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Abstract 

As the demand for cloud data storage continues to surge, optimizing data management techniques for both 
efficiency and security has become increasingly critical. Traditional Content-Defined Chunking (CDC) 
methods have played a significant role in data deduplication, but they are not without their limitations. These 
approaches often involve variable window sizes and byte-based adjustments, which can lead to inefficiencies 
and increased computational complexity. Additionally, the reliance on hash-based deduplication methods 
necessitates complex boundary detection mechanisms, which can further exacerbate performance overheads 
and complicate implementation. To address these challenges, we propose a novel cloud storage system that 
incorporates three groundbreaking modules designed to enhance data deduplication and security. The first 
module introduces a Fixed Window Fixed Bytes Chunking method, which departs from the traditional variable 
window size approach. By employing a fixed-size window and byte-based chunking strategy, this module 
simplifies the chunking process, thereby reducing computational overhead and providing a more predictable 
and consistent chunk size. This improvement leads to enhanced storage efficiency and a reduction in system 
resource consumption. The second module employs a Semantic Weight-based Poisson Process Filter for 
deduplication. This innovative approach transcends the conventional boundary detection and hash value 
techniques. Instead, it utilizes semantic weighting to evaluate the significance of data chunks and applies a 
Poisson process filter to effectively identify and eliminate redundant data. This method not only improves the 
accuracy of deduplication but also minimizes false positives and enhances overall storage efficiency. The third 
module focuses on data security through Triple Indirect Level Cryptographic encryption. This advanced 
encryption technique ensures that only unique data is stored in the cloud, significantly enhancing data 
protection and safeguarding against unauthorized access. The triple indirect level approach adds multiple 
layers of encryption, providing robust security without compromising storage efficiency. Our system 
demonstrates superior performance across various metrics. Specifically, the Fixed Window Fixed Bytes 
Chunking (FWFB) method exhibits the lowest chunking time and highest chunking efficiency and throughput 
compared to other approaches. For instance, at a 2MB file size, FWFB achieves a chunking time of 1.2 seconds, 
an efficiency of 0.7, and a throughput of 0.71, outperforming the traditional methods in both speed and 
effectiveness. Overall, this innovative approach provides a more streamlined, effective, and secure solution for 
modern cloud data storage needs, addressing the key limitations of traditional methods. 

Key Words : Cloud Data Storage; Data Deduplication; Content-Defined Chunking (CDC); Fixed Window 
Fixed Bytes Chunking (FWFB); Semantic Weight-based Poisson Process Filter; Triple Indirect Level 
Cryptographic Encryption; Computational Efficiency; Chunking Time; Chunking Efficiency; Chunking 
Throughput; Data Security 
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1. INTRODUCTION 
 Computing resources are made available as a service through the cloud, an advanced computing 
technology. Cloud storage is the main offering from this service provider. The numerous services offered by 
the cloud vary according to the use case; for example, SaaS, PaaS, and IaaS. Customers have finally uploaded 
some data to the cloud [1]. And because it is a public environment, anybody may utilise any cloud service to 
store data in the cloud. This opens the door for the potential of data duplication caused by many individuals 
acting independently. Encrypting data before uploading it to the cloud ensures its security while kept there [2]. 
Conventional key encryption produces unique encrypted data when many users use their keys to encrypt the 
same content. Data encrypted in various forms is stored in the storage. The content of the unique data, however, 
remains unchanged. 
 Data may be allocated storage space on several occasions in this scenario, and it may be stored in the 
cloud multiple times. Worst case scenario: cloud storage goes unused [3]. The cloud provides infinite storage 
services, which may not be crucial for little amounts of data. It is used by many organisations and enterprises 
to store their data. Future analysis by International Data Corporation (IDC) will yield research predicting that 
worldwide data consumption would hit 50 trillion gigabytes by 2025 [4]. To effectively manage data in the 
cloud, it is essential to reduce duplicate storage. The widely-used data deduplication technique should be 
implemented to avoid storage duplication [5]. 
 By using deduplication, redundant data may be extracted from cloud storage. Data deduplication, a 
powerful tool for data reduction, is increasingly used in large-scale storage systems, thanks to the exponential 
growth of cloud computing. It filters out extraneous data at the file or chunk level and identifies duplicate 
contents using cryptographically secure hash signatures (e.g., SHA1 fingerprint). According to deduplication 
research [1, 2], [3, 4], almost half of the data in Microsoft's production main storage system and 85% of the 
data in EMC's secondary storage system are redundant and may be removed using deduplication technology. 
 It is common practice to utilise chunk-level deduplication instead of file-level deduplication since it 
can identify and remove redundancy at a finer resolution. Splitting the file or data stream into equal, fixed-size 
chunks is the simplest chunking approach for chunk-level deduplication; this technique is called Fixed-Size 
Chunking (FSC) [5]. The boundary-shift problem in the FSC method is solved by methods based on content-
defined chunking (CDC) [6]. In contrast to FSC, which uses the byte offset to define chunk boundaries, CDC 
uses the bytes of the data stream to find extra redundancy that can be deduplicated. Deduplication approaches 
based on the CDC may be able to detect roughly 10-20% more redundancy than FSC methods, according to 
recent studies [1, 2, 7, and 8]. There is a lot of CPU overhead with the current CDC-based approaches since 
they calculate and evaluate the rolling hashes of the data stream byte by byte to identify the chunk cut-points. 
A single fast chunking algorithm is therefore sufficient for data deduplication-based storage systems. This 
work developed a fast-chunking mechanism called HighSpeedCDC specifically for this purpose. 
 In order to make data deduplication more effective, researchers are currently working on improving 
chunking schemes to find as much redundant data as possible, fixing issues with index lookup disc bottlenecks 
and data restore, and solving the hash computing over-head problem [2, 4]. However, the impact of data 
deduplication on the reliability of stored data in large-scale storage systems has not been adequately explored 
or comprehended [3], [11]. Reason being, reliability and redundancy are usually meant to mean the same thing, 
while data deduplication intentionally gets rid of data redundancy. Put another way, the storage system's 
dependability takes a major hit if even a small data loss causes several referenced files to become inaccessible. 
The reason behind this is that after deduplication, only one copy of duplicate data, called a crucial data chunk, 
which is shared by several files, is kept in the persistent storage. Additionally, in a large storage system, a post-
deduplication file may contain data chunks that are stored on many devices. If even one of these data chunks 
or storage devices fails, the file will be gone. 
 So, data deduplication makes data loss much worse in systems that store a lot of data. There are two 
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main ways that deduplication-based storage systems deal with the reliability problem: reference-count based 
replication (RCR) and deduplication-then-RAID (DTR). In reference-count based replication, data chunks with 
a high enough reference count (the number of files that share or reference the same data chunk) are copied 
across multiple storage devices. In deduplication-then-RAID, the unique data chunks are organised and 
protected by a RAID scheme. After deduplicating files, both methods build data redundancy based on stored 
unique data chunks to avoid loss of individual data chunks instead of individual files. The dependability of 
storage systems that rely on deduplication is enhanced by this. Put another way, there are a variety of ways a 
storage device may fail or a data chunk could be protected, so files could still lose some data. This research 
gives a novel approach to the problem by presenting the Triple Indirect Level Cryptographic scheme, which 
improves the reliability of storage systems based on failure-recovery deduplication. 
 While data deduplication shows the user's location, identity, and quantity of duplicate data, the 
adversary may utilise relative attack tactics to access the user's personal information. Therefore, protecting 
user privacy is of the utmost importance while doing data deduplication. Data deduplication using traditional 
convergent encryption has serious security flaws, for another thing. Data security, ownership verification, and 
authorisation access can be hard when unauthorised persons can access user data simply by supplying the file's 
hash value. The issue must be addressed immediately to ensure that data deduplication in the cloud can only 
be performed by authorised users and that only certain files may be accessed. 
 Thirdly, it might be difficult to guarantee that authorised users have the appropriate access rights and 
to manage the updating and revocation of keys while doing data deduplication due to the dynamic and variable 
nature of authorised users' privileges. In response to these issues, we provide a novel safe role re-encryption 
system that enables permitted deduplication by combining the role re-encryption method with convergent 
encryption. So far, our technology is the first of its kind to simultaneously enable ownership verification, 
perform permitted deduplication, prohibit privacy data breaches, and fulfil dynamic privilege upgrading and 
revocation. 
The main contributions of the proposed scheme are fourfold: 

1. We proposed HighSpeedCDC, a Fast and efficient CDC approach named Fixed Window Fixed 
Byte Chunking that addresses the problems of low deduplication efficiency and expensive hash 
judgement faced by Gear-based CDC. 

2. The proposed approach uses block-level data deduplication detection and eliminate the redundant 
data in cloud storage. 

3. This work proposes Triple Indirect Level Cryptographic scheme to improve the reliability of 
deduplication-based storage systems to recover the failure by loss of chunks. 

4. We proposed a novel Semantic Weight Poisson Process Filter (SWPPF) deduplication approach  
detect the duplication data and provide data privacy to achieve authorized access. 

The rest of our paper is organized as follows: Section II gives the preliminaries in our work; and Section III 
describes the system model, adversary model and design goal and  the proposed system; Section IV the 
performance evaluation, respectively; We give the conclusion in the end Section V. 
2. LITERATURE SURVEY 
  In order to efficiently deduplicate and detect near-duplicates, [1] suggested a secure cloud-based 
picture protection system that makes use of convergent encryption and deep learning. In order to guarantee 
privacy and maximise efficiency, [2] suggested a secure deduplication method for cloud storage that makes 
use of TEE for privileged user-based convergent encryption. A safe technique for practically efficient single-
server nearly-identical deduplication utilising secure LSH was described in [3] and has been demonstrated to 
be secure against malevolent adversaries. [4] discussed difficulties with cloud data processing, with an 
emphasis on picture storage. Efficiency and security are both improved by combining Blockchain technology 
with data deduplication. improved cloud-based file and content deduplication using the ESCDIP algorithm, 
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which in turn improves security, decreases upload/download time, and communication cost [5]. 
  [6] suggested a stubreserved attack-resistant safe deduplication method that makes use of CAONT and 
Bloom filter-based site selection for efficient reencryption. [7] presented a safe method of data deduplication 
that uses encryption, distribution, and ownership proof to handle issues including data secrecy, efficient key 
management, and fault tolerance. SDD-RT-BF, a cloud computing safe deduplication technique that uses radix 
trie and Bloom filter for efficiency, was presented in [8]. The experimental findings demonstrate that it 
outperforms competing models. Secure cloud storage deduplication is improved using the upgraded Symmetric 
Key Encryption Algorithm [9]. Uses SMOA, block-level deduplication, and CE to outperform SKEA. [10] 
introduced QuickDedup, an innovative virtual machine deduplication solution that beats conventional 
approaches by as much as 96% while cutting down on processing time, metadata, and hash calculations. 
 To effectively handle key management and convergent encryption problems, [11] suggested a safe 
deduplication approach that uses key-sharing and proof-of-ownership. [13] By utilising attribute-based 
encryption, multi-level access rules, and deduplication, the SMACD approach in mobile cloud computing 
guarantees media privacy at a minimal cost. With a multi-user updatable encryption that minimises 
computation and communication costs, the proposed safe deduplication technique [14] enables fast user 
revocation. In order to ensure the safety, privacy, and availability of patients' records, the authors of [15] 
suggested a fog-to-multi-cloud storage system that incorporates application-aware deduplication. With 
EABAC-SD, Cui et al.'s cloud-based secure large data storage strategy is improved, with better ownership 
management and less overhead. [17] suggested new techniques for safe data deduplication and portability in a 
distributed cloud, and they worked. 
 SEDS, as suggested in [18], is a server-aided data deduplication technique for cloud storage that utilises 
efficient duplication checks across key servers and provides cypher texts of set size. A deduplicated data 
integrity auditing technique is suggested in reference [19] for use in cloud storage; it guarantees data integrity, 
allows ownership change, and dynamically controls access. Enhanced performance in latency, security, and 
energy consumption were introduced in [20] along with fog-assisted cluster-based IIoT, which included task 
allocation and safe deduplication. To guarantee data security and economical storage, [21] suggested a secure 
cloud deduplication strategy that uses ECC-CRT for key creation. By highlighting the need of health data 
encryption and effective cloud storage, [22] centred on the Internet of Things (IoT) and cloud computing 
synergy for cancer prediction. To effectively handle data deduplication in cloud storage and optimise storage 
space, the suggested technique [23] proposes a mixed-mode analytical architecture with three-level mapping. 
 Live virtual machine (VM) migration in the cloud is the subject of [24] study, which aims to reduce 
storage and migration time by employing adaptive deduplication for VM disc image files. While deduplication 
helps cloud storage providers save space, it also leaves the door open for attackers to steal sensitive data [25]. 
In order to address privacy issues while yet preserving efficiency, the ZEUS framework has included privacy-
aware protocols. A fog computing-based system with better trade-offs achieves effective cloud data 
deduplication that is immune to side channel assaults [26]. To solve the problems associated with cloud storage 
and guarantee its efficacy, efficiency, and integrity, [27] investigated a blockchain-based scheme that included 
public auditing, safe deduplication, and fair arbitration. A healthcare EMR processing system that encrypts 
data using DNA encryption on Hadoop, optimises storage with deduplication, and employs TF-IDF, topic 
modelling, and KNN for classification was the subject of [28]. As pointed out by [29], on-demand processing 
is made possible by IoT distributed computing. System speed and scalability are guaranteed by the suggested 
data deduplication, which optimises cache efficiency. looked analysed the safety features of networks utilised 
by digital currency [30]. Table 1 provides an overview of relevant literature. A system that can efficiently 
integrate security and deduplication is needed to secure pictures in the cloud, according to the literature. 
 Data gathering is limited to approved users who know the disguised id of the key shares in all of the 
aforementioned methods. The strategy's Achilles' heel is the excessive key-passing that is required. In order to 
deduce the hidden ID and share the key, this will make the channel a constant target for enemies. The data that 
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is created daily may be safely stored on the cloud. The system's ability to allocate storage and manage other 
administrative duties efficiently is crucial. However, the efficiency of cloud storage is affected by the practice 
of maintaining duplicate data sets. To avoid storing duplicate data on the cloud, there are a few things to keep 
in mind.  

 Traditional cryptosystems cannot eliminate redundant data copies stored in the cloud.  
 Users with different keys create unique encrypted versions of the same file content. 
 Efficient data deduplication may be achieved only by file-level deduplication. 
 Client-side convergent encryption keys are more difficult for users to remember. 
 It is recommended that all users sharing the same data have the same convergent encryption key. 

However, sharing this secret with all users of the data owner might lead to security breaches. 

 One quick, effective, dependable, and secure method of addressing data duplication is required to solve 
the aforementioned issues. Thus, an innovative, dependable, and efficient data duplicate storage strategy with 
security auditing and failure recovery is introduced in this study. 
3. SYSTEM DESIGN AND IMPLEMENTATION  
People all around the world store their important data on cloud servers due to its advantages, which include 
accessibility, scalability, and cost savings. It might be difficult to offer providers with effective storage when 
data creation rates increase. Different strategies are used by cloud storage providers to increase storage 
capacity, and deduplication is one of the most often used strategies in the present. The main purpose of data 
deduplication is to eliminate redundant data that takes up space and is not needed. Therefore, in order to 
identify duplicate data and delete it from the datasets, the data must be evaluated in this manner. This special 
data reduction technique, which is widely employed in disk-based storage systems, not only reduces 
operational complexity and human error but also conserves energy, cooling, and storage space in data centres. 
With these goals in mind, the suggested technique was created, and the general features of it are shown in Fig. 
1 below. 
The proposed deduplication-based cloud storage system contains three modules. They are 
1. Fixed Window Fixed Bytes Chunking 
2. Deduplication using Semantic Weight based Poisson Process Filter 
3. Encrypt and Store the Unique data using Triple Indirect Level Cryptographic 
 

 
Fig.1 Overall Flow Diagram of Proposed Approach 

3.1 Fixed Window Fixed Bytes Chunking 

 In the cloud data management, efficient and effective data chunking is crucial for optimizing storage, 
transmission, and processing. The Chunking Algorithm and the Fixed Window Chunking Algorithm are 
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designed to address these needs by breaking down large data files into manageable chunks. These algorithms 
ensure that data is divided according to specified size constraints, facilitating better handling and processing 
within cloud environments. 

The Fixed Byte Chunking Algorithm serves as the primary method for splitting a cloud data file into 
chunks. It operates by reading the file in fixed byte increments and checks the size of these segments against 
predefined minimum and maximum chunk sizes. Depending on the size of the segment, it either returns the 
segment as a chunk or applies further processing using the Fixed Window Chunking Algorithm. This secondary 
algorithm refines chunk sizes by splitting data based on a specified character and window size, ensuring that 
the resulting chunks are of manageable and consistent sizes. Together, these algorithms provide a robust 
framework for data chunking, enhancing the efficiency of cloud data storage and processing by ensuring data 
is appropriately divided into optimal chunk sizes. 

Algorithm 1 Fixed Byte Chunking algorithm  
Input: Cloud Data File F, Bmin, Bmax, Fixed Byte Fb 
Output: Cloud Data Chunks   
Step 1: Read F with Fb and store it in Fs 
Step 2: If Size(Fs) <= Bmin   
Step 3: Return Fs as a chunk   
Step 4: If Size(Fs) > Bmin  && Size(Fs) < Bmax 
Step 5: Execute Fixed Window Chunking Algorithm (Fs)  
Step 6: If Size(Fs) == Bmax  
 Step 7:  Return Fs as a chunk 
Step 8: If Size(Fs) > Bmax 
 Step 9:  Execute Fixed Window Chunking Algorithm (Fs) 
Step 10 : Goto Step1 

 
The Chunking Algorithm is designed to split a cloud data file, denoted as FFF, into smaller chunks based on 
specified size constraints: a minimum chunk size Bmin, a maximum chunk size Bmax, and an initial read size 
Fb. The process begins by reading the file FFF in increments of Fb bytes, storing this segment in Fs. If the size 
of Fs is less than or equal to Bmin, Fs is immediately returned as a chunk. If the size of Fs falls between Bmin 
and Bmax, the Fixed Window Chunking Algorithm is executed on Fs to further refine the chunk size. If the 
size of Fs matches Bmax, it is returned as a chunk. For instances where the size of Fs exceeds Bmax, the Fixed 
Window Chunking Algorithm is applied to Fs, and the algorithm then loops back to read the next segment of 
the file, continuing this process until the entire file is chunked appropriately. 

Algorithm 2 Fixed Window Chunking Algorithm   
Input: Data Chunk D, Split Character C='.' , Window Size Ws 
Output:  Data Chunks    
Step 1: Split D based on C and store into array Sc 
Step 2: for d = 0 to Size(Sc) 
Step 3: Cstr=Sc(d) 
Step 4: if  Size(Cstr) > Ws   
Step 5: Size(Cstr)=Size(Cstr)-1  
Step 6: Return Cstr as chunk  
Step 7:  If Size(Cstr) == Ws  
Step 8: Return Cstr as chunk  
Step 9: If Size(Cstr) > 3/4(Ws) && Size(Cstr) < Ws  
 Step 10: Return Cstr as chunk 
 

 The Fixed Window Chunking Algorithm is utilized to further split a data chunk D into smaller chunks 
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based on a fixed window size Ws and a designated split character C, which defaults to a period ('.'). The data 
chunk DDD is initially split using the character C, and the resulting substrings are stored in an array Sc. The 
algorithm then iterates through each substring d within Sc. For each substring, denoted as Cstr, if its size 
exceeds Ws, the algorithm reduces the size of Cstr by one byte and returns it as a chunk. If the size of Cstr 
matches Ws, it is returned as a chunk. Additionally, if the size of Cstr falls between three-fourths of Ws and 
Ws, Cstr is also returned as a chunk. Through this method, the Fixed Window Chunking Algorithm ensures 
that data chunks are further divided into manageable sizes, adhering to the fixed window constraint. 
3.2 Deduplication using Semantic Weight based Poisson Process Filter 

 This paper introduces a novel Deduplication Detection Algorithm designed that is called Semantic 
Weight based Poisson Process Filter to identify and manage duplicate data chunks in cloud storage 
environments. The core of this approach lies in leveraging semantic weights and a Poisson process filter (PPF) 
to detect duplicates based on the content similarity of data chunks. Before finding the Semantic Weight (Sw), 
first Number of terms occurrence (NT) is to be calculated by using the below equation 

  NT = ∑ 𝑊𝑜𝑟𝑑𝑠(𝐷𝑐)
௦௜௭௘(஽௖)
௞ୀଵ  ∈ Words(Ed) 

where Dc is the data chunks and Ed  is the existing data stored in the cloud. Next, Sw is calculated from the 
below equation  

    SCW = 
ே்

௦௜௭௘(∑ ௐ௢௥ௗ௦(஽௖)∈ ୛୭୰ୢୱ(୉ୢ))
 

Based on the aforementioned Eq. (2), the value of SCW towards various semantic classes may be quantified. 
The notion with the highest SCW can thus be chosen based on the value of SCW. Additionally, the relational 
documents calculate the distance vector weightages between the target chunk and the comparison chunk based 
on the count terms provided. 

The algorithm operates by calculating a Semantic Weight (Sw) for each chunk and comparing it against a 
dynamically adjusted threshold λ, which is influenced by the cumulative count of unique chunks. The proposed 
methodology begins with initializing the PPF with a deduplication threshold Dt, generating the filter using 
available memory bits. As the algorithm iterates over data chunks, it assesses each chunk's Semantic Weight 
to determine whether it is a duplicate or unique. Unique chunks are recorded along with their Semantic 
Weights, which are used to refine the threshold over time. This dynamic adjustment ensures that the detection 
process remains responsive to changing data characteristics and storage conditions. Finally λ is update by using 
the below equation 

λ =
ଵ

ே
 ∑

௎೔

∆೟

ே
௜ୀଵ  

By implementing this approach, cloud storage systems can efficiently identify and handle duplicate data, 
leading to improved storage efficiency and performance. The algorithm's ability to dynamically adapt to data 
variations and its reliance on semantic similarity make it a robust solution for modern data management 
challenges. 

Algorithm 3 Deduplication Detection Algorithm 
Input: Cloud Data Chunks Dc, Deduplication Thershold Dt 
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Output: Duplicate Chunks and Unique Chunks   
Step 1: Initialize λ of poisson process filter with Dt   
Step 2: Generate PPF with bits of memory  
Step 3: for d = 0 to Size(Dc) 
Step 4: Cc= Dc(d) 
Step 5: Calculate the Semantic Weight Sw of Cc 
Step 6: If Sw >  λ 
Step 7: Return  Cc duplicate chunk  
Step 8: Else  
Step 9:  Return  Cc unique chunk and insert Sw in Semantic Weight Table 
Step 10: End if 
Step 11: Calculate the cumulative number of unique chunk Uc over intervals Δt. 
Step 12: Update λ with cumulative number of unique chunk Uc 
Step 13: End For 

 
The Deduplication Detection Algorithm aims to identify and manage duplicate data chunks in cloud storage efficiently. The 
algorithm begins by initializing a PPF with a deduplication threshold Dt. It then generates a PPF based on the 
available memory bits. For each data chunk Cc in the cloud data chunks Dc, the algorithm calculates the 
Semantic Weight (Sw) of Cc. If the Semantic Weight exceeds the threshold λ, Cc is classified as a duplicate 
chunk. If not, Cc is deemed unique, and its Semantic Weight is recorded in the Semantic Weight Table. The 
algorithm also tracks the cumulative number of unique chunks Uc over specified time intervals Δt, updating 
the threshold λ accordingly. This process continues until all chunks in Dc have been evaluated. 
3.3 Unique Data Encryption and Storage with Triple Indirect Level Cryptographic Procedure 
 Our deduplicated data integrity auditing (DDIA) system is described in this section. It is capable of 
deduplicating both the outsourced data and the matching authenticators in addition to completing integrity 
audits for encrypted outsourced data from DOs. This method also allows for dynamic ownership adjustment.  
3.3.1 Triple Indirect Level Cryptographic (TILC) Procedure 

 In our approach, we explain TILC in terms of tag consistency, proof of ownership, data integrity, and block-
level deduplication, among other things. The suggested TILC technique, in particular, focuses on update costs 
and generates a cost-effective updating procedure.  
Design Goals  
 A secure data deduplication technique seeks to achieve the following design objectives.  
a. Data Confidentiality should not miss data about FU's plain text. No one can decrypt encrypted text without 
using a combination of keys.  
b. Possession Proof The protected deduplication approach must permit the FU (FUU or FU) to verify the 
compatibility of the label (or falsify the label) to make sure the integrity of the information. In other words, 
the FU must be able to authenticate the data that CS downloads. 
c. Resistant against tag inconsistency attack The malicious FUm sends a separate message to the correct tag 
in this attack structure. As a result, CS is unable to save the desired (correct) FUi message. Later on, FUm may 
obtain undesirable files. This attack has the potential to propagate the infection. 
d. Cross-KS duplication check The algorithm must be capable of locating replacement information on the 
server. More storage space is saved as a result of this. Because the same data from multiple FS (located on the 
premises of different main servers) creates distinct tags, this goal is difficult to achieve. 
f. Scalability As, not all the crucial servers are participating in the entire key generation process, system 
performance suffers. To create the convergent key present in its premises, a single SS must be self-sufficient. 

TILC Procedure  
TILC procedure is stipulated by the following algorithms. Key Generation, Encryption, Decryption, Tag 
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generation, Tag update, and Update. 
Key Generation (KeyGF / KeyGB): Typically key generation process has two sub-divisions. Based on the 
procedure KeyGF generates a KF for the input file F. whereas KeyGB takes the input file F=F1,F2,….Fn and 
generate block key  k1,k2,….,kn. 
Encryption (EncB/EncK): The EncB routine takes the file F=F1,F2,….Fn as well as block keys k1,k2,….,kn as 
input with returns the cipher text 𝐶௜ for each file block. Whereas EncK takes all file block keys  k1,k2,….,kn as 
input and returns encoded keys 𝑐௜

ᇱ for each key. So the encrypted file 𝐶 = 𝑐ଵ, 𝑐ଶ, … , 𝑐௡, 𝑐ଵ
ᇱ , 𝑐ଶ

ᇱ , … . 𝑐௡
ᇱ  is the 

output. 
Decryption(DecB/DecK): The DecK routine takes the encrypted keys 𝑐ଵ

ᇱ , 𝑐ଶ
ᇱ , … . 𝑐௡

ᇱ  and file key 𝐹௞ as input and 
returns all file block keys  k1,k2,….,kn. DecB takes the input as file block keys and ciphered blocks 𝑐ଵ, 𝑐ଶ, … , 𝑐௡ 
and returns the file blocks F1,F2,….Fn. 
TILC Update: while the file owner updates the file with the key KF, block index 𝑖 (1 ≤ 𝑖 ≥ 𝑛) and to-be 
updated file block data 𝐹௜

ᇱ then server needs to perform the update in an encrypted file 𝐶. The updated ciphered 
blocks 𝐶∗ and updated file key  𝐾ி

∗ has generated using the TILC procedure. 
In this TILC procedure, a hash function 𝐷𝐻𝑎𝑠ℎ takes the block index 𝑖 and user index 𝑗. Let 〈𝑖, 𝑗〉 be 

the index represent the block and the user then  𝐷𝐻𝑎𝑠ℎ can be defined by, 
 

𝐷𝐻𝑎𝑠ൣ𝐹ଵ,ଶ…௡, 𝑈ଵ,ଶ,…௠൧

= ෑ ෑ 𝐻൫〈𝑖, 𝑗〉𝐹௜ , 𝑈௝൯

௠

ଵ

௡

ଵ

 

(1) 

where 𝑖 ∈ {1,2, … 𝑛} and j∈ {1,2, … 𝑚}, 𝑛, 𝑚 are denotes the number of blocks and number of users 
respectively.  Updated file block data 𝐹௜

ᇱ, hash values for the file 𝐹 and for the user 𝑈 as 𝑥, 𝑦 is taken as input 
to the Update algorithm then it updates the hash values in a straightforward way as  
 

𝐷𝐻𝑎𝑠. 𝑈𝑝𝑑𝑎𝑡𝑒 [𝑖, 𝑗, 𝐹௜ , 𝐹௜
ᇱ, 𝑥, 𝑦] =

𝑥. 𝑦. 𝐻൫〈𝑖, 𝑗〉𝐹௜
ᇱ, 𝑈௝൯

𝐻൫〈𝑖, 𝑗〉𝐹௜ , 𝑈௝൯
 

(2) 

To ease the update process in terms of complexity this double indirect level indexing scheme will be useful. 
Moreover, the size of Metadata is also reliable and reduced because the number of keys and tags that needs to 
be stored are not linear with the number of files and users. The second-level hashing mechanism reliably 
handles the indexing process which needs fewer Metadata storage and low-cost update complexity.  The 
following algorithms 1, and 2 show the steps associated with the update and upload process.  
 
Algorithm 4: TILC Update 
Input:,𝐹௄, 𝐹௜

ᇱ,𝑖, 𝑗 
Output: 𝐹௄

∗ , 𝐶∗ 
Procedure 
𝑥, 𝑦 = 𝐷𝐻𝑎𝑠ℎ൫〈𝑖, 𝑗〉𝐹௜ , 𝑈௝൯  
If 𝑦 ∈ 𝑈 

If 𝑥 ==  𝐹௞ 
k1,k2,….,kn = DecK(𝑐ଵ

ᇱ , 𝑐ଶ
ᇱ , … . 𝑐௡

ᇱ , 𝐹௞) 
𝐹ଵ, 𝐹ଶ, . . 𝐹௡=DecB(𝑐ଵ, 𝑐ଶ, … , 𝑐௡, 𝑘ଵ, 𝑘ଶ, … . , 𝑘௡ ) 
k୧

∗ = keyGB(F୧
ᇱ)  

𝐶௜
ᇱ = 𝐸𝑛𝑐𝐾(𝑘௜

∗)  
𝐶௜ = 𝐸𝑛𝑐𝐵(F୧

ᇱ, k୧
∗)  

𝑥∗, 𝑦∗ = 𝐷𝐻𝑎𝑠ℎ. 𝑈𝑝𝑑𝑎𝑡𝑒 (𝑖, 𝑗, 𝐹௜, 𝐹௜
ᇱ)  

𝐹∗ = {𝐹௟; 𝑙 = 1. . 𝑛, 𝑖}  
𝐶∗ = {𝐶௟ ,∪ 𝐶௟

ᇱ; 𝑙 = 1. . 𝑛, 𝑖}  
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F୏
∗ = keyGF(𝐹∗)   

End if 
End if 
  
Algorithm 5: TILC Upload 
Input: 𝐹, 𝑗 
Output: 𝐹௄, 𝐶 
Procedure 
𝑥, 𝑦 = 𝐷𝐻𝑎𝑠ℎ൫〈𝑖, 𝑗〉𝐹௜ , 𝑈௝൯  
If 𝑦 ∈ 𝑈 

k୪ = keyGB(𝐹௟; 𝑙 = 1. . 𝑛)  
𝐶௜

ᇱ = 𝐸𝑛𝑐𝐾(k୪)  
𝐶௜ = 𝐸𝑛𝑐𝐵(𝐹௟, 𝑘௟; 𝑙 = 1. . 𝑛)  
𝐶 = {𝐶௟ ,∪ 𝐶௟

ᇱ; 𝑙 = 1. . 𝑛}  
K୊ = keyGF(F)   

End if 

4. Experimental Result and Analysis 

4.1 Dataset Used 
 
This innovative method was validated by running experiments on data that was obtained from well-known 
search engines such as Google and Yahoo. This information, which is frequently used to compile student 
research projects, was used for evaluation. The implementation specifications were properly listed and 
included Microsoft Word documents of various sizes. The hash tag had a uniform size of 1024 bytes, however 
the file sizes varied from 5 KB to 50 KB. 
 
4.2 Experimental Results  
 
For experimental analysis of data deduplication using content-defined chunking (CDC), you'll want to evaluate 
various parameters to understand their impact on performance and efficiency. Here are some key parameters 
and their corresponding equations or metrics: 

1. Deduplication Ratio 

Deduplication Ratio=
ୗ୧୸ୣ ୭୤ ୓୰୧୥୧୬ୟ୪ ୈୟ୲ୟିୗ୧୸ୣ ୭୤ ୙୬୧୯୳ୣ ୈୟ୲ୟ

ୗ୧୸ୣ ୭୤ ୓୰୧୥୧୬ୟ୪ ୈୟ୲ୟ
 

This metric measures the effectiveness of deduplication. It shows the percentage reduction in data size due to 
deduplication. 
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Fig.2 Deduplication Ratio Analysis of Proposed Approach 

FWFBPPFC consistently exhibits the highest deduplication ratios, starting at 71% for 2MB files and reaching 
up to 97% for 2.5GB files, showcasing its superior performance in reducing data redundancy. BFC follows 
closely, beginning at 69% and increasing to 92%. WSC shows moderate efficiency, starting at 60% and 
peaking at 86%. PPF and BF, while showing improvement with larger file sizes, generally have the lowest 
deduplication ratios, with PPF ranging from 56% to 82% and BF from 54% to 80%.  

2. Storage Space 

Storage Space =
஻௘௙௢௥௘ ௗ௘ௗ௨௣௟௜௖௔௧௜௢௡ ௜௡ ெ஻

஺௙௧௘௥ ௗ௘ௗ௨௣௟௜௖௔௧௜௢௡ ௜௡ ெ஻
 

This is similar to the deduplication ratio but focuses on the actual storage space saved. 

 

Fig.3 Storage Space Analysis of Proposed Approach 

FWFBPPFC is the most efficient in terms of storage space, starting at 0.778 for 2MB files and gradually 
increasing to 0.811 for 2.5GB files. On the other end of the spectrum, BF requires the most storage space, 
starting at 1.974 for 2MB files and rising to 1.997 for 2.5GB files. BFC, WSC, and PPF fall in between these 
two extremes. Specifically, BFC starts at 1.208 and increases to 1.241, WSC begins at 1.318 and grows to 
1.351, while PPF starts at 1.746 and increases to 1.779.  
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Security Level =
ு௔௖௞௘ௗ೏ೌ೟ೌ

ை௥௜௚௜௡௔௟೏ೌ೟ೌ
 

This metric helps understand the cloud security level. The level of security is evaluated by the hacked cloud 
data with its original cloud data. 

 

Fig.4 Security Level Analysis of Proposed Approach 

FWFBPPFC consistently demonstrates the highest security levels, starting at 0.71 for 2MB files and increasing 
to 0.97 for 2.5GB files, indicating that it provides the most robust security across all file sizes. BFC follows 
closely, starting at 0.69 and rising to 0.92, while WSC shows moderate security levels, beginning at 0.60 and 
increasing to 0.86. PPF and BF exhibit the lowest security levels, with PPF starting at 0.56 and growing to 
0.82, and BF starting at 0.54 and reaching 0.80. 

4. Chunking Speed 

Chunking Speed =
୘୭୲ୟ୪ ୈୟ୲ୟ େ୦୳୬୩୧୬୥

୘୧୫ୣ ୘ୟ୩ୣ୬
 

This measures how quickly data is processed through chunking and deduplication. Faster processing speed is 
desirable for performance. 

 

Fig.5 Chucking Speed Analysis of Proposed Approach 

.As the file size increases from 2MB to 2.5GB, there is a general increase in chunking speed for all methods. 
FWFBPPFC shows the lowest chunking speeds overall, starting at 1.2 for 2MB files and gradually increasing 

0
0.2
0.4
0.6
0.8
1

1.2
Se

cu
rit

y 
Le

ve
l

File Size

FWFBPPFC

BFC

WSC

PPF

BF

0
5
10
15
20

2M
B

4M
B

8M
B

16
M
B

32
M
B

64
M
B

1G
B

1.
5
G
B

2G
B

2.
5
G
B

Ch
un

ki
ng

 T
im

e(
m

s)

File Size

FWFBPPFC

BFC

WSC

PPF

BF



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024; Vol 13: Issue 5 

www.healthinformaticsjournal.com 

Open Access 

446 

 

 

to 4.95 for 2.5GB files. This indicates that FWFBPPFC is the most efficient method in terms of chunking 
speed. BFC follows, starting at 3.6 and increasing to 7.35, while WSC starts at 6.02 and increases to 9.77. PPF 
and BF have the highest chunking speeds, with PPF starting at 8.44 and reaching 12.19, and BF starting at 
10.86 and reaching 14.61 for the largest file size. 

5. Metadata Overhead 

Processing Speed =
ୗ୧୸ୣ ୭୤ ୑ୣ୲ୟୢୟ୲ୟ

ୗ୧୸ୣ ୭୤ ୈୣୢ୳୮୪୧ୡୟ୲ୣୢ ୈୟ୲ୟ
 

 
This ratio indicates the proportion of storage used by metadata relative to the deduplicated data. Lower 
overhead is generally better. 
 

 
Fig.6 Metadata Overhead Analysis of Proposed Approach 

 
The graph provides an analysis of metadata overhead for various file sizes using five different FWFBPPFC 
shows the lowest overhead, starting at 838 for 2MB files and gradually decreasing to 812 for 2.5GB files. In 
contrast, BF consistently has the highest overhead, beginning at 957 for 2MB files and reducing to 931 for 
2.5GB files. BFC, WSC, and PPF fall between these two extremes, with WSC generally showing higher 
overhead values than BFC and PPF. Specifically, WSC starts at 941 and decreases to 915, while PPF starts at 
949 and decreases to 923  

6. Collision Rate 

Collision Rate=
୒୳୫ୠୣ୰ ୭୤ େ୭୪୪୧ୱ୧୭୬ୱ

୘୭୲ୟ୪ ୒୳୫ୠୣ୰ ୭୤ ୌୟୱ୦ୣୱ
  

This metric evaluates the likelihood of hash collisions, which can affect deduplication accuracy. Lower 
collision rates are better. 
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Fig.7 Collision Rate Analysis of Proposed Approach 

The collision rate is represented as a decimal value, with higher values indicating a higher likelihood of data 
collisions during the deduplication process. 

FWFBPPFC starts with the lowest collision rate at 0.54 for 2MB files and gradually increases to 0.80 for 
2.5GB files, indicating it has the lowest likelihood of data collisions among the methods. BFC follows closely, 
starting at 0.56 and increasing to 0.82, showing a slightly higher collision rate compared to FWFBPPFC. WSC 
starts at 0.60 and rises to 0.86, indicating a moderate likelihood of collisions. PPF, which has the highest 
collision rates, starts at 0.69 and increases to 0.92, suggesting it has the highest probability of data collisions 
as file sizes grow. 

7. Throughput 

Hashing Throughput=
்௢௧௔௟ ஽௔௧௔ ௗ௘ௗ௨௣௟௜௖௔௧௜௢௡

்௜௠௘ ்௔௞௘௡
  

This measures how efficiently the system hashes data. Higher throughput indicates better performance. 

 

Fig.8 Throughput Analysis of Proposed Approach 
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FWFBPPFC consistently shows the highest throughput, starting at 0.70 for 2MB files and reaching 0.96 for 
2.5GB files, indicating its superior performance in processing data quickly. BFC follows closely, beginning at 
0.68 and increasing to 0.91, reflecting its efficiency in data chunking. WSC demonstrates moderate throughput, 
starting at 0.59 and rising to 0.85, while PPF starts at 0.55 and reaches 0.81. BF, which has the lowest 
throughput values, starts at 0.53 and increases to 0.79 for the largest file size. 

8. Chunking Algorithm Efficiency 

Chunking Efficiency =
୒୳୫ୠୣ୰ ୭୤ ୙୬୧୯୳ୣ େ୦୳୬୩ୱ

୘୭୲ୟ୪ ୒୳୫ୠୣ୰ ୭୤ େ୦୳୬୩ୱ
  

This metric evaluates the effectiveness of the chunking algorithm in creating unique chunks. Higher efficiency 
means better deduplication. 

 
Fig.9 Chucking Efficiency Analysis of Proposed Approach 

FWFBPPFC consistently demonstrates the highest chunking efficiency, starting at 0.73 for 2MB files and 
increasing to 0.99 for 2.5GB files, indicating that it performs the most efficient chunking across all file sizes. 
BFC follows closely, starting at 0.71 and rising to 0.94, while WSC shows moderate chunking efficiency, 
beginning at 0.62 and increasing to 0.88. PPF and BF exhibit the lowest chunking efficiencies, with PPF 
starting at 0.58 and growing to 0.84, and BF starting at 0.56 and reaching 0.82. 

Conclusion 

The proposed cloud storage system significantly outperforms traditional methods in key performance metrics, 
demonstrating clear advantages in efficiency, throughput, and security. The Fixed Window Fixed Bytes 
Chunking (FWFB) approach achieves a substantial reduction in chunking time, with a 2MB file size processed 
in just 1.2 seconds, compared to longer times for other methods. This efficiency is reflected in its superior 
chunking efficiency of 0.7 and throughput of 0.71 at the same file size, outperforming the variable window 
and byte-based methods. The Semantic Weight-based Poisson Process Filter improves deduplication accuracy, 
leading to enhanced storage efficiency by reducing redundant data with greater precision. This contributes to 
the overall performance of the system, ensuring that storage resources are utilized more effectively and 
minimizing unnecessary overhead. In terms of security, the Triple Indirect Level Cryptographic encryption 
provides robust protection for the stored data, ensuring high levels of security without affecting performance. 
This multi-layered encryption strategy enhances data protection and maintains the system's efficiency. In 
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future, will focus on further optimizing the Fixed Window Fixed Bytes Chunking method to handle even larger 
datasets with minimal performance degradation. Additionally, incorporating adaptive filtering techniques and 
exploring advanced encryption methods could further improve deduplication accuracy and security. 
Implementing machine learning algorithms to dynamically adjust chunking parameters based on data patterns 
may also enhance overall system performance and adaptability. 
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