designed a dual-path CNN architecture 
with capabilities for both segmentation and feature classification. Some of the primary challenging aspects of multiclass 
skin lesion segmentation and classification were managed by leveraging GGF and LSF feature extraction paths to naturally 
segment and classify skin lesions, respectively, with classification accuracy of 94.0% and segmentation accuracy of 
88.3%. 

PROPOSED METHODOLOGY 

The Quantum-Enhanced Deep Learning Framework (QDLF) is an innovative research idea along the lines of employing 
the computational abilities of quantum technologies fused with the reliability of classical deep learning for skin cancer 
detection and image classification. The methodology is structured into key stages: data preprocessing, quantum feature 
encoding, integration of classical deep learning into quantum computing, hybrid architecture design and training 
optimization [25]. This strategy helps the model to deal with the challenges and variations in the image dataset. 

1. Dataset and Preprocessing 

This study exclusively employs the HAM10000 dataset, which comprises of 10,015 dermoscopic images that were 
reviewed by a dermatologist. The dataset includes seven classes: such as melanoma, malignant melanocytic nevi, basal 
cell carcinoma, benign keratosis, actinic keratoses, vascular lesions, and dermatofibroma. Regarding the annotations, there 
are tags such as the patient’s age and the location of the lesion, which can be helpful for classification. 

To prepare the dataset for analysis, several preprocessing steps are applied: 

1. Image Normalization: Pixel values are normalized to fall within the range of 0 to 1, thus making it easier for 
the neural network to handle the data [26]. 

2. Segmentation: To minimize the effect of background noise, lesion regions are segmented using a U-Net 
segmentation model that identifies clinically significant areas. 

3. Data Augmentation: Some of the methods employed include flipping, rotation, zooming and cropping, through 
which overfitting is prevented and generalization boosted by enlarging the dataset artificially. 

2. Quantum Feature Encoding 

One of the most important improvements of the QDLF is the ability to encode quantum features, which improves the 
performance of the model and its ability to identify patterns in the data. Once the images have been segmented and 
preprocessed, the VQC encodes the images into quantum states. This involves:: 

1. Feature Extraction for Encoding: Image features are quantified and encoded into quantum states [27]. 

2. Quantum State Preparation: Appending these features into a quantum feature space, parameterized quantum 
gates then allow the model to perform pattern recognition with the help of quantum entanglement and 
superposition. 

The quantum encoding is done using tools like PennyLane or Qiskit for quantum computations that can be easily integrated 
with the classical deep learning workflow. This step can help to capture complex interactions within the data that can be 
difficult for an inherently more simplistic classical model to detect. 

 

 

 

3. Classical Deep Learning Integration 
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Popular architectures such as ResNet50, DenseNet and the VGG-16 model is used for deep learning [28]. These models 
are pre-trained on large-scale image datasets and fine-tuned on HAM10000 to extract hierarchical features specific to 
dermoscopic images: 

1. ResNet50: This architecture employs a deep structure of a CNN algorithm with residual learning to address the 
vanishing gradient problem in training the network while effectively capturing important features. 

2. DenseNet: Links each layer to all other layers to allow feature reuse and the proper flow of gradients, particularly 
beneficial when dealing with intricate dermatological patterns. 

3. VGG-16: The selected model is a sequential deep CNN model which is famous for its simple yet powerful 
architecture in learning hierarchical spatial features. 

These are the standalone models that are contrasted against the proposed hybrid framework to determine the advantage of 
quantum integration. 

4. Quantum-Classical Hybrid Architecture 

The QDLF hybrid architecture employs both the quantum and classical frameworks in a single system. The quantum 
features created by the VQC are appended to the classical feature vectors calculated by the CNN Models. This hybrid 
feature representation is fed to a fully connected layer for the final classification. Key components include: 

 ReLU Activation: Applied in hidden layers to provide non-linearity to the neuron output. 

 Softmax Layer: Returns the class probabilities of the seven skin lesion classes. 

 Dropout Regularization: Prevents overfitting by removing some of the neurons with probability during the 
training process. 

The recombination enables the introduction of the contextual features from the classical models with the details of the 
local patterns extracted from the quantum feature space, which increases the overall classification accuracy. 

5. Training and Optimization 

To tackle the class imbalance that exists in the HAM10000 dataset especially for the rare lesion such as melanoma, the 
model is trained using a weighted cross entropy loss function: The optimization strategy includes: 

1. Adam Optimizer: Applicable to both quantum and classical parameters and has a scheduler to adapt the learning 
rate during the training process. 

2. Quantum Backpropagation: A gradient descent-compatible algorithm can optimise the parameters of the VQC 
this manner, allowing for efficient training of the quantum layers. 

3. Early Stopping: Watching the validation loss to stop training when the model is not improving much and to 
prevent overfitting. 

The model is trained for 50 to 100 epochs depending on the architecture in parallel with GPUs for classical 
computations and quantum simulators for quantum computations. 

6. Evaluation and Validation 

The QDLF is assessed through measures like accuracy along with precision, recall, F1-score, and ROC-AUC. This is 
followed by the element-wise comparison with other independent classical models – ResNet50, DenseNet, and VGG-16, 
to confirm the effectiveness of quantum feature integration within the proposed framework [29]. 

IMPLEMENTATION 

Several steps have been outlined in the architecture of QDLF, including data preprocessing, quantum-classical hybrid 
integration, training, and assessment [30]. Below is a detailed description of the implementation process 

1. Dataset Preparation and Preprocessing 

1. Dataset Loading: 



Frontiers in Health Informatics   www.healthinformaticsjournal.com  
ISSN-Online: 2676-7104  

 2024; Vol 13: Issue 4 Open Access  

700 
 

o The HAM10000 dataset is then loaded for testing using libraries such as TensorFlow or PyTorch. Each 
image is then reshaped and resized to the appropriate resolution (for example, 224 × 224 pixels) to align 
with the pre-trained CNN. 

o Lesion types and patient information can be parsed when it comes to annotation which is a form of 
metadata [31]. 

2. Normalization: 

o Pixel values are normalized with respect to the range [0, 1] since some of the inputs may have different 
ranges or scales. 

3. Segmentation: 

o To enhance the attention on the features of interest and eliminate the background noise, a U-Net model 
is applied. 

o The segmented masks are then acquired and imposed on the original images. 

4. Data Augmentation: 

o Thus, in an attempt to increase variability and decrease class imbalance, the flipping, rotation, and 
cropping techniques are used. 

2. Quantum Feature Encoding 

1. Quantum State Preparation: 

o Images are segmented into blocks of 8 X 8 pixels in preparation for converting them into quantum states. 
Each patch is flattened into a feature vector by concatenating the scaled features. 

2. Quantum Circuit Design: 

o The actual quantum computing program, a Variational Quantum Circuit (VQC), needs to be designed 
using libraries such as PennyLane or Qiskit. The circuit includes the parameterized quantum gates, such 
as RX, RY, and CZ, and the entanglement layers to transform the features into the quantum feature space 
[32]. 

3. Quantum Encoding Integration: 

o The outputs of the VQC are used to concatenate with the feature vectors from the classical CNN for 
hybrid representation. 

3. Classical Deep Learning Models 

1. Pre-trained CNN Architectures: 

o ResNet50, DenseNet, and VGG16 are then initialized from pre-trained weights; in this case, from 
ImageNet and further trained on the HAM10000 dataset. 

o The last layer is substituted by a fully connected layer and SoftMax activation for the seven-class 
classification. 

2. Training Standalone Models: 

o The models are trained on the preprocessed HAM10000 dataset, while the data augmentation is also 
used during the training process. 

o Parameters like learning rate, number of batches and optimization method are selected by trial and error 
or using grid search. 

4. Quantum-Classical Hybrid Integration 

1. Feature Concatenation: 
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o The feature vectors derived from the VQC are concatenated with the classical CNN feature vectors to 
form a feature vector that has both the quantum and classical components. 

2. Hybrid Architecture: 

o The hybrid representation is then passed through fully connected layers with ReLU activation and the 
final layer with SoftMax activation for classification. 

5. Training the QDLF 

1. Loss Function: 

o Here, a weighted cross-entropy loss function is implemented to reduce class imbalance where less 
common classes such as melanoma have a higher weight assigned to them. 

2. Optimizer: 

o When it comes to updating the quantum weights and processing the classical parameters, the 
optimisation routine used is the Adam optimizer with a learning rate scheduler which helps to adjust the 
learning rate during the training process. 

3. Early Stopping and Regularization: 

o The strategies used to train the model include early stopping that aims at stopping the training process 
before the model becomes too complex and dropout which is regularization technique used in fully 
connected layers. 

4. Training Pipeline: 

o Training is performed over 50-100 epochs using a batch size of 32; CNN computations are performed 
using GPUs, while VQC computations are done using quantum simulators. 

6. Evaluation and Visualization 

1. Evaluation Metrics: 

o Evaluation of the trained QDLF is done using performance indicators such as accuracy, recall, precision, 
F1 Score, and ROC-AUC. 

o They are compared with individual models like ResNet50, DenseNet, and VGG-16. 

2. Explainability: 

o Heatmaps are generated using Grad-CAM to depict areas of the images that the model focused on when 
making predictions. 

o Figures representing quantum embeddings depict clustering with distinct regions between different 
types of lesions. 

RESULTS AND DISCUSSION 

Quantum-Enhanced Deep Learning Framework (QDLF) for skin lesion classification using the HAM10000 dataset 
revealed the high levels of accuracy, precision, recall, F1-score and interpretability compared to the traditional deep 
learning models. These findings are accompanied by tables and figures that give evidence backing the proposed framework 
and the major structural measures. 

Overall Performance 

Table 1 highlights the performance of the proposed QDLF compared with the standard ResNet50, DenseNet, and VGG-
16 models. The QDLF model proved to be accurate with an average accuracy of 96.2% which was higher than that of 
ResNet50 (89.7% ), DenseNet(90.4%) and VGG-16 (85.6%) . Also, the ROC-AUC analysis for the QDLF was 0.983 
which shows that the QDLF is accurate in the classification of lesion types.For imbalanced datasets, the QDLF 
demonstrated a superior precision, recall, and F1 score compared to the baseline, confirming the algorithm’s effectiveness. 
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Table 1: The performance of the models on the HAM10000 dataset. 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) ROC-AUC 

ResNet50 89.7 87.5 88.9 88.2 0.948 

DenseNet 90.4 89.1 89.8 89.4 0.953 

VGG-16 85.6 83.7 84.9 84.3 0.921 

QDLF (Proposed) 96.2 94.8 95.4 95.1 0.983 

 

Class-Wise Analysis 

Table 2 shows the QDLF’s accuracy on all the seven classes in the HAM10000 dataset including images with skin diseases 
and healthy skin images. For each class, the model maintained high levels of precision, recall, and F1-scores; specifically, 
melanoma (the most important class) had a precision of 0.927 and a recall rate of 0.941, thus excluding nearly all false 
negatives. This is further evident in basal cell carcinoma and benign keratosis like lesions where the proficiency of the 
framework is also moderate sensitivity and specificity. 

 Table 2: Class-Wise Metrics.  

Class Precision (%) Recall (%) F1-Score (%) 

Melanoma 92.7 94.1 93.4 

Melanocytic Nevi 95.2 96.3 95.7 

Basal Cell Carcinoma 94.5 93.9 94.2 

Benign Keratosis-like Lesions 93.8 92.7 93.2 

Actinic Keratoses 94.1 94.4 94.3 

Vascular Lesions 95.7 96.2 95.9 

Dermatofibroma 94.3 95.8 95.0 

 

Comparison with Baseline Models 

Comparing the quantum dual learning framework with stand-alone convolutional neural network models such as 
ResNet50, DenseNet, and VGG-16 helps to reveal the effectiveness of the quantum-classical hybrid approach. ResNet50 
and DenseNet had a relatively low accuracy score of 89.7% and 90.4% respectively, however, they also failed to predict 
the minority classes that are melanoma and actinic keratoses. VGG-16, which has less complex architecture than ResNet, 
yielded lower accuracy (85.6%) and F1-scores, indicating that the model might be less capable of recognizing intricate 
dermoscopic features. However, while implementing the feature extraction, the quantum dictionary learning filter (QDLF) 
emerged as superior to these models because of the better feature extraction as offered by the quantum encoding. The 
quantum features proved advantageous in portraying the irregularities of lesion, color disparities, and general margins, 
which are essential in separating classes like melanocytic nevi and melanoma. The findings presented in the form of a bar 
chart in Figure 1 and Figure 2 illuminate how the proposed QDLF model performs compared to the baseline models. 

 The bar chart labeled Figure 1 directly contrasts the ResNet50, DenseNet, VGG-16 and the QDLF in terms of 
accuracy, a feature that establishes the vast efficiency of the QDLF. 

 Figure 2 shows the F1-scores of the models where one can again note the effectiveness of the QDLF in all the 
evaluated metrics. 
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Figure 1: Accuracy Comparison 

 

Figure 2: F1-Score Comparison 

Visualization and Interpretability 

Interpretability of the QDLF was checked using Grad-CAM analysis that offers information on the areas of the images 
impactful for the model’s decision-making. For instance, in the case of melanoma, the Grad-CAM emphasized the shapes 
with fuzzy edges and shades of color, which are typical for cancers. Likewise, when it came to basal cell carcinoma, the 
framework highlighted concerns such as raised margins and central necrosis. The following diagrams illustrate the 
applicability of the QDLF to clinical practice and therefore its validity as a model for practicing physicians. Furthermore, 
the quantum feature space was analyzed through t-SNE to plot the sample points where clusters of different lesion classes 
were observed. Such a clear separability suggests that the quantum encoding indeed captured distinguishable and class-
specific features, thus confirming the integration of quantum computing for classification. Based on the Grad-CAM 
visualization, one can determine which regions are specialized by the Quantum-Enhanced Deep Learning Framework 
(QDLF) to classify dermoscopic images. The visualization consists of three panels: It includes the original image, the 
Grad-CAM heatmap, and the Grad-CAM heatmap superimposed on the original image. The regions highlighted in red 
and yellow are the most activated areas meaning that they are highly relevant to the model’s prediction as opposed to 
cooler areas in blue which are less relevant. The overlay improves interpretability as it demonstrates where and how the 
trained model centring the diagnostic features like irregular lesion borders or pigmentation. This enhances the validity and 
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clinical applicability of QDLF making it a comprehensive diagnostic tool and decision support tool in dermatology as 
illustrated in figure 3. 

 

Figure 3: Overlay (Grad-CAM) 

 

Figure 4: Training Time Comparison 

Figure 4 illustrates the training time of ResNet50, DenseNet, VGG-16 and QDLF. This proves that the QDLF provides 
faster convergence with the training time shaved at 36 minutes compared to ResNet50 at 45 minutes, DenseNet at 50 
minutes and the VGG-16 at 38 minutes. Such efficiency can be attributed to the quantum feature encoding as it helps to 
optimize feature representation and hence minimizing the time needed to optimize the model. This makes QDLF not only 
more accurate but also faster, which is key for scalability in areas with limited computing power. 
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Figure 5: Parameter Comparison 

The total number of trainable parameters for each of the models is depicted in Figure 5 showing the value in millions. 
Here again, QDLF does not overcomplicate the network and only has 18.5 million parameters which are only slightly 
more than ResNet50 (23.5 million) but less than DenseNet (27.2 million) and VGG-16 (15 million). Even though VGG-
16 has a lesser number of parameters, it has low complexity leading to poor accuracy. The experimental results indicate 
that the proposed QDLF has higher performance with lower parameters than ResNet50 and DenseNet, demonstrating that 
the proposed QDLF can effectively map quantum features to classical learning in a more optimized number of parameters. 

 

Figure 6: Confusion Matrix Visualization 

The confusion matrix for the QDLF model is illustrated in Fig 6, presenting TP, FP, TN, and FN values for each of the 
classes. The values on the diagonal are the TP for each type of lesion where, for example, melanoma and vascular lesion 
have high TP rates of 93 and 85 respectively, showing that the classification is very accurate. In terms of its performance, 
the QDLF exhibits consistently low FP and FN rates for all classes, suggesting the model’s high precision and sensitivity, 
particularly in crucial classes such as melanoma that demand accurate predictions for diagnosis. 

Efficiency Analysis 

This analysis revealed that the QDLF achieved significant performance gains over control models. The time taken to train 
the hybrid framework was cut down by 18% due to efficient feature representations that were harnessed from the quantum 
encoding. Furthermore, the proposed hybrid architecture had less trainable parameters than CRT, CBR and other 
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standalone CNN models, which helped in efficient memory utilization without compromising on accuracy. To summarize, 
these conclusions underscore the versatility and feasibility of the QDLF for implementation in situations that require the 
use of simple and low-powered consumer devices in telemedicine. 

Discussion 

It is evident that the proposed QDLF outperforms the traditional deep learning methodologies when applied on skin lesion 
classification. The integration of the quantum and classical aspects of the framework allows it to learn both global and 
local representations which is a disadvantage of CNNs in isolation. This approach also offers better interpretability and is 
more suitable for clinical applications where it is essential to understand the model’s outputs. However, there are some 
limitations due to the use of quantum simulators in this work: converting this study into actual practice at the quantum 
level may face some difficulties resulting from noise and deteriorating gate fidelity. However, the results also underscore 
the massive applicability of quantum-enhanced frameworks to further the advancement of MIAs, especially when high 
accuracy and sensitivity are necessary. From the above tables and figures specifically table 1 and the numeric values in 
figures ; it is clear that QDLF offers an improved performance comparing to traditional CNN models. This dual nature 
enables it to perform superior feature extraction and representation especially for intricate pattern occurrences in 
dermoscopic images. The above results demonstrate that Melanoma model has high accuracy and F1 scores, and has high 
clinical significance for detecting life-threatening diseases. The Grad-CAM visualizations also show the efficacy of the 
framework and quantum feature space analysis thus making it a reliable tool for medical practitioners. This not only makes 
the QDLF superior to the baseline models but also reduces computational time by training time by 18% and the number 
of trainable parameters. These problems indicate that incorporating quantum computing in medical image analysis could 
lead to the finest results and overcome challenges such as class imbalance and model interpretability. 

CONCLUSION 

In this article, the Quantum-Enhanced Deep Learning Framework (QDLF) is introduced as the most reliable and 
scalable solution for medical image analysis, specifically in the context of skin cancer diagnosis and classification. To 
achieve the goal of identifying complex structures in dermoscopic images, the proposed framework combines quantum 
features and classically trained deep learning models to improve the performance and overcome the drawbacks of prior 
models. When evaluated using the HAM10000 dataset, the proposed QDLF shows significantly better performance than 
baseline models including ResNet50, DenseNet, and VGG-16, with an accuracy of 96.2%, a precision of 94.8%, and an 
F1-score of 95.1%. The performance of the QDLF was continually high for all the lesion classes including the crucial 
ones such as melanoma which indicates the capacidad of the model for clinical use. In addition, the interpretability of the 
framework is improved through the use of Grad-CAM visualizations, which helps the medical practitioners to comprehend 
the model’s predictions and attend to regions of the lesions that the model considers informative. A more fine-grained 
assessment is provided by the quantum feature space analysis, which indicates discriminable separability of lesion classes. 
Aside from the classification accuracy, QDLF also provides computational savings which make possible the training on 
less parameters and takes lesser time unlike other algorithms. These attributes coupled with the scalability of the QDLF 
and its interpretability make this tool very helpful in the advancement of the diagnosis of dermatological disease and in 
various forms of medical imaging. More work can be dedicated to real-world viability assessment of the QDLF on real 
quantum platforms and adapting it to the challenges like noise and gate imperfection. Extending the framework within 
other medical imaging domains can also enhance its potential in unlocking the application of quantum computing in 
healthcare. 
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