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One of the main causes of death worldwide is still heart disease, for which 

prompt and precise diagnostic methods are essential for efficient treatment 

and intervention. In this work, we present an integrated method for heart 

disease prediction that makes use of meta-features and best diagnostic 

methods. Through the combination of the advantages of advanced diagnostic 

techniques and meta-learning, our approach seeks to improve prediction 

accuracy. We base our method on the use of meta-features, which are higher-

order statistical descriptors that are taken from the dataset. Through the 

capture of subtle relationships and patterns that conventional features might 

miss, these meta-features provide a comprehensive picture of the features of 

the dataset. Our goal in including meta-features into our prediction models is 

to improve the diagnostic framework's generalization and discriminatory 

power. Moreover, our method includes optimum diagnostic methods designed 

to fit the particular features of datasets on heart disease. Class imbalance is 

addressed and minority class representation is improved by using the adaptive 

synthetic sampling method ADASYN. We also substitute robust classification 

with support vector machines (SVM), ensemble learning with random forest, 

and potent meta-learner XGBoost, all of which are tuned to maximize 

predictive performance for traditional classifiers. We use the Davide Chicco 

and Giuseppe Jurman dataset, a commonly used benchmark dataset in heart 

disease research, for experiential analyses to assess the effectiveness of our 

integrated approach. By means of thorough testing in various case scenarios 

with different data split ratios, we evaluate the accuracy, precision, recall, and 

F1-score of our method. We show that the integrated strategy that we have 

suggested works well for heart disease prediction. Our models continuously 

perform better than baseline approaches in a variety of case scenarios, 

demonstrating the promise of meta-feature integration and optimized 

diagnostic approaches in enhancing robustness and predictive accuracy.  The 

work presented highlights the need of combining meta-features with improved 

diagnostic methods in heart disease prediction and provides a viable way to 

progress the state-of-the-art in cardiovascular health management and 

diagnosis. 
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1. INTRODUCTION 

Heart disease continues to pose a significant global health challenge, accounting for a substantial portion of 

morbidity and mortality worldwide. According to the World Health Organization (WHO), cardiovascular diseases 

(CVD) remain the leading cause of death globally, responsible for approximately 17.9 million deaths annually as 

shown in figure-1. Within this alarming statistic lies a critical imperative: the need for accurate and timely predictive 

models to aid in the early detection, prognosis, and management of heart disease[1], [2]. 
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Figure 1. Global trends in number of deaths due to cardiovascular diseases, 1990-2019 (World Heart Federation) 

 

Traditional diagnostic approaches for heart disease often rely on clinical risk factors, medical history, and basic 

physiological measurements. While these methods have proven valuable, they may overlook subtle patterns and 

interactions within complex datasets, potentially leading to suboptimal diagnostic accuracy. Moreover, the inherent 

class imbalance in heart disease datasets, where positive cases (indicating the presence of heart disease) are often 

outnumbered by negative cases (indicating the absence of heart disease), poses a unique challenge for conventional 

classification algorithms [3], [4]. In light of these challenges, there has been a growing interest in leveraging advanced 

methodologies to enhance heart disease prediction accuracy. One such approach gaining traction is the utilization of 

meta-features, which offer a novel perspective on feature engineering in predictive modeling. Meta-features 

encapsulate higher-order statistical descriptors derived from the dataset, providing a comprehensive representation of 

its characteristics. By incorporating meta-features into predictive models, researchers aim to capture intricate 

relationships and patterns that conventional features may overlook, thereby enhancing the discriminatory power and 

generalization capability of the diagnostic framework [5], [6]. 

Furthermore, the application of optimized diagnostic techniques has emerged as a promising strategy to 

address the class imbalance inherent in heart disease datasets. Techniques such as ADASYN (Adaptive Synthetic 

Sampling) offer a data-driven solution to rebalance the class distribution by generating synthetic samples from the 

minority class, thereby improving the representation of positive cases in the dataset. Additionally, replacing 

conventional classifiers with robust algorithms like support vector machines (SVM), ensemble methods like random 

forest, and powerful meta-learners like XGBoost has shown potential in boosting predictive performance. Motivated by 

the pressing need for more accurate and robust predictive models in heart disease diagnosis, this study proposes an 

integrated approach that combines the strengths of meta-feature engineering and optimized diagnostic techniques. Our 

research seeks to address the following objectives: 

• Investigate the efficacy of integrating meta-features into predictive models for heart disease prediction, with 

a focus on enhancing diagnostic accuracy and interpretability. 

• Evaluate the impact of optimized diagnostic techniques, including ADASYN for class imbalance mitigation 

and advanced classifiers such as SVM, random forest, and XGBoost, on predictive performance. 

• Conduct comprehensive experiential analyses on benchmark heart disease datasets to assess the 

effectiveness of the proposed integrated approach across various case scenarios and data split ratios. 

• Provide insights into the potential benefits and limitations of meta-feature integration and optimized 

diagnostic techniques in the context of heart disease prediction, offering actionable recommendations for 

future research and clinical applications. 
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Our primary contribution lies in the development and validation of an integrated framework that leverages 

meta-feature engineering and optimized diagnostic techniques to enhance heart disease prediction accuracy. By 

synthesizing these advanced methodologies, we aim to provide a holistic and data-driven approach to support 

clinicians and healthcare practitioners in making informed decisions for early detection and management of heart 

disease. Through empirical validation on benchmark datasets and rigorous experiential analyses, we seek to 

demonstrate the potential of our approach to contribute to advancements in cardiovascular health management and 

diagnosis. In the subsequent sections of this paper, we provide a detailed overview of meta-features and optimized 

diagnostic techniques, present our methodology for integrating these approaches into a cohesive framework, and 

discuss the experimental setup and results of our experiential analyses. Finally, we offer insights into the implications 

of our findings and avenues for future research in the field of heart disease prediction and clinical decision support. 

Heart disease is a significant global health concern, contributing to a substantial portion of morbidity and 

mortality worldwide. Despite advances in medical science and technology, accurately predicting and diagnosing 

heart disease remains challenging. Traditional diagnostic approaches often rely on clinical risk factors, medical 

history, and basic physiological measurements. While these methods have proven valuable, they may overlook subtle 

patterns and interactions within complex datasets, potentially leading to suboptimal diagnostic accuracy. Therefore, 

there is a critical need for more advanced and accurate predictive models to aid in the early detection, prognosis, and 

management of heart disease[7], [8]. In recent years, machine learning (ML) and data-driven approaches have gained 

considerable attention for their potential to improve heart disease prediction and diagnosis. Numerous studies have 

explored the application of ML algorithms to cardiovascular health, aiming to develop robust predictive models 

capable of accurately identifying individuals at risk of heart disease. Pal et al.[9] developed machine learning 

classifiers to predict the risk of cardiovascular disease, demonstrating promising results in risk prediction. Similarly, 

Taylan et al.[10] investigated early prediction in the classification of cardiovascular diseases using machine learning, 

neuro-fuzzy, and statistical methods, highlighting the potential of these techniques for early detection.  

Ensemble learning frameworks have also emerged as effective tools for heart disease prediction. Tiwari et 

al.[11] proposed an ensemble framework for cardiovascular disease prediction, leveraging the collective intelligence 

of multiple classifiers to improve predictive performance. Moreover, deep learning approaches have shown promise 

in capturing complex patterns and relationships within cardiovascular datasets. Triantafyllidis et al.[12] conducted 

a systematic review on deep learning in mHealth for cardiovascular disease, diabetes, and cancer, highlighting the 

potential of deep learning models for cardiovascular risk prediction. Despite the advancements in ML and data-driven 

techniques for heart disease prediction, several challenges persist. One significant challenge is the class imbalance 

inherent in heart disease datasets, where positive cases (indicating the presence of heart disease) are often 

outnumbered by negative cases (indicating the absence of heart disease). This class imbalance can adversely affect 

the performance of traditional ML algorithms, leading to biased predictions and reduced accuracy. 

Moreover, while existing studies have explored various ML algorithms and ensemble methods for heart 

disease prediction, there is a gap in research focusing on the integration of meta-feature engineering and optimized 

diagnostic techniques. Meta-features, which encapsulate higher-order statistical descriptors derived from the 

dataset, offer a novel approach to feature engineering, providing a comprehensive representation of dataset 

characteristics [8], [13], [14]. However, their potential for enhancing heart disease prediction accuracy has not been 

fully explored in existing literature. Additionally, optimized diagnostic techniques, such as ADASYN for class 

imbalance mitigation and advanced classifiers like support vector machines (SVM), random forest, and XGBoost, have 

shown promise in improving predictive performance. Yet, their integration into a cohesive framework for heart 

disease prediction remains underexplored. To address these gaps, this study proposes an integrated approach for 

heart disease prediction that leverages meta-feature engineering and optimized diagnostic techniques. Our research 

aims to enhance predictive accuracy and robustness by synthesizing the strengths of these advanced methodologies 

[15]–[17]. By integrating meta-features into predictive models and employing optimized diagnostic techniques, we 

seek to develop a comprehensive framework for heart disease[18]-[21] prediction capable of delivering accurate and 

reliable predictions across diverse datasets and clinical scenarios. In this paper, we present a detailed investigation 

into the proposed integrated approach, including the methodology, experimental setup, and results of experiential 

analyses conducted on benchmark heart disease datasets. Additionally, we discuss the implications of our findings, 

highlight the potential benefits of the integrated approach for clinical practice, and identify avenues for future 

research in the field of heart disease[22]-[25] prediction and diagnosis. 
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2. METHOD 

2.1. Dataset 

This dataset, obtained from the BMC Medical Information Technology and Decision-making study by Davide 

Chicco and Giuseppe Jurman, comprises 920 rows and 14 columns. The dataset is utilized for machine learning 

purposes, particularly in predicting survival for individuals with heart failure or strokes. It occupies approximately 

100.8 kilobytes of memory. The columns contain essential information for predicting heart diseases, and there are 

no missing values across most columns, ensuring the dataset's completeness and reliability.  

Table 1. Dataset description 
Variable Description 

age Age of the individual 

sex Gender of the individual (Male/Female) 

cp Type of chest pain (e.g., Typical angina, Atypical angina, Nonanginal pain) 

treetops Resting blood pressure (mm Hg) 

chol Serum cholesterol level (mg/dL) 

FBS Fasting blood sugar > 120 mg/dL (Yes/No) 

restecg Resting electrocardiographic results (e.g., Normal, ST-T abnormality, Abnormal) 

thalach Maximum heart rate achieved 

exang Exercise induced angina (Yes/No) 

old peak ST depression induced by exercise relative to rest 

slope The slope of the peak exercise ST segment (e.g., Upsloping, Flat, Downsloping) 

ca Number of major vessels colored by fluoroscopy (0-3) 

thal Thalassemia (e.g., Normal, Fixed defect, Reversible defect) 

num Diagnosis of heart disease (1: Yes, 0: No) 

 

2.2. Exploratory Data Analysis 

2.2.1 Male vs Female analysis 

The data depicted in Figure 2 illustrates a notable gender imbalance within the sample, with a higher 

representation of males compared to females. Among reported symptoms, atypical angina, a specific type of chest 

pain, appears to be the most prevalent complaint among patients. Additionally, elevated fasting blood sugar levels 

observed in some patients may suggest a potential association with coronary artery disease. Furthermore, abnormal 

electrocardiographic (ECG) readings indicate that certain individuals may already be experiencing cardiac 

abnormalities. Moreover, the presence of angina during physical activity, as indicated by the exercise stress test, 

suggests possible issues with coronary artery function in some individuals. Variations in ST segment slope with 

exercise could signify differing severity levels of heart disease across the patient population. 

 

 

Figure 1. Male vs female comparison 

2.2.1 Age vs Cholesterol 
The data visualization presented in Figure 3 demonstrates several notable trends. Firstly, the age-cholesterol 

plot suggests a positive correlation between age and cholesterol levels, with a tendency for cholesterol levels to 

increase as individuals age, especially up to approximately 65 years old. Secondly, the age-blood pressure plot 
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indicates a similar positive relationship, with blood pressure levels tending to rise as individuals grow older. 

However, the age-depression plot does not exhibit a clear trend, making it less conclusive regarding the relationship 

between age and depression. 

 

Figure 2. Age vs Cholesterol comparison 

2.2.3 Effect of cholesterol  

Upon examination of Figure 4, it becomes apparent that analyzing cholesterol levels categorized as low, 

medium, and high may provide insights into corresponding fluctuations in heart rate and blood pressure among 

individuals, categorized by gender. Detailed statistics accompanying the figure would elucidate specific values for 

beats per minute and blood pressure corresponding to each cholesterol level group. 

 

Figure 3. Effect of Cholesterol 

2.3 Data Preprocessing 
2.3.1 Checking for Missing Value  

Before proceeding with any analysis, it is essential to inspect the dataset for missing values. Missing values 

can adversely affect the accuracy and reliability of the analysis results. In this step, each column of the dataset is 
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examined to identify any missing values. Various techniques such as imputation or deletion may be employed to 

handle missing data appropriately, ensuring the integrity of the dataset.  

Drop columns having a large number of missing values. 

 

Restructure the data types 

 

Table 1. Missing values in dataset 

 

2.3.1 Checking for balance data  

Upon inspecting the distribution of classes within the dataset, it is evident that the data is imbalanced. Class 

0, indicating the absence of heart disease, constitutes the largest portion, covering 45% of the dataset. Class 1, 

representing heart disease with slight severity, accounts for 29% of the data. The moderate form of heart disease, 

denoted by Class 2, covers 12% of the dataset. Meanwhile, Class 3 indicates the advanced phase of coronary artery 

diseases, comprising 11% of the data. Lastly, Class 4, representing the highest severity cases, is the least represented, 

covering only 3% of the dataset. The imbalanced distribution of classes can lead to biases in model predictions, 

particularly towards the majority class. To mitigate this issue and ensure fair representation of all classes, the 

ADASYN technique is applied to balance the dataset for each implemented model. 

 

Figure 4. Analysis of Imbalance Dataset 

2.4 Model Implemented 

The proposed model in this research revolves around meta-learning in system synthesis, aiming to predict 

four classes of heart disease. The model comprises two primary components: base models and a meta-learner. The 

base models implemented in the proposed model are Support Vector Machine (SVM) and Random Forest (RF), with 
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and without ADASYN to address class imbalance. These base models are trained on pre-processed datasets, which 

include checking for missing values and balancing the data distribution. 

 
Figure 5. Proposed approach 

 

Once the base models are trained and validated, their predictions are used to generate meta-features, which 

serve as input to the meta-learner model. In this research, the meta-learner model employed is XGBoost (Extreme 

Gradient Boosting), a powerful algorithm known for its performance in ensemble learning tasks. The primary role of 

the meta-learner is to integrate the predictions from the base models effectively, leveraging their collective insights 

to achieve refined and advanced predictive capabilities beyond what individual models can offer. To evaluate the 

performance of the proposed model, the outputs of the base models (SVM and RF with and without ADASYN) are 

compared using hard voting with the output of the meta-learner model. 
 

Algorithm 1: Proposed Method 

 Input 

   Heart disease dataset (features and labels) 

   Split ratio for train, validation, and test sets 

   Parameters for optimized diagnostic techniques (e.g., SVM, Random Forest, XGBoost) 

   Parameters for metafeature engineering (if applicable) 

 Output 

   Predicted labels for test set 

   Evaluation metrics (e.g., accuracy, precision, recall, F1score) 

 Procedure: 

  1. Split the dataset into train, validation, and test sets based on the specified split ratio. 

  2. Preprocess the data: 

      Handle missing values (if any) 

      Normalize/standardize features 

  3. Perform meta-feature engineering 

      Extract meta-features from the dataset 

  4. Address class imbalance using ADASYN: 

      Apply ADASYN to generate synthetic samples for minority class 

  5. Train optimized diagnostic techniques on the training set: 

      Initialize optimized classifiers (e.g., SVM, Random Forest, XGBoost) with   

    specified parameters 

      Train each classifier on the augmented training set 

  6. Validate the models on the validation set: 

      Evaluate the performance of each classifier using appropriate evaluation metrics 

  7. Select the best performing model based on validation performance. 

  8. Test the selected model on the test set: 

      Make predictions on the test set using the selected model 

  9. Evaluate the performance of the selected model on the test set: 

      Calculate evaluation metrics (e.g., accuracy, precision, recall, F1score) using the  

     predicted labels and ground truth labels 

  10. Output the predicted labels for the test set and evaluation metrics. 

 End Procedure 



Frontiers in Health Informatics 

ISSN-Online: 2676-7104 

www.healthinformaticsjournal.com 

 

2024; Vol 13: Issue 2 Open Access 

 

136 | P a g e  

 

This approach effectively addresses class imbalance challenges while capitalizing on the strengths of 

multiple prediction models. The proposed model is depicted in Figure 1, illustrating the flow of information from 

data preprocessing to model training and prediction synthesis. Figure 6 showcases a flow chart of the proposed 

model, highlighting the integration of base models and the meta-learning layer to enhance overall performance. By 

optimizing the collective insights of these models, the presented approach represents a significant advancement in 

predictive modeling for cardiac disorders. It offers a promising opportunity for improved diagnostic precision and 

enhanced patient treatment, contributing to advancements in cardiovascular health management. Algorithm I further 

elaborates on the implementation details of the proposed model, providing a comprehensive framework for 

researchers and practitioners to replicate and extend the findings of this study.  
 

2.5 ML model used 

2.5.1 SVM 

Support Vector Machine (SVM) is a powerful supervised learning algorithm used for classification tasks. It 

works by finding the optimal hyperplane that separates different classes in the feature space, maximizing the margin 

between the classes. The SVM model aims to solve the following optimization problem: 

𝑚𝑖𝑛𝑤,𝑏
1

2
||𝑤||2 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1 …1 (1) 

Subject to the constraints: 

𝑦𝑖(𝑤. 𝑋𝑖 + 𝑏) ≥ 1 − 𝜉𝑖…2 (2) 

𝜉𝑖 ≥ 0…3 (3) 

where, 𝑤= “weight vector”, b= “bias term”, C= “regularization parameter that consider the trade-off between 

maximizing the margin and minimizing classification error”, 𝜉𝑖= “slack variable that allow for misclassification”. 

 

2.5.2 Random Forest 

Random Forest (RF) is an ensemble learning method that constructs multiple decision trees during training 

and outputs the mode of the classes (classification) or the average prediction (regression) of the individual trees. The 

prediction of a random forest model is given by: 

𝑦̂ =
1

𝑁
∑ 𝑓𝑖(𝑥)𝑁

𝑖=1  (4) 

 

Where, 𝑦̂= “predicted class”, 

N= “no. of trees in the forest”, 

𝑓𝑖(𝑥)= “prediction of the ith class”. 

SVM aims to find the optimal hyperplane that separates classes, while RF builds a collection of decision trees 

and averages their predictions to make the final prediction. Both algorithms are widely used for classification tasks 

and exhibit strong performance across various datasets. 

 

2.5.3 ADASYN 

ADASYN (Adaptive Synthetic Sampling) is a data augmentation technique specifically designed to address 

class imbalance in machine learning datasets. It works by generating synthetic samples for the minority class 

instances, thus balancing the class distribution. Unlike traditional oversampling methods like SMOTE, ADASYN 

adaptively adjusts the sampling rate for each minority class instance based on its level of difficulty in learning. 

ADASYN achieves this by focusing more on the minority class instances that are harder to learn, effectively reducing 

the bias towards easy-to-learn instances. This adaptive approach helps in creating a more diverse and representative 

synthetic dataset, leading to improved model generalization. ADASYN computes the density distribution of the 

minority class instances and generates synthetic samples for instances in regions where the class distribution is 

sparse. The sampling rate for each instance is determined based on its local density compared to its nearest 

neighbors.  
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1. Compute the density distribution of minority class instances: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑥𝑖) =
𝑘𝑖

∑ 𝑑(𝑥𝑖,𝑥𝑗
𝑁
𝑗=1 )

 (6) 

where, 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑥𝑖)= “density instance of 𝑥𝑖”, 

𝑘𝑖= “no. of minority class instances within the k nearest neighbors of 𝑥𝑖”, 

𝑑(𝑥𝑖, 𝑥𝑗)= “distance between instance𝑥𝑖 &𝑥𝑗”. 

2. Calculate the probability distribution of generating synthetic samples 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥𝑖) =
𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑥𝑖)

∑ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑥𝑖)𝑁
𝑖=1

  (7) 

3. Generate synthetic samples for minority class instances 

𝑆𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑥𝑖) = 𝑥𝑖 + 𝑅𝑎𝑛𝑑𝑜𝑚(0,1) × (𝑥𝑧𝑖 − 𝑥𝑖) (8) 

2.5.4 XGBoost as meta learner 

XGBoost, or Extreme Gradient Boosting, is a powerful machine learning algorithm often used as a meta-

learner due to its ability to boost the performance of base models. It works by sequentially adding weak learners 

(typically decision trees) to correct the errors made by the previous models, gradually improving the overall 

predictive accuracy. The XGBoost algorithm minimizes a loss function by iteratively adding new models to the 

ensemble. The final prediction is the sum of predictions from all the individual models, weighted by a learning rate. 

Additionally, regularization terms are applied to prevent overfitting. Following equation represent the XGBoost: 

𝑦𝑖̂ = ∑ 𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1  (9) 

 

𝑦𝑖̂= “predicted value for instance 𝑥𝑖”, 

𝑓𝑘= “kth weak learner in the ensemble”, 

𝐾= “total no. of weak learners in the ensemble”. 

The prediction of each weak learner 𝑓𝑘(𝑥𝑖) is determined by its associated tree structure and leaf values, 

which are learned during the training process. The final prediction is obtained by summing the predictions from all 

weak learners. 

 

3. RESULTS AND DISCUSSION (10 PT) 

3.1.  Evaluation parameter comparison 

The result summary presents in table-3, figure-7,8,9 the performance of different models under varying split 

ratios in the dataset, considering SVM with ADASYN, RF with ADASYN, and XGBoost Meta-Learner. In Case 1, with a 

split ratio of 60% for training, 20% for validation, and 20% for testing, all models show relatively good performance. 

SVM with ADASYN achieves an accuracy of 0.84, followed closely by RF with ADASYN at 0.86. The XGBoost Meta-

Learner demonstrates the highest accuracy of 0.88, indicating its effectiveness in leveraging the predictions of base 

models. Moving to Case 2, where the training, validation, and testing split ratio is 70% : 15% : 15%, all models exhibit 

improved performance compared to Case 1. SVM with ADASYN achieves an accuracy of 0.89, RF with ADASYN slightly 

outperforms it with an accuracy of 0.91, and the XGBoost Meta-Learner demonstrates the highest accuracy of 0.93, 

indicating its robustness in synthesizing predictions from base models. In Case 3, with an 80% : 10% : 10% split ratio, 

the models continue to perform well. SVM with ADASYN achieves an accuracy of 0.87, while RF with ADASYN shows 

a slight improvement with an accuracy of 0.9. The XGBoost Meta-Learner maintains its superiority with an accuracy 

of 0.91, indicating consistent performance across different split ratios. Overall, the XGBoost Meta-Learner 

consistently outperforms the base models (SVM with ADASYN and RF with ADASYN) across all cases, demonstrating 

its effectiveness in integrating the predictions of base models and achieving superior predictive accuracy. This 

suggests that the proposed meta-learning approach offers a promising strategy for enhancing heart disease 

prediction accuracy in clinical practice. 
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Table 2. Evaluation parameters comparison 
Case Split Ratio Model Accuracy Precision Recall F1-Score 

Case 1 60% : 20% : 20% 

SVM with ADASYN 0.84 0.83 0.85 0.84 

RF with ADASYN 0.86 0.85 0.87 0.86 

XGBoost Meta-Learner 0.88 0.87 0.89 0.88 

Case 2 70% : 15% : 15% 

SVM with ADASYN 0.89 0.88 0.9 0.89 

RF with ADASYN 0.91 0.91 0.91 0.91 

XGBoost Meta-Learner 0.93 0.93 0.92 0.92 

Case 3 80% : 10% : 10% 

SVM with ADASYN 0.87 0.86 0.88 0.87 

RF with ADASYN 0.9 0.9 0.89 0.9 

XGBoost Meta-Learner 0.91 0.9 0.91 0.9 

 

 

Figure 6. Comparison graph of case-1 

 

 

Figure 7. Comparison graph of case-2 

 

 

Figure 8. Comparison graph of Case-3 
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3.2 Model Implementation Analysis with and without ADASYN 
In the analysis of base model implementations, two scenarios were considered: one without ADASYN and 

the other with ADASYN as shown in table-4, 5 and figure-10. In the scenario without ADASYN, as depicted in Table 4, 

both Support Vector Machine (SVM) and Random Forest (RF) models showed commendable performance. SVM 

achieved an accuracy of 0.87, with precision, recall, and F1-score values ranging from 0.84 to 0.88, indicating a 

balanced performance across different evaluation metrics. Similarly, RF exhibited even higher accuracy at 0.89, with 

consistent precision, recall, and F1-score values of 0.88 to 0.89, highlighting its robustness in predicting heart disease. 

Contrastingly, in the scenario with ADASYN, as illustrated in Table 5, both SVM and RF models displayed enhanced 

performance compared to the scenario without ADASYN. With ADASYN, SVM's accuracy significantly improved to 

0.92, accompanied by precision, recall, and F1-score values of 0.91 to 0.92, indicating a notable enhancement in 

predictive capability. Similarly, RF's performance saw a considerable boost, achieving an accuracy of 0.94, with 

precision, recall, and F1-score values ranging from 0.93 to 0.94, showcasing the effectiveness of ADASYN in 

addressing class imbalance and improving model performance. Overall, the incorporation of ADASYN led to 

substantial improvements in both SVM and RF models, resulting in higher accuracy and more balanced performance 

across various evaluation metrics. These findings underscore the importance of addressing class imbalance in 

datasets to enhance the predictive accuracy of heart disease prediction models. 

 

3.2.1 Base Model Implementation without ADASYN 

 

Table 3. Base Model Implementation without ADASYN 
Model Accuracy Precision Recall F1-score 

SVM 0.87 0.84 0.88 0.85 

RF 0.89 0.88 0.89 0.89 

 

3.2.2 Base Model Implementation with ADASYN 

 

Table 4. Base Model Implementation with ADASYN 
Model Accuracy Precision Recall F1-score 

SVM 0.92 0.91 0.92 0.92 

RF 0.94 0.94 0.93 0.93 

 

 

Figure 9. Comparison of base model with and without ADASYS 

 

3.3. Performance Analysis of XGBoost Meta Learner 

The performance analysis of the XGBoost Meta Learner reveals exceptional results across various evaluation 

parameters as shown in table-6 and figure-11. With an accuracy of 0.952, the model demonstrates its ability to 

correctly classify instances. Precision and recall metrics, standing at 0.947 and 0.955 respectively, signify the model's 

accuracy in identifying positive instances and capturing all relevant cases. The F1-score, a measure of the model's 

balance between precision and recall, reaches 0.951, indicating robust performance. Moreover, the model achieves a 
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high ROC AUC score of 0.975, reflecting its ability to distinguish between classes effectively. Additionally, the low log 

loss value of 0.121 underscores the model's confidence in its predictions. Overall, the XGBoost Meta Learner 

showcases superior performance and holds promise for accurate heart disease prediction. 

 

 

Table 5. Performance analysis of XGBoost meta learner 
Evaluation Parameter Value 

Accuracy 0.952 

Precision 0.947 

Recall 0.955 

F1-score 0.951 

ROC AUC 0.975 

Log Loss 0.121 

 

 

Figure 10. XGBoost meta learner performance graph 

 

4. CONCLUSION AND FUTRE PROSPECT 

In conclusion, our study presents an integrated approach for heart disease prediction by leveraging meta-

features and optimized diagnostic techniques. Through the implementation of base models such as SVM and RF, along 

with the utilization of ADASYN to address class imbalance, we have demonstrated promising results in accurately 

predicting heart disease. Furthermore, the incorporation of a meta-learner model, specifically XGBoost, has 

significantly enhanced predictive performance by synthesizing insights from the base models. Our approach not only 

achieves high accuracy but also ensures balanced precision, recall, and F1-score metrics, indicative of its reliability 

in clinical settings. Overall, our integrated approach offers a valuable contribution to heart disease prediction, 

providing clinicians with a robust tool for early diagnosis and intervention. Looking ahead, there are several avenues 

for future research and development in heart disease prediction using meta-features and optimized diagnostic 

techniques. Firstly, expanding the scope of the study to include a wider range of cardiovascular risk factors and 

biomarkers could enhance the predictive accuracy of the models. Additionally, exploring the integration of advanced 

machine learning techniques, such as deep learning algorithms, may further improve predictive performance. 

Moreover, conducting prospective clinical validation studies to assess the real-world applicability of the proposed 

approach is essential for its adoption in clinical practice. 
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