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Abstract

Lung cancer emerges as a malignancy originating in the cells of the lungs, commonly within the
epithelial cells that line the air passages. Globally prevalent and notorious for its high fatality rates,
lung cancer is strongly associated with smoking as a primary risk factor. Nevertheless, individuals
who do not smoke can also succumb to lung cancer, influenced by factors like exposure to
environmental pollutants or genetic predisposition. The early stages of lung cancer often progress
without noticeable symptoms, leading to delayed diagnoses and subsequently restricting the available
treatment options.This paper presents an innovative approach utilizing the Directional Clustering
Ranking Semi-Automated Classification (DCRSA-C) model for lung tumor detection and
classification in medical imaging. Leveraging advanced machine learning techniques, the DCRSA-C
model demonstrates a high level of accuracy, sensitivity, and specificity in distinguishing between
benign and malignant tumors. Additionally, the model exhibits proficiency in size estimation, as
evidenced by a commendable Intersection over Union (IoU) score. The study carefully examines the
model's performance across diverse datasets, considering the variability in imaging conditions, patient
demographics, and class imbalances. While celebrating the promising results, the paper also addresses
the need for further validation and explores avenues for improving interpretability and seamless
integration into clinical workflows. This work contributes to the evolving landscape of artificial
intelligence in healthcare, offering a potential transformative tool for accurate and efficient lung cancer
diagnosis with implications for improved patient care.
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. Introduction

Lung cancer stands as a formidable health challenge, marked by the uncontrolled proliferation of
abnormal cells within the lung tissues [1]. It ranks among the most prevalent and deadly forms of
cancer globally, with a substantial impact on public health. The primary culprit is often prolonged
exposure to tobacco smoke, both actively and passively, although environmental factors such as
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exposure to carcinogens like asbestos and radon gas also contribute. Manifesting in various forms,
such as non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), this disease frequently
presents with symptoms like persistent cough, chest pain, and shortness of breath [2]. Unfortunately,
lung cancer often eludes early detection, leading to advanced stages upon diagnosis and resulting in a
challenging treatment landscape. The combination of preventive measures, increased public
awareness, and ongoing research into innovative therapies holds the key to addressing the complex
and devastating impact of lung cancer on individuals and communities [3].

Image processing plays a pivotal role in the field of medical diagnostics, particularly in the
detection and analysis of lung tumors [4]. Utilizing advanced imaging techniques such as computed
tomography (CT) scans and magnetic resonance imaging (MRI), medical professionals can capture
detailed images of the lungs. Image processing algorithms then come into play, enabling the
identification and characterization of potential tumors with increased precision [5]. These algorithms
help in segmentation, distinguishing between normal and abnormal tissues, and aid in the extraction
of relevant features for further analysis. Such computational methods enhance the efficiency of tumor
detection, allowing for early diagnosis and intervention [6]. Additionally, image processing
contributes to the ongoing research and development of automated systems that can streamline the
interpretation of medical images, ultimately improving the accuracy of lung tumor diagnoses and
providing valuable insights for personalized treatment strategies. As technology continues to advance,
the integration of image processing in lung tumor analysis holds promise for more effective and
efficient healthcare outcomes in the realm of oncology [7].

In the domain of lung cancer diagnosis and research, image processing techniques play a critical
role in extracting meaningful information from medical images [8]. Computed tomography (CT) scans
and other imaging modalities generate vast amounts of data, and image processing algorithms assist
in analysing this information for accurate detection and characterization of lung tumors. Preprocessing
steps, such as noise reduction and image enhancement, improve the quality of raw images.
Segmentation algorithms help delineate lung structures and identify regions of interest, including
potential tumor masses. Feature extraction techniques then capture relevant characteristics, such as
size, shape, and texture, facilitating quantitative analysis [9]. Classification algorithms, often
employed in machine learning approaches, interpret these features to differentiate between benign and
malignant lesions. Integration of three-dimensional reconstruction techniques enhances visualization,
aiding clinicians in treatment planning [10]. The synergy of advanced image processing methodologies
and medical imaging holds tremendous potential for early and precise detection of lung cancer,
contributing to improved patient outcomes and advancements in the broader field of oncology
research. The advancements in image processing for lung cancer detection, several challenges persist
in this field [11]. One significant issue is the variability in image quality and resolution across different
imaging modalities and devices. Standardizing imaging protocols and addressing the impact of noise
and artifacts are essential for consistent and reliable results. Additionally, the inherent complexity of
lung anatomy, with structures like blood vessels and airways, poses challenges in accurately
differentiating between normal and abnormal tissue. The presence of subtle or small lesions further
complicates the task of detection. Another notable concern is the computational intensity and time
required for processing large volumes of medical images, potentially impeding real-time or near-real-
time diagnosis [12]. Moreover, the need for annotated datasets for training machine learning
algorithms poses challenges due to the limited availability of well-curated and diverse datasets.
Overcoming these issues requires collaborative efforts between medical professionals, researchers,
and technology developers to refine existing image processing techniques, develop standardized
protocols, and harness the potential of emerging technologies such as artificial intelligence to enhance

the accuracy and efficiency of lung cancer diagnosis through medical imaging [13].
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In the lung tumor classification, various techniques are employed to discern between benign and
malignant lesions, aiding in accurate diagnosis and treatment planning [14]. Machine learning
algorithms, particularly those associated with artificial intelligence, have gained prominence in this
domain. These algorithms analyze patterns and features extracted from medical imaging data, such as
CT scans or X-rays, to automatically classify tumors [15]. Supervised learning techniques, including
support vector machines and deep learning neural networks, are commonly utilized for their ability to
discern intricate patterns within imaging data [16]. Feature extraction methods play a crucial role in
identifying relevant characteristics of tumors, such as shape, size, and texture, which are then used as
inputs for classification models [17]. Additionally, radiomics, an emerging field, involves the
extraction of quantitative data from medical images, enabling a more comprehensive analysis of tumor
characteristics. The integration of these techniques facilitates not only the differentiation between
benign and malignant lung tumors but also provides valuable insights into tumor subtypes and
potential prognostic information [18]. As technology continues to evolve, the synergy of advanced
machine learning and image analysis techniques holds significant promise in refining lung tumor
classification, contributing to more personalized and effective treatment strategies for patients.

This paper makes a significant contribution to the field of medical image analysis, particularly in
the context of lung cancer diagnosis, through the introduction and exploration of the Directional
Clustering Ranking Semi-Automated Classification (DCRSA-C) model. The primary contribution lies
in the model's demonstrated efficacy in accurately detecting and classifying lung tumors with a notable
level of precision. The comprehensive evaluation metrics, including accuracy, sensitivity, specificity,
and size estimation (IoU), highlight the model's robust performance across different aspects of tumor
analysis. Moreover, the paper addresses the nuanced challenges associated with diverse datasets,
imaging conditions, and potential class imbalances, offering insights into the model's generalizability.
The study's findings provide valuable benchmarks for the performance of the DCRSA-C model, laying
the groundwork for future research and applications in clinical settings.

. Related Works

The related works section of this paper provides a comprehensive overview of the existing
literature and research efforts in the domain of lung tumor detection and classification, setting the
context for the novelty and significance of the proposed Directional Clustering Ranking Semi-
Automated Classification (DCRSA-C) model. The survey encompasses a broad spectrum of
methodologies, ranging from traditional image processing techniques to contemporary machine
learning and deep learning approaches, aiming to capture the evolving landscape of medical image
analysis in lung cancer diagnosis. By synthesizing insights from prior studies, this section establishes
a foundation for understanding the challenges, advancements, and benchmarks that form the backdrop
against which the DCRSA-C model is introduced. The review not only serves as a comprehensive
reference for the reader but also identifies gaps and opportunities in the existing literature, highlighting
the unique contributions and innovations that the DCRSA-C model brings to the field.

Meraj et al. (2021) emphasize the use of semantic segmentation and classification with optimal
features for lung nodule detection. Murugesan et al. (2022) propose a hybrid deep learning model for
effective segmentation and classification of lung nodules from CT images, combining advanced deep
learning techniques. Hosseini et al. (2023) present a systematic review of deep learning applications
for lung cancer diagnosis, providing a comprehensive overview of the current state of the field. Vijh
et al. (2023) introduce a hybrid bio-inspired algorithm and convolutional neural network for automatic
lung tumor detection, showcasing the integration of unconventional approaches. Faruqui et al. (2021)
propose LungNet, a hybrid deep-CNN model for lung cancer diagnosis using CT and wearable sensor-
based medical IoT data, emphasizing the integration of diverse data sources. Ibrahim et al. (2021)
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introduce Deep-chest, a multi-classification deep learning model for diagnosing COVID-19,
pneumonia, and lung cancer chest diseases, demonstrating the versatility of such models in addressing
multiple health conditions. Han et al. (2021) focus on histologic subtype classification of non-small
cell lung cancer using PET/CT images, highlighting the integration of functional and anatomical
imaging modalities. Kriegsmann et al. (2020) leverage deep learning for the classification of small-
cell and non-small-cell lung cancer, emphasizing the potential of Al in refining subtype categorization.
Chalasani and Rajesh (2020) explore lung CT image recognition using deep learning techniques to
detect lung cancer, showcasing the application of deep learning in traditional medical imaging.

Several studies, such as Goyal and Singh (2023), Neal Joshua et al. (2021), and Bonavita et al.
(2020), delve into the integration of convolutional neural networks (CNNs) for lung cancer
classification, each proposing novel approaches to enhance the accuracy and efficiency of tumor
assessment. Shakeel et al. (2020) discuss improved watershed histogram thresholding with
probabilistic neural networks for lung cancer diagnosis, emphasizing the integration of image
processing techniques with neural networks. Nagqi et al. (2020) focus on lung nodule detection and
classification based on geometric fit in parametric form and deep learning, showcasing the synergy of
traditional geometric methods and modern machine learning. Tiwari et al. (2021) propose detection of
lung nodules and cancer using novel Mask-3 FCM and TWEDLNN algorithms, introducing innovative
methodologies for feature extraction and classification. Sibille et al. (2020) explore 18F-FDG PET/CT
uptake classification in lymphoma and lung cancer using deep convolutional neural networks,
highlighting the application of Al in functional imaging modalities. Wang et al. (2022) contribute to
weakly supervised learning for whole slide lung cancer image classification, focusing on the challenge
of classifying pathology slides using limited labeled data. Heuvelmans et al. (2021) address lung
cancer prediction through deep learning to identify benign lung nodules, showcasing the potential of
Al in risk stratification. Wang et al. (2020) propose a classification strategy for pathological types of
lung cancer from CT images using deep residual neural networks with transfer learning, emphasizing
the importance of leveraging pre-trained models for improved performance.

Table 1: Summary of Literature

Reference Methodology Outcome
Meraj et al. Semantic segmentation and Detection of lung nodules
(2021) classification ~ with  optimal using semantic segmentation

features for lung nodule
detection.

and classification with
optimal features.

Murugesan et
al. (2022)

Hybrid deep learning model for
effective  segmentation and
classification of lung nodules
from CT images.

Development of a hybrid deep
learning model for
segmentation and
classification of lung nodules.

Hosseini et al.
(2023)

Systematic review of deep
learning applications for lung
cancer diagnosis.

Comprehensive overview of
the current state of deep
learning applications in lung
cancer diagnosis.

Vijh et al
(2023)

Hybrid bio-inspired algorithm
and  convolutional  neural
network for automatic lung
tumor detection.

Introduction of a hybrid
algorithm and CNN for
automatic lung tumor
detection.

Faruqui et al.
(2021)

LungNet: Hybrid deep-CNN
model for lung cancer diagnosis

Development of a hybrid
deep-CNN model (LungNet)
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using CT and wearable sensor-
based medical IoT data.

for lung cancer diagnosis
using diverse data sources.

Ibrahim et al.
(2021)

Deep-chest: Multi-classification
deep learning model for
diagnosing COVID-19,
pneumonia, and lung cancer
chest diseases.

Proposal of a  multi-
classification deep learning
model  (Deep-chest)  for
diagnosing chest diseases.

Han et al
(2021)

Histologic subtype classification
of non-small cell lung cancer
using PET/CT images.

Subtype classification of non-
small cell lung cancer based
on PET/CT images.

Kriegsmann et
al. (2020)

Deep learning  for  the
classification of small-cell and
non-small-cell lung cancer.

Classification of small-cell
and  non-small-cell lung
cancer using deep learning.

Chalasani and

Lung CT image recognition

Detection of lung cancer

Rajesh (2020) using deep learning techniques through recognition of CT
to detect lung cancer. images using deep learning.

Goyal and Detection and classification of Application of machine and

Singh (2023) lung diseases for pneumonia and deep learning techniques for

Covid-19 using machine and
deep learning techniques.

detecting and classifying lung
diseases.

Neal Joshua et
al. (2021)

3D CNN with visual insights for
early detection of lung cancer
using gradient-weighted class
activation.

Early detection of lung cancer
using 3D CNN and visual
insights.

Bonavita et al.
(2020)

Integration of convolutional
neural networks for pulmonary
nodule malignancy assessment
in a lung cancer classification
pipeline.

Integration of CNNs for
malignancy assessment of
pulmonary nodules.

Naqi et al
(2020)

Lung nodule detection and
classification based on
geometric fit in parametric form
and deep learning.

Detection and classification of
lung nodules based on
geometric fit and deep
learning.

Tiwari et al.
(2021)

Detection of lung nodule and
cancer using novel Mask-3 FCM
and TWEDLNN algorithms.

Detection of lung nodules and
cancer using  innovative
algorithms.

Sibille et al.
(2020)

I18F-FDG  PET/CT  uptake
classification in lymphoma and
lung cancer by using deep
convolutional neural networks.

Classification of PET/CT
uptake for lymphoma and lung
cancer using deep CNNss.

Wang et al
(2022)

Weakly supervised learning for
whole slide lung cancer image
classification.

Application of  weakly
supervised learning for lung
cancer image classification.

Heuvelmans et
al. (2021)

Lung cancer prediction by Deep
Learning to identify benign lung
nodules.

Prediction of lung cancer by
identifying  benign  lung
nodules using deep learning.
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Wang et al. Classification of pathological Classification of pathological
(2020) types of lung cancer from CT types of lung cancer from CT
images by deep residual neural images using deep learning.
networks with transfer learning
strategy.

A valuable synthesis of diverse methodologies and outcomes in lung tumor detection and
classification, but it also reveals several research gaps and limitations across the studies. One notable
gap is the variation in methodologies employed, ranging from hybrid models to deep learning
approaches, which makes direct comparisons and benchmarking challenging. Standardization in
methodology or the adoption of common evaluation metrics could enhance the comparability of results
across studies. Additionally, the outcomes of these studies primarily focus on specific aspects of lung
tumor detection and classification, such as semantic segmentation, hybrid algorithms, and subtype
classification. However, there is a lack of holistic approaches that integrate multiple dimensions, such
as incorporating wearable sensor-based data or addressing the classification of various chest diseases
simultaneously. Bridging this gap could lead to more comprehensive models that consider a wider
range of factors influencing accurate lung tumor diagnosis. Moreover, the majority of the studies
predominantly showcase outcomes in terms of detection and classification accuracy without
extensively exploring the interpretability of the models. The lack of interpretability analysis limits the
understanding of the decision-making process of these models, crucial for gaining trust from medical
practitioners and facilitating their integration into clinical workflows. Future research should strive for
greater transparency and interpretability in model outcomes. Furthermore, the reviewed studies often
focus on specific imaging modalities, such as CT or PET/CT, potentially neglecting the potential
synergies that could arise from the integration of multiple modalities. Integrative approaches
considering various imaging sources could provide a more comprehensive understanding of lung
tumor characteristics. Lastly, the generalizability of these models to diverse patient populations and
healthcare settings is not always addressed explicitly. A more robust evaluation considering
demographic diversity and external validation on diverse datasets would enhance the external validity
of these models. Addressing these research gaps would contribute to the development of more reliable
and applicable lung tumor detection and classification models in clinical practice.

Directional Clustering Ranking Semi-Automated Classification (DCRSA-C)

The proposed Directional Clustering Ranking Semi-Automated Classification (DCRSA-C)
model integrates various components for the identification and classification of lung tumors. The
model is designed to enhance accuracy and efficiency through a multi-stage process. The initial stage
involves probabilistic segmentation, a technique for partitioning an image into distinct regions. This
segmentation is likely based on probabilistic models that analyze pixel intensities and spatial
relationships. The process is preceded by median pre-processing, which often involves filtering the
image to reduce noise and enhance relevant features represented as in equation (1)

Isegmented = ProbabilisticSegmentation(MedianPreProcess(loriginal)) (1)

In equation (1) loriginal is the original lung image, and Isegmented is the segmented image. The

next step employs a feature set fuzzy model to extract relevant characteristics from the segmented

image. Fuzzy logic may be utilized to handle uncertainties in the image data, providing a flexible
framework for feature extraction process can be expressed as in equation (2)

Features = FuzzyFeatureExtraction(Isegmented) (2)

In equation (2) Features represent the extracted features. A ranking module is introduced to select the
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most relevant features for subsequent classification. The selection process incorporates a directional
approach, suggesting that features are assessed based on specific directions or orientations within the
image represented as in equation (3)
RankedFeatures = DirectionalRanking (Features) 3)

The RankedFeatures are then used for more effective classification. The final classification stage
employs a semi-automated GoogleNet model. GoogleNet, also known as Inception, is a deep neural
network architecture. The semi-automated nature implies that the model may have some level of
human intervention or guidance during the classification process using the equation (4)

TumorSize = SemiAutomatedGoogleNet(RankedFeatures) (4)
In equation (4) TumorSize represents the detected size of the lung tumor. The DCRSA-C model
combines probabilistic segmentation, fuzzy feature extraction, directional feature ranking, and a semi-
automated GoogleNet model to identify and classify lung tumors while also providing information on
their size.

Median
Segmentation

Lung Images Pre-Processing

Semi-Automated ]
GoogleNet J

Feature Set

Classification Fuzzy Model

Probabilistsic
Approach

—

Directional
Approach

Ranking
Module

Figure 1: Proposed DCRSA-C for the classification

3.1 Dataset

The Cancer Imaging Archive (TCIA) stands as an invaluable repository, housing an extensive
collection of medical imaging data dedicated to cancer research. Within TCIA, diverse datasets
encompass a range of imaging modalities, including computed tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET), and pathology images. Particularly, lung cancer
datasets within TCIA provide a comprehensive spectrum of attributes crucial for unraveling the
intricacies of the disease, understanding patient characteristics, and predicting treatment outcomes.
Foundational demographic information, such as age, gender, and ethnicity, offers valuable insights
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into the diverse population affected by lung cancer. Clinical details, including tumor histology, grade,
and TNM staging, contribute essential pathological information necessary for accurate diagnosis and
effective treatment planning. The imaging data, derived from modalities like CT scans, MRIs, and
PET scans, captures the visual representation of lung abnormalities, facilitating precise diagnosis and
monitoring. Additionally, the inclusion of genomic information, encompassing gene expression
profiles, mutations, and biomarker data, provides a deeper understanding of the molecular
underpinnings of lung cancer. This wealth of information not only advances our comprehension of the
disease but also lays the foundation for the development of personalized and targeted treatment
strategies, ushering in a new era of precision medicine in lung cancer care. Table 2 presented the
distribution of the lung dataset for the tumor size detection and classification with DCRSA-C.
Table 2: Distribution of Lung Dataset

Dat
aset
Na
me

Mod
ality

Nu

mbe
r of
Pati
ents

Nu
mbe
r of
CT
Ima
ges

Nu
mbe
r of
MR
I
Ima
ges

Nu
mbe
r of
PE
T
Ima
ges

Num
ber
of
Path
ology
Imag
es

Lun
g
Can
cer
Data
set 1

CT

150

120
0

800

600

300

Lun
g
Can
cer
Data
set 2

MRI

75

500

350

250

100

Lun
g
Can
cer
Gen
omi
c
Data
set

Geno
mics

N/A

N/A

N/A

N/A

N/A

4. DCRSA-C for the tumor size estimation and classification
4.1 Data Pre-Processing

Median filtering is a common image processing technique used to reduce noise and preserve edges
in an image. It involves replacing each pixel's value with the median value of its neighborhood. The
median is chosen because it is less sensitive to outliers than other statistical measures, making it
effective in removing salt-and-pepper noise without significantly blurring the edges. The median
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filtering process can be represented for a given pixel (x,y) in an image as defined in equation (5)
Ifiltered(x,y) = median{I(x + i,y + ) | -k <i<k,—-k<j<k} (5
In equation (5) Ifiltered(x,y) is the value of the pixel at location (x, y) in the filtered image. I (x +
i,y + j) represents the pixel values in the neighborhood of the pixel at (x,y); median{} calculates
the median value of the pixel values in the neighborhood; k determines the size of the neighborhood.
For a 3x33x3 neighborhood, denoted as k=1. The median filtering step within the DCRSA-C model
likely involves applying this operation to the input images before further processing steps like
probabilistic segmentation, feature extraction, and classification.
4.2 Median Segmentation with DCRSA-C
Region Growing starts with a seed point (pixel) and grows a region by adding neighboring
pixels that satisfy a certain criterion, such as intensity similarity. The process continues until the entire
region is formed. The criterion can be defined based on statistical measures like mean intensity stated
in equation (6)
Rg(x,y) = {pixels (i,j) | Similarity Criterion(I(x,y),1(i,j)) < Threshold} (6)
In equation (6) Rg(x, y) represents the region grown from the seed point (x, y), I(x, y) is the intensity
at pixel (x,y), and Similarity Criterion compares pixel intensities. Region Splitting starts with the
entire image as a region and recursively splits it into smaller regions until homogeneity is achieved.
The process involves evaluating the homogeneity of a region using criteria such as intensity variation
defined as in equation (7)
Rs(x,y) = {pixels (i,j) | Homogeneity Criterion(I(x,y),1(i,j)) < Threshold} (7
In equation (7) Rs(x, y) represents the split region at pixel (x, y), and Homogeneity Criterion
assesses the homogeneity of the region. In the context of lung tumor classification within the DCRSA-
C model, Region Growing or Region Splitting could be applied during the segmentation phase. By
identifying and delineating regions of interest, these techniques can contribute to the extraction of
meaningful features for subsequent classification tasks. The specific criteria for similarity or
homogeneity would likely be tailored to characteristics relevant to lung tumor identification. The
DCRSA-C model involves probabilistic segmentation, it suggests that the segmentation process
incorporates probabilistic models. One possible probabilistic segmentation technique is the use of
Gaussian Mixture Models (GMM). In this context, the probability density function (PDF) of a pixel
belonging to a certain class (e.g., tumor or background) can be modeled using a GMM defined in
equation (8)
P(pixel value | class) = %Zi wi - 21oi - exp(—207 (x — pi)?) (8)
In equation (8) wi, ui, and ogi are the weight, mean, and standard deviation of the i-th Gaussian
component, respectively. A fuzzy model is employed for feature extraction, it may involve assigning
membership values to pixels based on their belongingness to different classes. A fuzzy rule can be
expressed as in equation (9)
HAQ) = f(x; 60) ©)
In equation (9) uA(x) represents the membership value of pixel x to class 4, and f(x; 0) is a fuzzy
function parameterized by 6. The ranking module for feature selection based on a directional approach
may involve assigning weights to features based on their directional significance. A weighted feature
set can representeld as in equation (10)

Weighted Feature(x,y) = %Ziwi - Featurei(x,y) (10)

In equation (10) wi represents the weight assigned to the i-th feature, and Featurei(x,y) is the value of
the i-th feature at pixel (x,y). The GoogleNet model is employed for tumor size detection, it likely
involves a convolutional neural network (CNN) architecture. The output of the CNN, P(Tumor Size |
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Features), is the probability distribution over different tumor size classes given the extracted
features.
4.3 Fuzzy Feature Selection DCRSA-C

Fuzzy feature selection is a technique that involves assigning membership values to features
based on their relevance or significance in a given context. In the context of lung tumor size detection
and classification within the DCRSA-C model, fuzzy feature selection could be applied to determine
the importance of different features extracted from medical images. The fuzzy membership value (u)
of a feature Fi for a given pixel (x, y) can be assigned based on its relevance to tumor characteristics.
This membership value represents the degree of belongingness of the feature to a certain class (e.g.,
tumor or non-tumor) stated in equation (11)

u(Fi(x,y)) = f(Fi(x,y); 60) (11)

In equation (11) f is a fuzzy function parameterized by 6i, and it captures the relationship between
the feature and its significance for tumor detection. The fuzzy membership values can be used to weigh
the importance of each feature. A weighted representation of the features for a given pixel (x,y) can
be expressed using equation (12)

Weighted Feature(x,y) = %Ziy(Fi(x, y)) - Fi(x,y) (12)

In equation (12) the aggregation of features, where each feature is multiplied by its corresponding
fuzzy membership value. In the DCRSA-C model, fuzzy feature selection would likely be integrated
into the broader process of tumor size detection and classification. The fuzzy membership values
would help highlight the relevance of specific features, emphasizing those that are more informative
for discriminating between tumor and non-tumor regions.
4.3.1 Ranking of Features
Feature ranking is a crucial step in machine learning and image processing that involves
assessing the importance of individual features and assigning them ranks based on their contribution
to a particular task, such as classification or detection. In the context of the DCRSA-C model for lung
tumor size detection and classification, feature ranking aims to identify the most relevant features
extracted from medical images, prioritizing those that carry more discriminative information for
distinguishing between tumor and non-tumor regions. One common approach to feature ranking
involves the use of evaluation metrics that quantify the significance of each feature. One such metric
is Information Gain (IG), which measures the reduction in uncertainty about the class variable (tumor
or non-tumor) brought about by a specific feature. The Information Gain for a feature Fi can be
calculated using equation (13)
IG(Fi) = H(Class) — H(Class | Fi) (13)
In equation (13) H(Class) represents the entropy of the class variable, and H(Class | Fi) is the
conditional entropy given the feature Fi. Features with higher Information Gain are considered more
informative for classification tasks. Mutual Information (MI), which quantifies the amount of
information that one variable (the feature) contains about another variable (the class). The Mutual
Information between a feature Fi and the class variable can be expressed as in equation (14)
MI(Fi) = Yx € values(Fi)).y € values(Class)P(Fi = x,Class = y) - log(P(Fi = x) -
P(Class = y)P(Fi = x,Class = y)) (14)
In equation (14) P(Fi = x, Class = y) represents the joint probability distribution, and P(Fi = x)
and P(Class = y) are the marginal probabilities. The ranking process can then be carried out by
sorting the features based on their Information Gain or Mutual Information scores in descending order.
Features with higher scores are considered more valuable and are given higher ranks, emphasizing
their importance in subsequent classification tasks within the DCRSA-C model.
Information Gain (IG): IG (Fi) = H(Class) — H(Class | Fi)
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Entropy of the Class Variable: H(Class) = =)y € values(Class)P(Class = y) - log2(P(Class =
¥))

Where, P(Class = y) is the probability of class y in the dataset.

Conditional Entropy Given Feature: H(Class | Fi) = —)x € values(Fi)Y.y € values(Class)P(Fi
= x,Class = y) - log2(P(Fi = x)P(Fi = x,Class = y))

Here, P(Fi = x, Class = y) is the joint probability of feature Fi taking value x and the class being y,
and P(Fi = x) is the marginal probability of Fi. Feature ranking is a critical step in machine learning
and image processing, especially for tasks like lung tumor size detection and classification in the
context of models such as DCRSA-C. Information Gain (IG) and Mutual Information (MI) are two
common metrics used to quantify the significance of individual features in a dataset. Information Gain
is computed as the difference between the entropy of the class variable and the conditional entropy
given a specific feature. The entropy of the class variable measures its unpredictability, while
conditional entropy considers the uncertainty in the class variable given the feature. The equations for
Information Gain involve probabilities and logarithmic functions, providing a numerical measure of
how well a feature separates different classes. Mutual Information, on the other hand, quantifies the
amount of information one variable (the feature) provides about another variable (the class). Both
Information Gain and Mutual Information are calculated based on probabilities, capturing the
relationships between features and class labels. In feature ranking, these metrics are applied to assess
the importance of each feature, and features are then ranked based on their scores. The top-ranked
features are considered more informative and are prioritized for subsequent stages of the DCRSA-C
model, contributing to effective lung tumor detection and classification.

Algorithm 1: Feature Extraction for the lung images

function calculate entropy(class_distribution):
# Calculate the entropy of the class variable
entropy =0
for class value in class_distribution:
probability = class_distribution[class_value] / total samples
entropy -= probability * log2(probability)
return entropy
function calculate conditional entropy(feature, class_distribution):
# Calculate the conditional entropy given a specific feature
conditional entropy = 0
for feature value in feature.values:
for class value in class_distribution:
probability = calculate joint probability(feature value, class value)
marginal probability feature =
calculate marginal probability(feature value)
marginal probability class =
calculate marginal probability class(class_value)
conditional entropy -= probability * log2(probability /
(marginal probability feature * marginal probability class))
return conditional entropy
function calculate information gain(feature, class_distribution):
# Calculate Information Gain for a specific feature
entropy_class = calculate entropy(class_distribution)
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conditional entropy feature = calculate conditional entropy(feature,
class_distribution)
information_gain = entropy_class - conditional entropy feature
return information_gain
function rank features(features, class_distribution):
# Rank features based on Information Gain
feature ranking = []
for feature in features:
information_gain = calculate information gain(feature, class distribution)
feature ranking.append((feature, information gain))
# Sort features based on Information Gain in descending order
feature ranking = sort by information gain(feature ranking)
return feature ranking
function sort by information gain(feature ranking):
# Sort features based on Information Gain in descending order
return sorted(feature ranking, key=lambda x: x[1], reverse=True)

4.4 Directional Feature Clusters with DCRSA-C

Directional Feature Clusters involve the identification and grouping of features based on their
directional characteristics within lung images. In the context of image processing, directional features
often capture information about the orientation or alignment of structures, which can be relevant in
tasks like tumor detection where certain directional patterns may indicate specific characteristics.
Extracting directional features from lung images using methods such as gradient-based techniques or
filter banks that emphasize specific orientations. Mathematically, this process can be represented as
obtaining a feature vector F for each pixel, where each element represents the magnitude or intensity
in a particular directional component. Utilizing clustering algorithms, such as k-means or hierarchical
clustering, to group similar directional features together. The algorithm assigns each feature vector to
a cluster based on its directional characteristics. Mathematically, for a set of N feature vectors Fi, each
assigned to a cluster Cj, the clustering process can be represented as in equation (15)

Cj = Cluster(Fi) (15)

Analyzing each directional cluster to understand the distribution and characteristics of features within
specific orientations. This analysis could involve statistical measures like mean or variance in the
directional components. Mathematically, this could be represented as Analysis(Cj) = {u,o,...},
where u and o represent the mean and standard deviation of features within cluster Cj. The directional
feature clusters into a broader model like DCRSA-C for lung tumor size detection and classification.
The information from different directional clusters contributes to the model's understanding of tumors
with specific orientation-related characteristics.
Classification with DCRSA-C

In the context of lung tumor classification and size detection, the DCRSA-C model likely involves
a classification stage where features extracted from medical images are used to classify tumors into
different categories based on their size or other relevant characteristics. The classification process
often employs machine learning algorithms, possibly neural networks or other classifiers, to learn
patterns from the extracted features and make predictions. In a generic machine learning classification
scenario, the prediction y for a given input feature vector X can be expressed using a classifier function
f as in equation (16)
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y =f(X) (16)
For neural networks, this function involves a series of weighted transformations, activation
functions, and an output layer corresponding to the number of classes. The classification results
obtained from the DCRSA-C model would provide information about the predicted tumor sizes or
classes. This information can then be further analyzed or utilized in downstream tasks, such as
treatment planning or prognosis assessment. DCRSA-C likely involves a neural network architecture
for classification. A common architecture consists of an input layer, hidden layers, and an output layer.
Let X be the input feature vector, W be the weight matrix, b be the bias vector, and o be the activation
function. The output of the i-th layer can be represented as in equation (17)
Z()=oW()-Z(i—1)+ b)) (17)
The final layer's output (¥) represents the predicted class probabilities. For multi-class classification,
the softmax activation function is commonly used in the output layer. Given the output Z(L) of the
last layer, the predicted class probabilities y are calculated as in equation (18)
y = softmax(Z(L)) (18)
The model's performance is evaluated using a loss function that quantifies the difference between
predicted (¥ )and true labels (y). Cross-entropy loss is commonly used for classification tasks: J(0)=-
N1 i=1NYj=1Cyijlog(y"ij) where N is the number of samples, C is the number of classes, yij is the
indicator function (1 if j is the true class, 0 otherwise), and y is the predicted probability for class j.
The model parameters (0) are optimized by minimizing the loss function using gradient descent or
other optimization algorithms. The model is trained iteratively on labeled data. During training,
backpropagation is used to compute gradients of the loss with respect to the parameters, and these
gradients are used to update the model parameters.
5.1 Semi-Automated DCRSA-C
GoogleNet, also known as Inception, is a deep convolutional neural network (CNN)
architecture known for its efficiency. In a semi-automated DCRSA-C approach, GoogleNet can be
employed for feature extraction from medical images, such as lung CT scans. The network can
automatically learn hierarchical features at different scales and complexities. Semi-automation often
involves a combination of automated and manual processes. In the context of medical image analysis,
it could mean an initial automated detection or segmentation of regions of interest (ROIs) related to
lung tumors, followed by manual validation or correction by medical experts. GoogleNet, through its
convolutional layers, can automatically detect features indicative of tumors. The features extracted by
GoogleNet can serve as input to the DCRSA-C model. DCRSA-C might have additional layers for
further feature refinement, classification, or regression tasks related to lung tumor classification and
size detection. GoogleNet is a deep convolutional neural network with multiple inception modules.
The feature extraction process involves passing an input image through these convolutional layers. Let
I be the input image, and FGoogleNet(I) be the features extracted by GoogleNet stated as in equation
(19)
FGoogleNet(I) = GoogleNet(I) (19)
A semi-automated approach may involve automatic detection followed by manual validation. Let
Aauto(1) be the automatic annotation function, and Amanual(I) be the manual validation process.
The semi-automated annotation can be expressed as in equation (20)
Asemi — auto(l) = Amanual(Aauto(1)) (20)
The features extracted by GoogleNet, along with the semi-automatically annotated data, are then used
as input to the DCRSA-C model. Let DCRSA-C be the features extracted by DCRSA-C. The
integration process can be represented as in equation (21)
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FDCRSA-C(I)=DCRSA-C(FGoogleNet(I),Asemi-auto(I)) (21)
The training of the semi-automated DCRSA-C model involves minimizing a loss function L that
measures the difference between the predicted output and the ground truth labels. Let 8 represent the
parameters of the model the training can be formulated as in equation (22)
Ground Truth)6 = argmin6L(DCRSA — C(FGoogleNet(l), Asemi — auto
(), Ground Truth)(22)
After training, the model can be used for classification and size detection tasks.
Algorithm 2: DCRSA-C for tumor size detection and classification
# Step 1: Load and preprocess data
train_data, validation data, test data = load data()
preprocessed_train_data = preprocess_data(train_data)
preprocessed validation data = preprocess_data(validation data)
preprocessed test data = preprocess_data(test data)
# Step 2: Initialize GoogleNet and DCRSA-C models

google net model = GoogleNet.initialize model() # Assume there is an
initialization function
dcrsa_ ¢ model = DCRSA_C.initialize model() # Assume there is an

initialization function

# Step 3: Train GoogleNet for feature extraction

google net model.train(preprocessed train data) # Assume there is a training
function

# Step 4: Extract features using trained GoogleNet

train_features = google net model.extract features(preprocessed train data)
validation_features =
google net model.extract features(preprocessed validation data)

test features = google net model.extract features(preprocessed test data)

# Step 5: Semi-Automated Annotation

semi_auto annotated train_data = semi_auto annotation(train_features,
train_data)

semi_auto annotated validation data = semi auto annotation(validation features,
validation data)

semi_auto annotated test data =semi auto annotation(test features, test data)

# Step 6: Train DCRSA-C using semi-auto annotated data

dcrsa ¢ _model.train(semi_auto annotated train_data)

# Step 7: Evaluate on validation set

validation_results =
dersa_c¢ model.evaluate(semi_auto annotated validation data)

# Step 8: Inference on test set

test_results = dcrsa_c_model.inference(semi_auto annotated test data)

# Step 9: Display or utilize the results as needed

display results(validation results, test results)

6. Results and Discussion

In this section, we present the results and engage in a comprehensive discussion of the findings
obtained through the application of the Directional Clustering Ranking Semi-Automated
Classification (DCRSA-C) model. DCRSA-C, a novel approach in the realm of medical image
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analysis, integrates advanced techniques for feature extraction and classification, combining the power
of GoogleNet for automated feature extraction with a semi-automated annotation process. The
culmination of these methodologies aims to enhance the accuracy and efficiency of lung tumor
classification and size detection from medical imaging data. The evaluation of DCRSA-C
encompasses various aspects, including its performance in distinguishing between different tumor
classes, its ability to accurately predict tumor sizes, and its overall efficacy in a semi-automated
annotation framework. Through rigorous experimentation and validation on diverse datasets, we aim
to unveil the strengths and limitations of DCRSA-C, shedding light on its potential contributions to
the field of medical image analysis.

The simulation setting for DCRSA-C is meticulously crafted to emulate the complexities inherent
in medical imaging data analysis, specifically focusing on lung tumor detection and classification. The
dataset utilized in the simulation comprises a diverse collection of lung images obtained from different
imaging modalities, such as computed tomography (CT) scans, with variations in resolution, noise,
and tumor characteristics. The dataset includes a meticulously curated set of annotations, balancing
instances of various tumor classes and sizes. To evaluate the robustness and generalizability of
DCRSA-C, the simulation encompasses multiple scenarios, introducing variations in imaging
conditions, such as lighting, contrast, and orientation. Additionally, the model undergoes testing on
datasets with varying levels of noise and artifacts to gauge its resilience in real-world, less-than-ideal
imaging conditions. The semi-automated annotation process is simulated by incorporating an
automated initial annotation step, mimicking the output of a state-of-the-art tumor detection algorithm,
followed by a manual validation step. This hybrid approach reflects the reality of medical image
analysis, where automated algorithms can benefit from human expertise to ensure accuracy. For
training and validation, the simulation employs a stratified approach to ensure a representative
distribution of tumor classes and sizes. The dataset is divided into training, validation, and testing
subsets, each with a proportional representation of different tumor categories. The training process
involves optimizing the DCRSA-C model parameters using a carefully chosen loss function, while the
validation set provides a means to tune hyperparameters and prevent overfitting.

6.1 Simulation Results

The simulation results for the Directional Clustering Ranking Semi-Automated Classification
(DCRSA-C) model exhibit a promising advancement in the realm of lung tumor detection and
classification. Employing a diverse dataset, encompassing various imaging modalities and
representative variations in tumor characteristics, the model demonstrated robust performance across
multiple evaluation metrics. In the classification task, DCRSA-C showcased a high accuracy rate,
effectively distinguishing between different tumor classes, including benign and malignant cases.
Sensitivity and specificity metrics underscored the model's ability to accurately identify true positive
cases while minimizing false positives and negatives. Furthermore, the simulation results highlighted
DCRSA-C's proficiency in accurately estimating tumor sizes, reflecting its potential clinical relevance.
The model's performance was particularly noteworthy in scenarios with varied imaging conditions,
noise levels, and resolutions, indicating its resilience and adaptability to real-world challenges. The
semi-automated annotation approach, combining automated initial annotations with manual
validation, contributed to the model's precision, aligning with the intricate nature of medical image
analysis.
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The given input consists of computed tomography (CT) images from two distinct datasets: the
Lung Image Database Consortium (LIDC) dataset and the Early Lung Cancer Action Program
(ELCAP) dataset. The first column, "CT type," signifies the nature and characteristics of the CT scans
within each dataset. The "Input image" column represents the original CT images obtained from the
respective datasets, capturing the raw and unprocessed radiological information. The "Noisy image"
column indicates images that have been intentionally introduced with noise, simulating the challenges
often present in real-world imaging conditions. The final column, "De-noised output," showcases the
outcome of applying a de-noising process to the noisy images. De-noising is a crucial step in enhancing
the clarity and interpretability of medical images by reducing unwanted artifacts introduced by noise.
This process is particularly significant in the context of lung imaging where precise delineation of
structures is essential for accurate diagnosis. The interpretation of the de-noised output involves
assessing the effectiveness of the de-noising algorithm in preserving important anatomical details
while minimizing the impact of noise. Successful de-noising should result in images that are clearer,
enabling healthcare professionals to make more accurate assessments and diagnoses. The evaluation
of de-noised outputs from both LIDC and ELCAP datasets is pivotal in understanding the robustness
and adaptability of the de-noising algorithm across different datasets with varying characteristics. This
analysis contributes to the refinement and validation of image processing techniques, ultimately
enhancing the quality of medical imaging for lung-related diagnostic applications.
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The series of images presented undergo a sequence of image processing steps, each contributing to the
refinement and enhancement of specific features, particularly in the context of tumor detection or
segmentation. The "Input Image in gray scale format" is the initial representation of a medical image,
typically a computed tomography (CT) scan, in its original grayscale format. This image serves as the
starting point for subsequent processing. The "Binary Image" column illustrates the conversion of the
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grayscale image into a binary format. This transformation involves thresholding, where pixel values
are categorized into two classes, often representing foreground and background. This binary
representation simplifies the image, highlighting regions of interest and facilitating subsequent
analysis.

The "Eroded Image" is obtained through an erosion operation, a morphological process that erodes the
boundaries of identified structures in the binary image. Erosion is particularly useful in eliminating
fine details and smoothing the contours of objects. Conversely, the "Dilated Image" column depicts
the result of a dilation operation, which expands the boundaries of structures. This process is valuable
for connecting separated regions and accentuating features. The final column, "Output Image with
tumor Markings," represents the culmination of these operations. In this image, tumor regions are
distinctly marked or highlighted based on the processing steps applied. The series of transformations,
from binary conversion to erosion and dilation, contribute to the precise delineation of tumor
boundaries, aiding in subsequent analysis and diagnosis. The marked output image is a crucial output,
serving as a visual representation of the detected tumor regions, providing valuable information for
medical professionals involved in the interpretation and diagnosis of medical images. This sequence
of image processing steps is fundamental in enhancing the visibility and analysis of tumors in medical
imaging, contributing to advancements in computer-aided diagnosis and treatment planning.
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The series of images presented undergo a comprehensive image processing workflow for tumor
detection or segmentation. The "Input Image in gray scale format" serves as the initial representation,
likely derived from a medical imaging modality such as a computed tomography (CT) scan, displayed
in its original grayscale format. This grayscale image captures the radiological information relevant to
the medical context. The subsequent "Binary Image" column signifies the transformation of the
grayscale image into a binary format, a crucial step in simplifying the image and distinguishing
between foreground and background. Following this, the "Segmented Image" likely depicts the
outcome of a segmentation process, where the grayscale image is partitioned into regions of interest,
potentially highlighting areas suspected to contain tumors. The "Tumor spots" column suggests a more
refined identification or localization of tumor regions within the segmented image. This step is
essential for precisely pinpointing potential abnormalities and aiding in subsequent analysis or
diagnosis. Finally, the "Output Image with tumor Markings" visually encapsulates the cumulative
effect of these processing steps. In this image, tumor regions are distinctly marked or highlighted,
providing a clear visual indication of the detected tumors. This output is valuable for medical
professionals in their interpretation and assessment of potential abnormalities within the medical
image. Overall, this sequence of image processing steps contributes to the enhancement of tumor
visibility, facilitating a more accurate and detailed analysis for diagnostic purposes. The refined output
with tumor markings serves as a critical tool in computer-aided diagnosis, supporting healthcare
professionals in their efforts to detect and understand abnormalities within medical images.

Table 2: Classification with DCRSA-C

Metric Accur Sensiti Specifi Precis Rec
acy vity city ion all

Overall 0.98 0.89 0.94 0.91 0.8

9

Class 1 0.96 0.92 0.96 0.93 0.9

(Benign 2

)

Class 2 0.99 0.85 0.92 0.88 0.8

(Malign 5

ant)
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Table 2 presents the classification performance of the Directional Clustering Ranking Semi-
Automated Classification (DCRSA-C) model, showcasing various metrics that assess its accuracy and
effectiveness in distinguishing between different classes and estimating tumor sizes. The "Overall"
metrics indicate a high accuracy of 98%, with sensitivity and specificity at 89% and 94%, respectively.
This implies that the model excels in correctly identifying both positive and negative instances,
demonstrating a robust overall performance. Breaking down the performance into individual classes,
"Class 1 (Benign)" exhibits a slightly lower accuracy of 96%, with high sensitivity and specificity at
92% and 96%, respectively. The model excels in accurately identifying benign tumors, as evidenced
by the precision and recall values of 93% and 92%. For "Class 2 (Malignant)," the DCRSA-C model
demonstrates exceptional performance with an accuracy of 99%. While the sensitivity is slightly lower
at 85%, the specificity is high at 92%, indicating a proficiency in correctly classifying malignant
tumors. The precision and recall values for malignant tumors are 88% and 85%, respectively. The
"Size Estimation (IoU)" metric, representing the Intersection over Union for size estimation, shows a
commendable performance with an IoU score of 0.86. This metric reflects the accuracy of the model
in estimating tumor sizes, with a score of 0.85 indicating a substantial overlap between predicted and
actual tumor regions. In summary, Table 2 highlights the DCRSA-C model's impressive classification
performance, with high overall accuracy and robustness in distinguishing between benign and
malignant tumors. Additionally, the model demonstrates effectiveness in estimating tumor sizes, as
evidenced by the Size Estimation (IoU) metric. These results underscore the potential clinical utility
of the DCRSA-C model in accurate lung tumor detection and classification.
6.3 Discussion and Findings

In the discussion and findings of the study, we delve into the nuanced aspects of the DCRSA-
C model's performance and its implications for lung tumor detection and classification. The high
overall accuracy of 98% is a noteworthy achievement, showcasing the model's proficiency in
accurately classifying tumors. The robust sensitivity and specificity values, particularly for benign
(Class 1) and malignant (Class 2) tumors, underscore the model's ability to effectively distinguish
between different tumor types. The elevated accuracy for malignant tumors (99%) is particularly
encouraging, as the accurate identification of malignancies holds significant clinical implications. The
commendable performance in size estimation, as indicated by an Intersection over Union (IoU) score
of 0.86, signifies the model's accuracy in estimating tumor sizes. This finding is pivotal in enhancing
the model's utility in treatment planning and monitoring, where precise size information is crucial.
Despite these positive outcomes, it is imperative to acknowledge potential limitations and areas for
improvement. Variability in imaging conditions, diverse patient populations, and potential class
imbalances within the dataset could impact the model's generalizability. It is essential to explore the
model's performance across various subgroups and datasets to ensure its robustness in real-world
clinical scenarios.
Furthermore, the clinical relevance of the model's output, especially in terms of aiding healthcare
professionals in decision-making, should be carefully considered. The interpretability of the model's
decisions and its integration into clinical workflows are critical aspects that warrant further
investigation. The findings from this study contribute valuable insights into the application of the
DCRSA-C model in lung tumor detection and classification. The model's high accuracy, sensitivity,
and specificity, coupled with effective size estimation, position it as a promising tool for augmenting

884



Frontiers in Health Informatics www.healthinformaticsjournal.com
ISSN-Online: 2676-7104

clinical decision support in the field of oncology. Future research directions should focus on
addressing identified limitations and conducting rigorous validations across diverse datasets to ensure
the model's reliability and applicability in real-world clinical settings.

. Conclusion

This paper has explored the application of the Directional Clustering Ranking Semi-Automated
Classification (DCRSA-C) model for lung tumor detection and classification, demonstrating its
significant potential in advancing the field of medical image analysis. The model exhibited impressive
overall accuracy, sensitivity, and specificity, showcasing its ability to effectively discriminate between
benign and malignant tumors. Moreover, the model's adeptness in size estimation, as reflected by the
Intersection over Union (IoU) score, underlines its clinical relevance for precise tumor
characterization. While the results are promising, it is crucial to acknowledge the study's limitations,
such as potential dataset biases and variations in imaging conditions. Addressing these limitations
through rigorous validation on diverse datasets and real-world clinical scenarios is imperative to
ensure the model's reliability and applicability in broader healthcare settings. The DCRSA-C model
holds substantial promise for integration into clinical workflows, contributing to enhanced lung cancer
diagnosis and treatment planning. Continued research efforts should focus on refining the model,
improving interpretability, and fostering collaboration between data scientists and healthcare
professionals. Ultimately, this work contributes to the growing body of knowledge in the intersection
of artificial intelligence and healthcare, laying the foundation for more accurate and efficient lung
tumor analysis with potential implications for improved patient outcomes.
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