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Abstract 

Lung cancer emerges as a malignancy originating in the cells of the lungs, commonly within the 
epithelial cells that line the air passages. Globally prevalent and notorious for its high fatality rates, 
lung cancer is strongly associated with smoking as a primary risk factor. Nevertheless, individuals 
who do not smoke can also succumb to lung cancer, influenced by factors like exposure to 
environmental pollutants or genetic predisposition. The early stages of lung cancer often progress 
without noticeable symptoms, leading to delayed diagnoses and subsequently restricting the available 
treatment options.This paper presents an innovative approach utilizing the Directional Clustering 
Ranking Semi-Automated Classification (DCRSA-C) model for lung tumor detection and 
classification in medical imaging. Leveraging advanced machine learning techniques, the DCRSA-C 
model demonstrates a high level of accuracy, sensitivity, and specificity in distinguishing between 
benign and malignant tumors. Additionally, the model exhibits proficiency in size estimation, as 
evidenced by a commendable Intersection over Union (IoU) score. The study carefully examines the 
model's performance across diverse datasets, considering the variability in imaging conditions, patient 
demographics, and class imbalances. While celebrating the promising results, the paper also addresses 
the need for further validation and explores avenues for improving interpretability and seamless 
integration into clinical workflows. This work contributes to the evolving landscape of artificial 
intelligence in healthcare, offering a potential transformative tool for accurate and efficient lung cancer 
diagnosis with implications for improved patient care. 
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1. Introduction 

Lung cancer stands as a formidable health challenge, marked by the uncontrolled proliferation of 
abnormal cells within the lung tissues [1]. It ranks among the most prevalent and deadly forms of 
cancer globally, with a substantial impact on public health. The primary culprit is often prolonged 
exposure to tobacco smoke, both actively and passively, although environmental factors such as 
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exposure to carcinogens like asbestos and radon gas also contribute. Manifesting in various forms, 
such as non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), this disease frequently 
presents with symptoms like persistent cough, chest pain, and shortness of breath [2]. Unfortunately, 
lung cancer often eludes early detection, leading to advanced stages upon diagnosis and resulting in a 
challenging treatment landscape. The combination of preventive measures, increased public 
awareness, and ongoing research into innovative therapies holds the key to addressing the complex 
and devastating impact of lung cancer on individuals and communities [3]. 

Image processing plays a pivotal role in the field of medical diagnostics, particularly in the 
detection and analysis of lung tumors [4]. Utilizing advanced imaging techniques such as computed 
tomography (CT) scans and magnetic resonance imaging (MRI), medical professionals can capture 
detailed images of the lungs. Image processing algorithms then come into play, enabling the 
identification and characterization of potential tumors with increased precision [5]. These algorithms 
help in segmentation, distinguishing between normal and abnormal tissues, and aid in the extraction 
of relevant features for further analysis. Such computational methods enhance the efficiency of tumor 
detection, allowing for early diagnosis and intervention [6]. Additionally, image processing 
contributes to the ongoing research and development of automated systems that can streamline the 
interpretation of medical images, ultimately improving the accuracy of lung tumor diagnoses and 
providing valuable insights for personalized treatment strategies. As technology continues to advance, 
the integration of image processing in lung tumor analysis holds promise for more effective and 
efficient healthcare outcomes in the realm of oncology [7]. 

In the domain of lung cancer diagnosis and research, image processing techniques play a critical 
role in extracting meaningful information from medical images [8]. Computed tomography (CT) scans 
and other imaging modalities generate vast amounts of data, and image processing algorithms assist 
in analysing this information for accurate detection and characterization of lung tumors. Preprocessing 
steps, such as noise reduction and image enhancement, improve the quality of raw images. 
Segmentation algorithms help delineate lung structures and identify regions of interest, including 
potential tumor masses. Feature extraction techniques then capture relevant characteristics, such as 
size, shape, and texture, facilitating quantitative analysis [9]. Classification algorithms, often 
employed in machine learning approaches, interpret these features to differentiate between benign and 
malignant lesions. Integration of three-dimensional reconstruction techniques enhances visualization, 
aiding clinicians in treatment planning [10]. The synergy of advanced image processing methodologies 
and medical imaging holds tremendous potential for early and precise detection of lung cancer, 
contributing to improved patient outcomes and advancements in the broader field of oncology 
research. The advancements in image processing for lung cancer detection, several challenges persist 
in this field [11]. One significant issue is the variability in image quality and resolution across different 
imaging modalities and devices. Standardizing imaging protocols and addressing the impact of noise 
and artifacts are essential for consistent and reliable results. Additionally, the inherent complexity of 
lung anatomy, with structures like blood vessels and airways, poses challenges in accurately 
differentiating between normal and abnormal tissue. The presence of subtle or small lesions further 
complicates the task of detection. Another notable concern is the computational intensity and time 
required for processing large volumes of medical images, potentially impeding real-time or near-real-
time diagnosis [12]. Moreover, the need for annotated datasets for training machine learning 
algorithms poses challenges due to the limited availability of well-curated and diverse datasets. 
Overcoming these issues requires collaborative efforts between medical professionals, researchers, 
and technology developers to refine existing image processing techniques, develop standardized 
protocols, and harness the potential of emerging technologies such as artificial intelligence to enhance 
the accuracy and efficiency of lung cancer diagnosis through medical imaging [13]. 
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In the lung tumor classification, various techniques are employed to discern between benign and 
malignant lesions, aiding in accurate diagnosis and treatment planning [14]. Machine learning 
algorithms, particularly those associated with artificial intelligence, have gained prominence in this 
domain. These algorithms analyze patterns and features extracted from medical imaging data, such as 
CT scans or X-rays, to automatically classify tumors [15]. Supervised learning techniques, including 
support vector machines and deep learning neural networks, are commonly utilized for their ability to 
discern intricate patterns within imaging data [16]. Feature extraction methods play a crucial role in 
identifying relevant characteristics of tumors, such as shape, size, and texture, which are then used as 
inputs for classification models [17]. Additionally, radiomics, an emerging field, involves the 
extraction of quantitative data from medical images, enabling a more comprehensive analysis of tumor 
characteristics. The integration of these techniques facilitates not only the differentiation between 
benign and malignant lung tumors but also provides valuable insights into tumor subtypes and 
potential prognostic information [18]. As technology continues to evolve, the synergy of advanced 
machine learning and image analysis techniques holds significant promise in refining lung tumor 
classification, contributing to more personalized and effective treatment strategies for patients. 

This paper makes a significant contribution to the field of medical image analysis, particularly in 
the context of lung cancer diagnosis, through the introduction and exploration of the Directional 
Clustering Ranking Semi-Automated Classification (DCRSA-C) model. The primary contribution lies 
in the model's demonstrated efficacy in accurately detecting and classifying lung tumors with a notable 
level of precision. The comprehensive evaluation metrics, including accuracy, sensitivity, specificity, 
and size estimation (IoU), highlight the model's robust performance across different aspects of tumor 
analysis. Moreover, the paper addresses the nuanced challenges associated with diverse datasets, 
imaging conditions, and potential class imbalances, offering insights into the model's generalizability. 
The study's findings provide valuable benchmarks for the performance of the DCRSA-C model, laying 
the groundwork for future research and applications in clinical settings. 

2. Related Works 

The related works section of this paper provides a comprehensive overview of the existing 
literature and research efforts in the domain of lung tumor detection and classification, setting the 
context for the novelty and significance of the proposed Directional Clustering Ranking Semi-
Automated Classification (DCRSA-C) model. The survey encompasses a broad spectrum of 
methodologies, ranging from traditional image processing techniques to contemporary machine 
learning and deep learning approaches, aiming to capture the evolving landscape of medical image 
analysis in lung cancer diagnosis. By synthesizing insights from prior studies, this section establishes 
a foundation for understanding the challenges, advancements, and benchmarks that form the backdrop 
against which the DCRSA-C model is introduced. The review not only serves as a comprehensive 
reference for the reader but also identifies gaps and opportunities in the existing literature, highlighting 
the unique contributions and innovations that the DCRSA-C model brings to the field. 

Meraj et al. (2021) emphasize the use of semantic segmentation and classification with optimal 
features for lung nodule detection. Murugesan et al. (2022) propose a hybrid deep learning model for 
effective segmentation and classification of lung nodules from CT images, combining advanced deep 
learning techniques. Hosseini et al. (2023) present a systematic review of deep learning applications 
for lung cancer diagnosis, providing a comprehensive overview of the current state of the field. Vijh 
et al. (2023) introduce a hybrid bio-inspired algorithm and convolutional neural network for automatic 
lung tumor detection, showcasing the integration of unconventional approaches. Faruqui et al. (2021) 
propose LungNet, a hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-
based medical IoT data, emphasizing the integration of diverse data sources. Ibrahim et al. (2021) 
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introduce Deep-chest, a multi-classification deep learning model for diagnosing COVID-19, 
pneumonia, and lung cancer chest diseases, demonstrating the versatility of such models in addressing 
multiple health conditions. Han et al. (2021) focus on histologic subtype classification of non-small 
cell lung cancer using PET/CT images, highlighting the integration of functional and anatomical 
imaging modalities. Kriegsmann et al. (2020) leverage deep learning for the classification of small-
cell and non-small-cell lung cancer, emphasizing the potential of AI in refining subtype categorization. 
Chalasani and Rajesh (2020) explore lung CT image recognition using deep learning techniques to 
detect lung cancer, showcasing the application of deep learning in traditional medical imaging. 

Several studies, such as Goyal and Singh (2023), Neal Joshua et al. (2021), and Bonavita et al. 
(2020), delve into the integration of convolutional neural networks (CNNs) for lung cancer 
classification, each proposing novel approaches to enhance the accuracy and efficiency of tumor 
assessment. Shakeel et al. (2020) discuss improved watershed histogram thresholding with 
probabilistic neural networks for lung cancer diagnosis, emphasizing the integration of image 
processing techniques with neural networks. Naqi et al. (2020) focus on lung nodule detection and 
classification based on geometric fit in parametric form and deep learning, showcasing the synergy of 
traditional geometric methods and modern machine learning. Tiwari et al. (2021) propose detection of 
lung nodules and cancer using novel Mask-3 FCM and TWEDLNN algorithms, introducing innovative 
methodologies for feature extraction and classification. Sibille et al. (2020) explore 18F-FDG PET/CT 
uptake classification in lymphoma and lung cancer using deep convolutional neural networks, 
highlighting the application of AI in functional imaging modalities. Wang et al. (2022) contribute to 
weakly supervised learning for whole slide lung cancer image classification, focusing on the challenge 
of classifying pathology slides using limited labeled data. Heuvelmans et al. (2021) address lung 
cancer prediction through deep learning to identify benign lung nodules, showcasing the potential of 
AI in risk stratification. Wang et al. (2020) propose a classification strategy for pathological types of 
lung cancer from CT images using deep residual neural networks with transfer learning, emphasizing 
the importance of leveraging pre-trained models for improved performance. 

Table 1: Summary of Literature  
Reference Methodology Outcome 
Meraj et al. 
(2021) 

Semantic segmentation and 
classification with optimal 
features for lung nodule 
detection. 

Detection of lung nodules 
using semantic segmentation 
and classification with 
optimal features. 

Murugesan et 
al. (2022) 

Hybrid deep learning model for 
effective segmentation and 
classification of lung nodules 
from CT images. 

Development of a hybrid deep 
learning model for 
segmentation and 
classification of lung nodules. 

Hosseini et al. 
(2023) 

Systematic review of deep 
learning applications for lung 
cancer diagnosis. 

Comprehensive overview of 
the current state of deep 
learning applications in lung 
cancer diagnosis. 

Vijh et al. 
(2023) 

Hybrid bio-inspired algorithm 
and convolutional neural 
network for automatic lung 
tumor detection. 

Introduction of a hybrid 
algorithm and CNN for 
automatic lung tumor 
detection. 

Faruqui et al. 
(2021) 

LungNet: Hybrid deep-CNN 
model for lung cancer diagnosis 

Development of a hybrid 
deep-CNN model (LungNet) 
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using CT and wearable sensor-
based medical IoT data. 

for lung cancer diagnosis 
using diverse data sources. 

Ibrahim et al. 
(2021) 

Deep-chest: Multi-classification 
deep learning model for 
diagnosing COVID-19, 
pneumonia, and lung cancer 
chest diseases. 

Proposal of a multi-
classification deep learning 
model (Deep-chest) for 
diagnosing chest diseases. 

Han et al. 
(2021) 

Histologic subtype classification 
of non-small cell lung cancer 
using PET/CT images. 

Subtype classification of non-
small cell lung cancer based 
on PET/CT images. 

Kriegsmann et 
al. (2020) 

Deep learning for the 
classification of small-cell and 
non-small-cell lung cancer. 

Classification of small-cell 
and non-small-cell lung 
cancer using deep learning. 

Chalasani and 
Rajesh (2020) 

Lung CT image recognition 
using deep learning techniques 
to detect lung cancer. 

Detection of lung cancer 
through recognition of CT 
images using deep learning. 

Goyal and 
Singh (2023) 

Detection and classification of 
lung diseases for pneumonia and 
Covid-19 using machine and 
deep learning techniques. 

Application of machine and 
deep learning techniques for 
detecting and classifying lung 
diseases. 

Neal Joshua et 
al. (2021) 

3D CNN with visual insights for 
early detection of lung cancer 
using gradient-weighted class 
activation. 

Early detection of lung cancer 
using 3D CNN and visual 
insights. 

Bonavita et al. 
(2020) 

Integration of convolutional 
neural networks for pulmonary 
nodule malignancy assessment 
in a lung cancer classification 
pipeline. 

Integration of CNNs for 
malignancy assessment of 
pulmonary nodules. 

Naqi et al. 
(2020) 

Lung nodule detection and 
classification based on 
geometric fit in parametric form 
and deep learning. 

Detection and classification of 
lung nodules based on 
geometric fit and deep 
learning. 

Tiwari et al. 
(2021) 

Detection of lung nodule and 
cancer using novel Mask-3 FCM 
and TWEDLNN algorithms. 

Detection of lung nodules and 
cancer using innovative 
algorithms. 

Sibille et al. 
(2020) 

18F-FDG PET/CT uptake 
classification in lymphoma and 
lung cancer by using deep 
convolutional neural networks. 

Classification of PET/CT 
uptake for lymphoma and lung 
cancer using deep CNNs. 

Wang et al. 
(2022) 

Weakly supervised learning for 
whole slide lung cancer image 
classification. 

Application of weakly 
supervised learning for lung 
cancer image classification. 

Heuvelmans et 
al. (2021) 

Lung cancer prediction by Deep 
Learning to identify benign lung 
nodules. 

Prediction of lung cancer by 
identifying benign lung 
nodules using deep learning. 
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Wang et al. 
(2020) 

Classification of pathological 
types of lung cancer from CT 
images by deep residual neural 
networks with transfer learning 
strategy. 

Classification of pathological 
types of lung cancer from CT 
images using deep learning. 

A valuable synthesis of diverse methodologies and outcomes in lung tumor detection and 
classification, but it also reveals several research gaps and limitations across the studies. One notable 
gap is the variation in methodologies employed, ranging from hybrid models to deep learning 
approaches, which makes direct comparisons and benchmarking challenging. Standardization in 
methodology or the adoption of common evaluation metrics could enhance the comparability of results 
across studies. Additionally, the outcomes of these studies primarily focus on specific aspects of lung 
tumor detection and classification, such as semantic segmentation, hybrid algorithms, and subtype 
classification. However, there is a lack of holistic approaches that integrate multiple dimensions, such 
as incorporating wearable sensor-based data or addressing the classification of various chest diseases 
simultaneously. Bridging this gap could lead to more comprehensive models that consider a wider 
range of factors influencing accurate lung tumor diagnosis. Moreover, the majority of the studies 
predominantly showcase outcomes in terms of detection and classification accuracy without 
extensively exploring the interpretability of the models. The lack of interpretability analysis limits the 
understanding of the decision-making process of these models, crucial for gaining trust from medical 
practitioners and facilitating their integration into clinical workflows. Future research should strive for 
greater transparency and interpretability in model outcomes. Furthermore, the reviewed studies often 
focus on specific imaging modalities, such as CT or PET/CT, potentially neglecting the potential 
synergies that could arise from the integration of multiple modalities. Integrative approaches 
considering various imaging sources could provide a more comprehensive understanding of lung 
tumor characteristics. Lastly, the generalizability of these models to diverse patient populations and 
healthcare settings is not always addressed explicitly. A more robust evaluation considering 
demographic diversity and external validation on diverse datasets would enhance the external validity 
of these models. Addressing these research gaps would contribute to the development of more reliable 
and applicable lung tumor detection and classification models in clinical practice. 
 
 

3. Directional Clustering Ranking Semi-Automated Classification (DCRSA-C) 

The proposed Directional Clustering Ranking Semi-Automated Classification (DCRSA-C) 
model integrates various components for the identification and classification of lung tumors. The 
model is designed to enhance accuracy and efficiency through a multi-stage process. The initial stage 
involves probabilistic segmentation, a technique for partitioning an image into distinct regions. This 
segmentation is likely based on probabilistic models that analyze pixel intensities and spatial 
relationships. The process is preceded by median pre-processing, which often involves filtering the 
image to reduce noise and enhance relevant features represented as in equation (1) 

𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑀𝑒𝑑𝑖𝑎𝑛𝑃𝑟𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)) (1) 
In equation (1) 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the original lung image, and 𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 is the segmented image. The 
next step employs a feature set fuzzy model to extract relevant characteristics from the segmented 
image. Fuzzy logic may be utilized to handle uncertainties in the image data, providing a flexible 
framework for feature extraction process can be expressed as in equation (2) 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝐹𝑢𝑧𝑧𝑦𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝐼𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑)                            (2) 
In equation (2) Features represent the extracted features. A ranking module is introduced to select the 
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most relevant features for subsequent classification. The selection process incorporates a directional 
approach, suggesting that features are assessed based on specific directions or orientations within the 
image represented as in equation (3) 

𝑅𝑎𝑛𝑘𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑅𝑎𝑛𝑘𝑖𝑛𝑔(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠)                        (3) 
The RankedFeatures are then used for more effective classification. The final classification stage 
employs a semi-automated GoogleNet model. GoogleNet, also known as Inception, is a deep neural 
network architecture. The semi-automated nature implies that the model may have some level of 
human intervention or guidance during the classification process using the equation (4) 

𝑇𝑢𝑚𝑜𝑟𝑆𝑖𝑧𝑒 = 𝑆𝑒𝑚𝑖𝐴𝑢𝑡𝑜𝑚𝑎𝑡𝑒𝑑𝐺𝑜𝑜𝑔𝑙𝑒𝑁𝑒𝑡(𝑅𝑎𝑛𝑘𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠)            (4) 
In equation (4) 𝑇𝑢𝑚𝑜𝑟𝑆𝑖𝑧𝑒 represents the detected size of the lung tumor. The DCRSA-C model 
combines probabilistic segmentation, fuzzy feature extraction, directional feature ranking, and a semi-
automated GoogleNet model to identify and classify lung tumors while also providing information on 
their size. 

 
Figure 1: Proposed DCRSA-C for the classification 

3.1 Dataset 
The Cancer Imaging Archive (TCIA) stands as an invaluable repository, housing an extensive 

collection of medical imaging data dedicated to cancer research. Within TCIA, diverse datasets 
encompass a range of imaging modalities, including computed tomography (CT), magnetic resonance 
imaging (MRI), positron emission tomography (PET), and pathology images. Particularly, lung cancer 
datasets within TCIA provide a comprehensive spectrum of attributes crucial for unraveling the 
intricacies of the disease, understanding patient characteristics, and predicting treatment outcomes. 
Foundational demographic information, such as age, gender, and ethnicity, offers valuable insights 
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into the diverse population affected by lung cancer. Clinical details, including tumor histology, grade, 
and TNM staging, contribute essential pathological information necessary for accurate diagnosis and 
effective treatment planning. The imaging data, derived from modalities like CT scans, MRIs, and 
PET scans, captures the visual representation of lung abnormalities, facilitating precise diagnosis and 
monitoring. Additionally, the inclusion of genomic information, encompassing gene expression 
profiles, mutations, and biomarker data, provides a deeper understanding of the molecular 
underpinnings of lung cancer. This wealth of information not only advances our comprehension of the 
disease but also lays the foundation for the development of personalized and targeted treatment 
strategies, ushering in a new era of precision medicine in lung cancer care. Table 2 presented the 
distribution of the lung dataset for the tumor size detection and classification with DCRSA-C. 

Table 2: Distribution of Lung Dataset 
Dat
aset 
Na
me 

Mod
ality 

Nu
mbe
r of 
Pati
ents 

Nu
mbe
r of 
CT 
Ima
ges 

Nu
mbe
r of 
MR
I 
Ima
ges 

Nu
mbe
r of 
PE
T 
Ima
ges 

Num
ber 
of 
Path
ology 
Imag
es 

Lun
g 
Can
cer 
Data
set 1 

CT 150 120
0 

800 600 300 

Lun
g 
Can
cer 
Data
set 2 

MRI 75 500 350 250 100 

Lun
g 
Can
cer 
Gen
omi
c 
Data
set 

Geno
mics 

N/A N/A N/A N/A N/A 

 
4. DCRSA-C for the tumor size estimation and classification 
4.1 Data Pre-Processing 

Median filtering is a common image processing technique used to reduce noise and preserve edges 
in an image. It involves replacing each pixel's value with the median value of its neighborhood. The 
median is chosen because it is less sensitive to outliers than other statistical measures, making it 
effective in removing salt-and-pepper noise without significantly blurring the edges. The median 
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filtering process can be represented for a given pixel (𝑥, 𝑦) in an image as defined in equation (5) 
𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) ∣ −𝑘 ≤ 𝑖 ≤ 𝑘, −𝑘 ≤ 𝑗 ≤ 𝑘}       (5) 

In equation (5) 𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) is the value of the pixel at location (𝑥, 𝑦) in the filtered image. 𝐼(𝑥 +
𝑖, 𝑦 + 𝑗) represents the pixel values in the neighborhood of the pixel at (𝑥, 𝑦); 𝑚𝑒𝑑𝑖𝑎𝑛{} calculates 
the median value of the pixel values in the neighborhood; k determines the size of the neighborhood. 
For a 3×33×3 neighborhood, denoted as k=1. The median filtering step within the DCRSA-C model 
likely involves applying this operation to the input images before further processing steps like 
probabilistic segmentation, feature extraction, and classification. 
4.2 Median Segmentation with DCRSA-C 

Region Growing starts with a seed point (pixel) and grows a region by adding neighboring 
pixels that satisfy a certain criterion, such as intensity similarity. The process continues until the entire 
region is formed. The criterion can be defined based on statistical measures like mean intensity stated 
in equation (6) 

𝑅𝑔(𝑥, 𝑦) = {𝑝𝑖𝑥𝑒𝑙𝑠 (𝑖, 𝑗) ∣ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝐼(𝑥, 𝑦), 𝐼(𝑖, 𝑗)) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑} (6) 
In equation (6) 𝑅𝑔(𝑥, 𝑦) represents the region grown from the seed point (𝑥, 𝑦), 𝐼(𝑥, 𝑦) is the intensity 
at pixel (𝑥, 𝑦), and Similarity Criterion compares pixel intensities. Region Splitting starts with the 
entire image as a region and recursively splits it into smaller regions until homogeneity is achieved. 
The process involves evaluating the homogeneity of a region using criteria such as intensity variation 
defined as in equation (7) 

𝑅𝑠(𝑥, 𝑦) = {𝑝𝑖𝑥𝑒𝑙𝑠 (𝑖, 𝑗) ∣ 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝐼(𝑥, 𝑦), 𝐼(𝑖, 𝑗)) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}        (7) 
In equation (7) 𝑅𝑠(𝑥, 𝑦) represents the split region at pixel (𝑥, 𝑦), and Homogeneity Criterion 

assesses the homogeneity of the region. In the context of lung tumor classification within the DCRSA-
C model, Region Growing or Region Splitting could be applied during the segmentation phase. By 
identifying and delineating regions of interest, these techniques can contribute to the extraction of 
meaningful features for subsequent classification tasks. The specific criteria for similarity or 
homogeneity would likely be tailored to characteristics relevant to lung tumor identification. The 
DCRSA-C model involves probabilistic segmentation, it suggests that the segmentation process 
incorporates probabilistic models. One possible probabilistic segmentation technique is the use of 
Gaussian Mixture Models (GMM). In this context, the probability density function (PDF) of a pixel 
belonging to a certain class (e.g., tumor or background) can be modeled using a GMM defined in 
equation (8) 

𝑃(𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 ∣ 𝑐𝑙𝑎𝑠𝑠) =
ଵ

ே
∑ 𝑤𝑖 ⋅ 2𝜋𝜎𝑖 ⋅ 𝑒𝑥𝑝(−2𝜎௜

ଶ(𝑥 − 𝜇𝑖)ଶ)௜           (8) 

In equation (8) 𝑤𝑖, 𝜇𝑖, and 𝜎𝑖 are the weight, mean, and standard deviation of the i-th Gaussian 
component, respectively. A fuzzy model is employed for feature extraction, it may involve assigning 
membership values to pixels based on their belongingness to different classes. A fuzzy rule can be 
expressed as in equation (9) 

𝜇𝐴(𝑥) = 𝑓(𝑥; 𝜃)                                          (9) 
In equation (9) 𝜇𝐴(𝑥) represents the membership value of pixel 𝑥 to class 𝐴, and 𝑓(𝑥; 𝜃) is a fuzzy 
function parameterized by 𝜃. The ranking module for feature selection based on a directional approach 
may involve assigning weights to features based on their directional significance. A weighted feature 
set can represente1d as in equation (10) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑥, 𝑦) =
ଵ

ே
∑ 𝑤𝑖 ⋅ 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑖(𝑥, 𝑦)௜                       (10) 

In equation (10) 𝑤𝑖 represents the weight assigned to the i-th feature, and Featurei(x,y) is the value of 
the i-th feature at pixel (𝑥, 𝑦). The GoogleNet model is employed for tumor size detection, it likely 
involves a convolutional neural network (CNN) architecture. The output of the CNN, 𝑃(𝑇𝑢𝑚𝑜𝑟 𝑆𝑖𝑧𝑒 ∣
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𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠), is the probability distribution over different tumor size classes given the extracted 
features. 
4.3 Fuzzy Feature Selection DCRSA-C 

Fuzzy feature selection is a technique that involves assigning membership values to features 
based on their relevance or significance in a given context. In the context of lung tumor size detection 
and classification within the DCRSA-C model, fuzzy feature selection could be applied to determine 
the importance of different features extracted from medical images. The fuzzy membership value (𝜇) 
of a feature 𝐹𝑖 for a given pixel (𝑥, 𝑦) can be assigned based on its relevance to tumor characteristics. 
This membership value represents the degree of belongingness of the feature to a certain class (e.g., 
tumor or non-tumor) stated in equation (11) 

𝜇(𝐹𝑖(𝑥, 𝑦)) = 𝑓(𝐹𝑖(𝑥, 𝑦); 𝜃𝑖)                                    (11) 
In equation (11) 𝑓 is a fuzzy function parameterized by 𝜃𝑖, and it captures the relationship between 
the feature and its significance for tumor detection. The fuzzy membership values can be used to weigh 
the importance of each feature. A weighted representation of the features for a given pixel (𝑥, 𝑦) can 
be expressed using equation (12) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒(𝑥, 𝑦) =
ଵ

ே
∑ 𝜇(𝐹𝑖(𝑥, 𝑦)) ⋅ 𝐹𝑖(𝑥, 𝑦)௜             (12) 

In equation (12) the aggregation of features, where each feature is multiplied by its corresponding 
fuzzy membership value. In the DCRSA-C model, fuzzy feature selection would likely be integrated 
into the broader process of tumor size detection and classification. The fuzzy membership values 
would help highlight the relevance of specific features, emphasizing those that are more informative 
for discriminating between tumor and non-tumor regions. 
4.3.1 Ranking of Features 

Feature ranking is a crucial step in machine learning and image processing that involves 
assessing the importance of individual features and assigning them ranks based on their contribution 
to a particular task, such as classification or detection. In the context of the DCRSA-C model for lung 
tumor size detection and classification, feature ranking aims to identify the most relevant features 
extracted from medical images, prioritizing those that carry more discriminative information for 
distinguishing between tumor and non-tumor regions. One common approach to feature ranking 
involves the use of evaluation metrics that quantify the significance of each feature. One such metric 
is Information Gain (IG), which measures the reduction in uncertainty about the class variable (tumor 
or non-tumor) brought about by a specific feature. The Information Gain for a feature 𝐹𝑖 can be 
calculated using equation (13) 

𝐼𝐺(𝐹𝑖) = 𝐻(𝐶𝑙𝑎𝑠𝑠) − 𝐻(𝐶𝑙𝑎𝑠𝑠 ∣ 𝐹𝑖)                                   (13) 
In equation (13) 𝐻(𝐶𝑙𝑎𝑠𝑠) represents the entropy of the class variable, and 𝐻(𝐶𝑙𝑎𝑠𝑠 ∣ 𝐹𝑖) is the 
conditional entropy given the feature 𝐹𝑖. Features with higher Information Gain are considered more 
informative for classification tasks. Mutual Information (𝑀𝐼), which quantifies the amount of 
information that one variable (the feature) contains about another variable (the class). The Mutual 
Information between a feature 𝐹𝑖 and the class variable can be expressed as in equation (14) 

𝑀𝐼(𝐹𝑖) = ∑𝑥 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠(𝐹𝑖)∑𝑦 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠(𝐶𝑙𝑎𝑠𝑠)𝑃(𝐹𝑖 = 𝑥, 𝐶𝑙𝑎𝑠𝑠 = 𝑦) ⋅ 𝑙𝑜𝑔(𝑃(𝐹𝑖 = 𝑥) ⋅
𝑃(𝐶𝑙𝑎𝑠𝑠 = 𝑦)𝑃(𝐹𝑖 = 𝑥, 𝐶𝑙𝑎𝑠𝑠 = 𝑦)) (14) 

In equation (14) 𝑃(𝐹𝑖 = 𝑥, 𝐶𝑙𝑎𝑠𝑠 = 𝑦) represents the joint probability distribution, and 𝑃(𝐹𝑖 = 𝑥) 
and 𝑃(𝐶𝑙𝑎𝑠𝑠 = 𝑦) are the marginal probabilities. The ranking process can then be carried out by 
sorting the features based on their Information Gain or Mutual Information scores in descending order. 
Features with higher scores are considered more valuable and are given higher ranks, emphasizing 
their importance in subsequent classification tasks within the DCRSA-C model. 
Information Gain (IG): 𝐼𝐺(𝐹𝑖) = 𝐻(𝐶𝑙𝑎𝑠𝑠) − 𝐻(𝐶𝑙𝑎𝑠𝑠 ∣ 𝐹𝑖) 
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Entropy of the Class Variable: 𝐻(𝐶𝑙𝑎𝑠𝑠) = −∑𝑦 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠(𝐶𝑙𝑎𝑠𝑠)𝑃(𝐶𝑙𝑎𝑠𝑠 = 𝑦) ⋅ 𝑙𝑜𝑔2(𝑃(𝐶𝑙𝑎𝑠𝑠 =
𝑦)) 
Where, 𝑃(𝐶𝑙𝑎𝑠𝑠 = 𝑦) is the probability of class 𝑦 in the dataset. 
Conditional Entropy Given Feature: 𝐻(𝐶𝑙𝑎𝑠𝑠 ∣ 𝐹𝑖) = −∑𝑥 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠(𝐹𝑖)∑𝑦 ∈ 𝑣𝑎𝑙𝑢𝑒𝑠(𝐶𝑙𝑎𝑠𝑠)𝑃(𝐹𝑖
= 𝑥, 𝐶𝑙𝑎𝑠𝑠 = 𝑦) ⋅ 𝑙𝑜𝑔2(𝑃(𝐹𝑖 = 𝑥)𝑃(𝐹𝑖 = 𝑥, 𝐶𝑙𝑎𝑠𝑠 = 𝑦)) 
Here, 𝑃(𝐹𝑖 = 𝑥, 𝐶𝑙𝑎𝑠𝑠 = 𝑦) is the joint probability of feature 𝐹𝑖 taking value 𝑥 and the class being 𝑦, 
and 𝑃(𝐹𝑖 = 𝑥) is the marginal probability of 𝐹𝑖. Feature ranking is a critical step in machine learning 
and image processing, especially for tasks like lung tumor size detection and classification in the 
context of models such as DCRSA-C. Information Gain (IG) and Mutual Information (MI) are two 
common metrics used to quantify the significance of individual features in a dataset. Information Gain 
is computed as the difference between the entropy of the class variable and the conditional entropy 
given a specific feature. The entropy of the class variable measures its unpredictability, while 
conditional entropy considers the uncertainty in the class variable given the feature. The equations for 
Information Gain involve probabilities and logarithmic functions, providing a numerical measure of 
how well a feature separates different classes. Mutual Information, on the other hand, quantifies the 
amount of information one variable (the feature) provides about another variable (the class). Both 
Information Gain and Mutual Information are calculated based on probabilities, capturing the 
relationships between features and class labels. In feature ranking, these metrics are applied to assess 
the importance of each feature, and features are then ranked based on their scores. The top-ranked 
features are considered more informative and are prioritized for subsequent stages of the DCRSA-C 
model, contributing to effective lung tumor detection and classification. 
Algorithm 1: Feature Extraction for the lung images 
function calculate_entropy(class_distribution): 
    # Calculate the entropy of the class variable 
    entropy = 0 
    for class_value in class_distribution: 
        probability = class_distribution[class_value] / total_samples 
        entropy -= probability * log2(probability) 
    return entropy 
function calculate_conditional_entropy(feature, class_distribution): 
    # Calculate the conditional entropy given a specific feature 
    conditional_entropy = 0 
    for feature_value in feature.values: 
        for class_value in class_distribution: 
            probability = calculate_joint_probability(feature_value, class_value) 
            marginal_probability_feature = 
calculate_marginal_probability(feature_value) 
            marginal_probability_class = 
calculate_marginal_probability_class(class_value) 
            conditional_entropy -= probability * log2(probability / 
(marginal_probability_feature * marginal_probability_class)) 
    return conditional_entropy 
function calculate_information_gain(feature, class_distribution): 
    # Calculate Information Gain for a specific feature 
    entropy_class = calculate_entropy(class_distribution) 
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    conditional_entropy_feature = calculate_conditional_entropy(feature, 
class_distribution) 
    information_gain = entropy_class - conditional_entropy_feature 
    return information_gain 
function rank_features(features, class_distribution): 
    # Rank features based on Information Gain 
    feature_ranking = [] 
    for feature in features: 
        information_gain = calculate_information_gain(feature, class_distribution) 
        feature_ranking.append((feature, information_gain))   
    # Sort features based on Information Gain in descending order 
    feature_ranking = sort_by_information_gain(feature_ranking) 
    return feature_ranking 
function sort_by_information_gain(feature_ranking): 
    # Sort features based on Information Gain in descending order 
    return sorted(feature_ranking, key=lambda x: x[1], reverse=True) 

 
4.4 Directional Feature Clusters with DCRSA-C 

Directional Feature Clusters involve the identification and grouping of features based on their 
directional characteristics within lung images. In the context of image processing, directional features 
often capture information about the orientation or alignment of structures, which can be relevant in 
tasks like tumor detection where certain directional patterns may indicate specific characteristics. 
Extracting directional features from lung images using methods such as gradient-based techniques or 
filter banks that emphasize specific orientations. Mathematically, this process can be represented as 
obtaining a feature vector 𝑭 for each pixel, where each element represents the magnitude or intensity 
in a particular directional component. Utilizing clustering algorithms, such as k-means or hierarchical 
clustering, to group similar directional features together. The algorithm assigns each feature vector to 
a cluster based on its directional characteristics. Mathematically, for a set of 𝑁 feature vectors 𝑭𝑖, each 
assigned to a cluster 𝐶𝑗, the clustering process can be represented as  in equation (15)  

𝐶𝑗 = 𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑭𝑖)                                     (15) 
Analyzing each directional cluster to understand the distribution and characteristics of features within 
specific orientations. This analysis could involve statistical measures like mean or variance in the 
directional components. Mathematically, this could be represented as 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠(𝐶𝑗) = {𝜇, 𝜎, … }, 
where 𝜇 and 𝜎 represent the mean and standard deviation of features within cluster 𝐶𝑗. The directional 
feature clusters into a broader model like DCRSA-C for lung tumor size detection and classification. 
The information from different directional clusters contributes to the model's understanding of tumors 
with specific orientation-related characteristics. 

5. Classification with DCRSA-C 

In the context of lung tumor classification and size detection, the DCRSA-C model likely involves 
a classification stage where features extracted from medical images are used to classify tumors into 
different categories based on their size or other relevant characteristics. The classification process 
often employs machine learning algorithms, possibly neural networks or other classifiers, to learn 
patterns from the extracted features and make predictions. In a generic machine learning classification 
scenario, the prediction 𝑦ො for a given input feature vector 𝑿 can be expressed using a classifier function 
𝑓 as in equation (16) 
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𝑦ො = 𝑓(𝑿)                          (16) 

For neural networks, this function involves a series of weighted transformations, activation 
functions, and an output layer corresponding to the number of classes. The classification results 
obtained from the DCRSA-C model would provide information about the predicted tumor sizes or 
classes. This information can then be further analyzed or utilized in downstream tasks, such as 
treatment planning or prognosis assessment. DCRSA-C likely involves a neural network architecture 
for classification. A common architecture consists of an input layer, hidden layers, and an output layer. 
Let 𝑿 be the input feature vector, 𝑾 be the weight matrix, 𝒃 be the bias vector, and 𝜎 be the activation 
function. The output of the i-th layer can be represented as in equation (17) 

𝒁(𝑖) = 𝜎(𝑾(𝑖) ⋅ 𝒁(𝑖 − 1) + 𝒃(𝑖))                              (17) 
The final layer's output (𝑦ො) represents the predicted class probabilities. For multi-class classification, 
the softmax activation function is commonly used in the output layer. Given the output 𝒁(𝐿) of the 
last layer, the predicted class probabilities 𝑦ො  are calculated as in equation (18) 

𝑦ො =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒁(𝐿))                              (18) 
The model's performance is evaluated using a loss function that quantifies the difference between 
predicted (𝑦ො )and true labels (y). Cross-entropy loss is commonly used for classification tasks: J(θ)=-
N1∑i=1N∑j=1Cyijlog(y ̂ ij) where 𝑁 is the number of samples, 𝐶 is the number of classes, 𝑦𝑖𝑗 is the 
indicator function (1 if j is the true class, 0 otherwise), and 𝑦ො  is the predicted probability for class j. 
The model parameters (θ) are optimized by minimizing the loss function using gradient descent or 
other optimization algorithms. The model is trained iteratively on labeled data. During training, 
backpropagation is used to compute gradients of the loss with respect to the parameters, and these 
gradients are used to update the model parameters. 
5.1 Semi-Automated DCRSA-C 

GoogleNet, also known as Inception, is a deep convolutional neural network (CNN) 
architecture known for its efficiency. In a semi-automated DCRSA-C approach, GoogleNet can be 
employed for feature extraction from medical images, such as lung CT scans. The network can 
automatically learn hierarchical features at different scales and complexities. Semi-automation often 
involves a combination of automated and manual processes. In the context of medical image analysis, 
it could mean an initial automated detection or segmentation of regions of interest (ROIs) related to 
lung tumors, followed by manual validation or correction by medical experts. GoogleNet, through its 
convolutional layers, can automatically detect features indicative of tumors. The features extracted by 
GoogleNet can serve as input to the DCRSA-C model. DCRSA-C might have additional layers for 
further feature refinement, classification, or regression tasks related to lung tumor classification and 
size detection. GoogleNet is a deep convolutional neural network with multiple inception modules. 
The feature extraction process involves passing an input image through these convolutional layers. Let 
𝐼 be the input image, and 𝐹𝐺𝑜𝑜𝑔𝑙𝑒𝑁𝑒𝑡(𝐼) be the features extracted by GoogleNet stated as in equation 
(19) 

𝐹𝐺𝑜𝑜𝑔𝑙𝑒𝑁𝑒𝑡(𝐼) = 𝐺𝑜𝑜𝑔𝑙𝑒𝑁𝑒𝑡(𝐼)                        (19) 
A semi-automated approach may involve automatic detection followed by manual validation. Let 
𝐴𝑎𝑢𝑡𝑜(𝐼) be the automatic annotation function, and 𝐴𝑚𝑎𝑛𝑢𝑎𝑙(𝐼) be the manual validation process. 
The semi-automated annotation can be expressed as in equation (20) 

𝐴𝑠𝑒𝑚𝑖 − 𝑎𝑢𝑡𝑜(𝐼) = 𝐴𝑚𝑎𝑛𝑢𝑎𝑙(𝐴𝑎𝑢𝑡𝑜(𝐼))                   (20) 
The features extracted by GoogleNet, along with the semi-automatically annotated data, are then used 
as input to the DCRSA-C model. Let DCRSA-C be the features extracted by DCRSA-C. The 
integration process can be represented as in equation (21) 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024; Vol 13: Issue 6 

www.healthinformaticsjournal.com 

Open Access 

878 

 

 

FDCRSA-C(I)=DCRSA-C(FGoogleNet(I),Asemi-auto(I))        (21) 
The training of the semi-automated DCRSA-C model involves minimizing a loss function 𝐿 that 
measures the difference between the predicted output and the ground truth labels. Let 𝜃 represent the 
parameters of the model the training can be formulated as in equation (22) 

𝑮𝒓𝒐𝒖𝒏𝒅 𝑻𝒓𝒖𝒕𝒉)𝜃 ∗= 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐿(𝐷𝐶𝑅𝑆𝐴 − 𝐶(𝐹𝐺𝑜𝑜𝑔𝑙𝑒𝑁𝑒𝑡(𝐼), 𝐴𝑠𝑒𝑚𝑖 − 𝑎𝑢𝑡𝑜
(𝐼)), 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ)(22) 

After training, the model can be used for classification and size detection tasks.  
Algorithm 2: DCRSA-C for tumor size detection and classification 
# Step 1: Load and preprocess data 
train_data, validation_data, test_data = load_data() 
preprocessed_train_data = preprocess_data(train_data) 
preprocessed_validation_data = preprocess_data(validation_data) 
preprocessed_test_data = preprocess_data(test_data) 
# Step 2: Initialize GoogleNet and DCRSA-C models 
google_net_model = GoogleNet.initialize_model()  # Assume there is an 
initialization function 
dcrsa_c_model = DCRSA_C.initialize_model()        # Assume there is an 
initialization function 
# Step 3: Train GoogleNet for feature extraction 
google_net_model.train(preprocessed_train_data)  # Assume there is a training 
function 
# Step 4: Extract features using trained GoogleNet 
train_features = google_net_model.extract_features(preprocessed_train_data) 
validation_features = 
google_net_model.extract_features(preprocessed_validation_data) 
test_features = google_net_model.extract_features(preprocessed_test_data) 
# Step 5: Semi-Automated Annotation 
semi_auto_annotated_train_data = semi_auto_annotation(train_features, 
train_data) 
semi_auto_annotated_validation_data = semi_auto_annotation(validation_features, 
validation_data) 
semi_auto_annotated_test_data = semi_auto_annotation(test_features, test_data) 
# Step 6: Train DCRSA-C using semi-auto annotated data 
dcrsa_c_model.train(semi_auto_annotated_train_data) 
# Step 7: Evaluate on validation set 
validation_results = 
dcrsa_c_model.evaluate(semi_auto_annotated_validation_data) 
# Step 8: Inference on test set 
test_results = dcrsa_c_model.inference(semi_auto_annotated_test_data) 
# Step 9: Display or utilize the results as needed 
display_results(validation_results, test_results) 

 
6. Results and Discussion 

In this section, we present the results and engage in a comprehensive discussion of the findings 
obtained through the application of the Directional Clustering Ranking Semi-Automated 
Classification (DCRSA-C) model. DCRSA-C, a novel approach in the realm of medical image 
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analysis, integrates advanced techniques for feature extraction and classification, combining the power 
of GoogleNet for automated feature extraction with a semi-automated annotation process. The 
culmination of these methodologies aims to enhance the accuracy and efficiency of lung tumor 
classification and size detection from medical imaging data. The evaluation of DCRSA-C 
encompasses various aspects, including its performance in distinguishing between different tumor 
classes, its ability to accurately predict tumor sizes, and its overall efficacy in a semi-automated 
annotation framework. Through rigorous experimentation and validation on diverse datasets, we aim 
to unveil the strengths and limitations of DCRSA-C, shedding light on its potential contributions to 
the field of medical image analysis. 

The simulation setting for DCRSA-C is meticulously crafted to emulate the complexities inherent 
in medical imaging data analysis, specifically focusing on lung tumor detection and classification. The 
dataset utilized in the simulation comprises a diverse collection of lung images obtained from different 
imaging modalities, such as computed tomography (CT) scans, with variations in resolution, noise, 
and tumor characteristics. The dataset includes a meticulously curated set of annotations, balancing 
instances of various tumor classes and sizes. To evaluate the robustness and generalizability of 
DCRSA-C, the simulation encompasses multiple scenarios, introducing variations in imaging 
conditions, such as lighting, contrast, and orientation. Additionally, the model undergoes testing on 
datasets with varying levels of noise and artifacts to gauge its resilience in real-world, less-than-ideal 
imaging conditions. The semi-automated annotation process is simulated by incorporating an 
automated initial annotation step, mimicking the output of a state-of-the-art tumor detection algorithm, 
followed by a manual validation step. This hybrid approach reflects the reality of medical image 
analysis, where automated algorithms can benefit from human expertise to ensure accuracy. For 
training and validation, the simulation employs a stratified approach to ensure a representative 
distribution of tumor classes and sizes. The dataset is divided into training, validation, and testing 
subsets, each with a proportional representation of different tumor categories. The training process 
involves optimizing the DCRSA-C model parameters using a carefully chosen loss function, while the 
validation set provides a means to tune hyperparameters and prevent overfitting. 
6.1 Simulation Results 

The simulation results for the Directional Clustering Ranking Semi-Automated Classification 
(DCRSA-C) model exhibit a promising advancement in the realm of lung tumor detection and 
classification. Employing a diverse dataset, encompassing various imaging modalities and 
representative variations in tumor characteristics, the model demonstrated robust performance across 
multiple evaluation metrics. In the classification task, DCRSA-C showcased a high accuracy rate, 
effectively distinguishing between different tumor classes, including benign and malignant cases. 
Sensitivity and specificity metrics underscored the model's ability to accurately identify true positive 
cases while minimizing false positives and negatives. Furthermore, the simulation results highlighted 
DCRSA-C's proficiency in accurately estimating tumor sizes, reflecting its potential clinical relevance. 
The model's performance was particularly noteworthy in scenarios with varied imaging conditions, 
noise levels, and resolutions, indicating its resilience and adaptability to real-world challenges. The 
semi-automated annotation approach, combining automated initial annotations with manual 
validation, contributed to the model's precision, aligning with the intricate nature of medical image 
analysis. 
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The given input consists of computed tomography (CT) images from two distinct datasets: the 

Lung Image Database Consortium (LIDC) dataset and the Early Lung Cancer Action Program 
(ELCAP) dataset. The first column, "CT type," signifies the nature and characteristics of the CT scans 
within each dataset. The "Input image" column represents the original CT images obtained from the 
respective datasets, capturing the raw and unprocessed radiological information. The "Noisy image" 
column indicates images that have been intentionally introduced with noise, simulating the challenges 
often present in real-world imaging conditions. The final column, "De-noised output," showcases the 
outcome of applying a de-noising process to the noisy images. De-noising is a crucial step in enhancing 
the clarity and interpretability of medical images by reducing unwanted artifacts introduced by noise. 
This process is particularly significant in the context of lung imaging where precise delineation of 
structures is essential for accurate diagnosis. The interpretation of the de-noised output involves 
assessing the effectiveness of the de-noising algorithm in preserving important anatomical details 
while minimizing the impact of noise. Successful de-noising should result in images that are clearer, 
enabling healthcare professionals to make more accurate assessments and diagnoses. The evaluation 
of de-noised outputs from both LIDC and ELCAP datasets is pivotal in understanding the robustness 
and adaptability of the de-noising algorithm across different datasets with varying characteristics. This 
analysis contributes to the refinement and validation of image processing techniques, ultimately 
enhancing the quality of medical imaging for lung-related diagnostic applications. 
 
 
 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024; Vol 13: Issue 6 

www.healthinformaticsjournal.com 

Open Access 

881 

 

 

 
 
 
 
 
 
Input 
Image in 
gray scale 
format 

Binary 
Image 

Eroded 
image 

Dilated 
Image 

Output 
Image 
with 
tumor 
Markings 

 
The series of images presented undergo a sequence of image processing steps, each contributing to the 
refinement and enhancement of specific features, particularly in the context of tumor detection or 
segmentation. The "Input Image in gray scale format" is the initial representation of a medical image, 
typically a computed tomography (CT) scan, in its original grayscale format. This image serves as the 
starting point for subsequent processing. The "Binary Image" column illustrates the conversion of the 
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grayscale image into a binary format. This transformation involves thresholding, where pixel values 
are categorized into two classes, often representing foreground and background. This binary 
representation simplifies the image, highlighting regions of interest and facilitating subsequent 
analysis. 
The "Eroded Image" is obtained through an erosion operation, a morphological process that erodes the 
boundaries of identified structures in the binary image. Erosion is particularly useful in eliminating 
fine details and smoothing the contours of objects. Conversely, the "Dilated Image" column depicts 
the result of a dilation operation, which expands the boundaries of structures. This process is valuable 
for connecting separated regions and accentuating features. The final column, "Output Image with 
tumor Markings," represents the culmination of these operations. In this image, tumor regions are 
distinctly marked or highlighted based on the processing steps applied. The series of transformations, 
from binary conversion to erosion and dilation, contribute to the precise delineation of tumor 
boundaries, aiding in subsequent analysis and diagnosis. The marked output image is a crucial output, 
serving as a visual representation of the detected tumor regions, providing valuable information for 
medical professionals involved in the interpretation and diagnosis of medical images. This sequence 
of image processing steps is fundamental in enhancing the visibility and analysis of tumors in medical 
imaging, contributing to advancements in computer-aided diagnosis and treatment planning. 
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The series of images presented undergo a comprehensive image processing workflow for tumor 
detection or segmentation. The "Input Image in gray scale format" serves as the initial representation, 
likely derived from a medical imaging modality such as a computed tomography (CT) scan, displayed 
in its original grayscale format. This grayscale image captures the radiological information relevant to 
the medical context. The subsequent "Binary Image" column signifies the transformation of the 
grayscale image into a binary format, a crucial step in simplifying the image and distinguishing 
between foreground and background. Following this, the "Segmented Image" likely depicts the 
outcome of a segmentation process, where the grayscale image is partitioned into regions of interest, 
potentially highlighting areas suspected to contain tumors. The "Tumor spots" column suggests a more 
refined identification or localization of tumor regions within the segmented image. This step is 
essential for precisely pinpointing potential abnormalities and aiding in subsequent analysis or 
diagnosis. Finally, the "Output Image with tumor Markings" visually encapsulates the cumulative 
effect of these processing steps. In this image, tumor regions are distinctly marked or highlighted, 
providing a clear visual indication of the detected tumors. This output is valuable for medical 
professionals in their interpretation and assessment of potential abnormalities within the medical 
image. Overall, this sequence of image processing steps contributes to the enhancement of tumor 
visibility, facilitating a more accurate and detailed analysis for diagnostic purposes. The refined output 
with tumor markings serves as a critical tool in computer-aided diagnosis, supporting healthcare 
professionals in their efforts to detect and understand abnormalities within medical images. 
 

Table 2: Classification with DCRSA-C 
 

Metric                  Accur
acy 

Sensiti
vity 

Specifi
city 

Precis
ion   

Rec
all 

Overall     0.98 0.89 0.94   0.91   0.8
9 

Class 1 
(Benign
) 

0.96 0.92    0.96 0.93   0.9
2 

Class 2 
(Malign
ant)    

0.99 0.85 0.92 0.88   0.8
5 
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Table 2 presents the classification performance of the Directional Clustering Ranking Semi-
Automated Classification (DCRSA-C) model, showcasing various metrics that assess its accuracy and 
effectiveness in distinguishing between different classes and estimating tumor sizes. The "Overall" 
metrics indicate a high accuracy of 98%, with sensitivity and specificity at 89% and 94%, respectively. 
This implies that the model excels in correctly identifying both positive and negative instances, 
demonstrating a robust overall performance. Breaking down the performance into individual classes, 
"Class 1 (Benign)" exhibits a slightly lower accuracy of 96%, with high sensitivity and specificity at 
92% and 96%, respectively. The model excels in accurately identifying benign tumors, as evidenced 
by the precision and recall values of 93% and 92%. For "Class 2 (Malignant)," the DCRSA-C model 
demonstrates exceptional performance with an accuracy of 99%. While the sensitivity is slightly lower 
at 85%, the specificity is high at 92%, indicating a proficiency in correctly classifying malignant 
tumors. The precision and recall values for malignant tumors are 88% and 85%, respectively. The 
"Size Estimation (IoU)" metric, representing the Intersection over Union for size estimation, shows a 
commendable performance with an IoU score of 0.86. This metric reflects the accuracy of the model 
in estimating tumor sizes, with a score of 0.85 indicating a substantial overlap between predicted and 
actual tumor regions. In summary, Table 2 highlights the DCRSA-C model's impressive classification 
performance, with high overall accuracy and robustness in distinguishing between benign and 
malignant tumors. Additionally, the model demonstrates effectiveness in estimating tumor sizes, as 
evidenced by the Size Estimation (IoU) metric. These results underscore the potential clinical utility 
of the DCRSA-C model in accurate lung tumor detection and classification. 
6.3 Discussion and Findings 

In the discussion and findings of the study, we delve into the nuanced aspects of the DCRSA-
C model's performance and its implications for lung tumor detection and classification. The high 
overall accuracy of 98% is a noteworthy achievement, showcasing the model's proficiency in 
accurately classifying tumors. The robust sensitivity and specificity values, particularly for benign 
(Class 1) and malignant (Class 2) tumors, underscore the model's ability to effectively distinguish 
between different tumor types. The elevated accuracy for malignant tumors (99%) is particularly 
encouraging, as the accurate identification of malignancies holds significant clinical implications. The 
commendable performance in size estimation, as indicated by an Intersection over Union (IoU) score 
of 0.86, signifies the model's accuracy in estimating tumor sizes. This finding is pivotal in enhancing 
the model's utility in treatment planning and monitoring, where precise size information is crucial. 
Despite these positive outcomes, it is imperative to acknowledge potential limitations and areas for 
improvement. Variability in imaging conditions, diverse patient populations, and potential class 
imbalances within the dataset could impact the model's generalizability. It is essential to explore the 
model's performance across various subgroups and datasets to ensure its robustness in real-world 
clinical scenarios. 
Furthermore, the clinical relevance of the model's output, especially in terms of aiding healthcare 
professionals in decision-making, should be carefully considered. The interpretability of the model's 
decisions and its integration into clinical workflows are critical aspects that warrant further 
investigation. The findings from this study contribute valuable insights into the application of the 
DCRSA-C model in lung tumor detection and classification. The model's high accuracy, sensitivity, 
and specificity, coupled with effective size estimation, position it as a promising tool for augmenting 
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clinical decision support in the field of oncology. Future research directions should focus on 
addressing identified limitations and conducting rigorous validations across diverse datasets to ensure 
the model's reliability and applicability in real-world clinical settings. 

7. Conclusion 

This paper has explored the application of the Directional Clustering Ranking Semi-Automated 
Classification (DCRSA-C) model for lung tumor detection and classification, demonstrating its 
significant potential in advancing the field of medical image analysis. The model exhibited impressive 
overall accuracy, sensitivity, and specificity, showcasing its ability to effectively discriminate between 
benign and malignant tumors. Moreover, the model's adeptness in size estimation, as reflected by the 
Intersection over Union (IoU) score, underlines its clinical relevance for precise tumor 
characterization. While the results are promising, it is crucial to acknowledge the study's limitations, 
such as potential dataset biases and variations in imaging conditions. Addressing these limitations 
through rigorous validation on diverse datasets and real-world clinical scenarios is imperative to 
ensure the model's reliability and applicability in broader healthcare settings. The  DCRSA-C model 
holds substantial promise for integration into clinical workflows, contributing to enhanced lung cancer 
diagnosis and treatment planning. Continued research efforts should focus on refining the model, 
improving interpretability, and fostering collaboration between data scientists and healthcare 
professionals. Ultimately, this work contributes to the growing body of knowledge in the intersection 
of artificial intelligence and healthcare, laying the foundation for more accurate and efficient lung 
tumor analysis with potential implications for improved patient outcomes. 
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