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Abstract. In this study, we propose a 6-Degrees of Freedom Inertial Measurement Unit (6-DoF IMU)-
based wearable system for recognizing challenging behaviors of students with developmental disabilities. 
In the proposed system, 6-DoF IMU data is preprocessed and used as input to the Deep Neural Network 
(DNN) to recognize challenging behaviors of students with developmental disabilities. Building a dataset 
is one of the biggest challenges in wearable Artificial Intelligence (AI) systems. Since collecting data 
samples is expensive, there is a limit to the amount that can be collected. In this study, we collect datasets 
from participants, build a custom dataset, and augment the data using Conditional Generative Adversarial 
Network (CGAN). We observe the performance change according to the augmentation ratio of the original 
data, and evaluate the scalability of the developed model by applying data from new participants that have 
never been shown during the training process. As a result of applying data augmentation techniques to a 
DNN model that already has high accuracy, a slight decrease in accuracy was observed for the original test 
set. However, when data from new participants is applied, an accuracy improvement of up to 10% was 
observed. 
Keywords: HAR, Challenging Behavior, Wearable System, DNN, AI, Low-power Design 

1. Introduction 
Challenging behavior of students with developmental disabilities refers to behaviors that cause physical harm 
to themselves or others [1]. Challenging behavior is a major obstacle to students with developmental disabilities 
entering society, so recognizing it can be helpful in supporting and intervening their behaviors in the future. In 
this study, we propose a wearable system to identify the types and frequency of challenging behaviors. The 
proposed wearable system consists of a 6-Degrees of Freedom Inertial Measurement Unit (6-DoF IMU) and a 
low-power processor for constant operation, and applies wearable Artificial Intelligence (AI) to achieve Human 
Activity Recognition (HAR). HAR can be divided into vision-based research and sensor-based research. Vision-
based research has the advantage of requiring only a camera, and various frameworks such as OpenPose [2] and 
MediaPipe [3] that can be immediately applied have been developed. On the other hand, HAR using IMU has 
various applications depending on the body part to be analyzed, such as the neck [4], hands [5-7], and waist [8]. 
In addition, it is also applied to various devices such as orthopedic walker [9], smartphones [10], and earbuds 
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[11] that are not body parts. 
 Due to the nature of wearable devices, computing resources are limited, so it is necessary to consider memory 
usage for implementing on-device AI. Since memory requirements should be considered not only by the size 
of the AI model (number of parameters) but also by the size of the code, the DNN technique is adopted. NN-
based algorithms generally tend to increase in performance with the number of parameters. For this reason, the 
point where accuracy is saturated is explored for the optimal DNN architecture.  
Datasets are a major factor in determining the performance of AI [12]. AI model optimization can proceed only 
when a dataset with a large number of samples and well-verified quality is prepared first. AI models developed 
based on public datasets such as MNIST [13] and ImageNet [14] can be objectively evaluated. On the other 
hand, when using biased data such as this application that utilizes unusual behavioral data, the dataset must be 
built by hand. Building a dataset is time-consuming and costly. To overcome the limitations, this study adopts 
data augmentation using CGAN [15]. The performance of the DNN model trained with the collected original 
dataset and the model trained with the augmented dataset are compared to verify the reliability of the results of 
data augmentation. Data augmentation is performed up to 5 times the original dataset. In addition, to verify the 
generalizability of the model trained with the augmented data, evaluation is conducted with data from new 
participants who have never been shown in training processes. 
 

2. Proposed IMU-based Wearable System  
 

 
Fig. 1: Wearable system flow diagram 

 
Figure 1 shows the flow diagram of the IMU-based wearable system. The proposed wearable device is attached 
to the user's wrist and distinguishes the user's self-injurious, aggressive and general behaviors. The wearable 
device consists of a 6-DoF IMU and a 32-bit low-power processor. Since the average length of the behavioral 
data collected in this study is approximately 2 seconds, the accelerometer and gyroscope data measured from 
the IMU are collected at 2-second intervals. The sampling rate of the IMU is 30Hz, and algorithms such as the 
Kalman filter are not applied considering the computational complexity of the Microcontroller Unit (MCU).  
As mentioned in the above chapter, in a computing environment with limited resources, not only the model size 
but also the code size for implementing the model in the MCU should be considered. Therefore, DNN is adopted 
for this application. Since DNN has a fixed-size input node, a process for converting time series data into a 
fixed length is required. For this reason, we applied a segmentation process. Time series data of different lengths 
are converted into samples of the desired fixed length, and a moving average filter is applied in this process to 
minimize information loss. In this process, if the number of samples is insufficient, an interpolation method is 
adopted. Since determining the size of the input layer of the DNN directly affects the size of the AI model, we 
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confirmed through repeated experiments that setting the length per axis of the IMU to 6 maintains sufficient 
accuracy. Since the IMU used in the study is 6-DoF, the number of input nodes of the DNN is determined to be 
36. The final stage of the preprocessing applies maximum and minimum scaling to convert the input distribution 
into a value between 0 and 1. Figure 2 shows each preprocessing process of the 6-DoF IMU. 

 
Fig. 2: Preprocessing flow of 6-DoF IMU data 

 

3. Designing DNN and CGAN for the Proposed System 

3.1. Exploration for Optimal DNN Architecture 
In order to implement AI on microprocessors with code sizes of tens of kB, this study adopts DNN. DNN is a 
neural network with two or more hidden layers, and the number of hidden layers is limited to two considering 
the size of the model. In order to search for a DNN architecture with optimal performance in a limited 
environment, an experiment is conducted to explore the performance according to the number of nodes in the 
hidden layer. The PyTorch framework is used, and the learning rate is 0.0075, and the Rectified Linear Unit 
(ReLU) is applied as the activation function. Table 1 shows the results of the exploration of the DNN 
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architecture. 
 

Table 1: Accuracy exploration results according to DNN model architecture 
DNN 
architec
ture 

36×5×
5×3 

36×10×1
0×3 

36×15×1
5×3 

36×20×2
0×3 

36×25×2
5×3 

36×30×3
0×3 

Accura
cy 
(%) 

95.42 95.83 95.83 96.67 97.08 96.25 

 
Experimental results show that the maximum accuracy is saturated when there are two hidden layers and the 
number of nodes in each layer is 25. The number of parameters in the DNN is calculated as follows (Equation 
1): 
 

# 𝑜𝑓 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =  ∑ (𝑛ଵ × 𝑛௟ାଵ + 𝑛௟ାଵ)௅
௟ୀଵ                                                                    (1) 

 
where 𝑛𝑙 is the number of nodes in the l-th layer, 𝑛𝑙+1 is the number of nodes in the next layer, and L is the total 
number of layers, including the hidden layers and the output layer. 
 

3.2. Designing CGAN for Time Series Data of IMU 
The data augmentation technique applied in this study is the CGAN. Since CGAN has the function of generating 
new data samples based on input conditions, it can generate data that meets specific conditions based on label 
information. Based on the feature of being able to generate data samples of the desired class, it is suitable for 
experiments that augment data at a certain rate. Figure 3 shows the CGAN architecture. The input layer of the 
generator model is determined by the random vector Z and the number of classes, and the output layer is the 
same as the number of input nodes of the DNN. In this study, three classes of self-injurious, attack, and general 
behaviors are defined, and the number of input nodes of the DNN is 36. The size of the random vector Z is 
determined to be 400 through repeated experiments. The generator model consists of a total of five layers, and 
the number of nodes in the remaining layers excluding the input layer and the output layer increases sequentially 
by two times. The discriminator model consists of a total of five layers. The input layer is determined by the 
input node of the DNN and the number of classes, and the output layer consists of one node that determines 
real/fake. The remaining layers excluding the input layer and the output layer are composed in the opposite 
order to the generator architecture. 
 
 

 
Fig. 3: CGAN architecture 
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Figure 4 shows the original data sample after the preprocessing process and the data sample generated using the 
CGAN technique.  

 

 
Fig. 4: Example of original data sample and data sample generated by CGAN 

 

4. Result 

4.1. Experimental Setup 
The wearable device used in the study consists of a 6-DoF IMU and a 32-bit low-power processor based on 
Cortex-M4. The Printed Circuit Board (PCB) is about 3×3cm in size and is attached to the user's wrist (Figure 
5). The current consumption of the entire PCB is about 8mA or less, and it operates for more than 12 hours with 
a 20×30mm sized lithium polymer battery. 
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Fig. 5: (a) Wearable device consisting of 6-DoF IMU and low-power processor, (b) Example of wearing the device 

Figure 6 shows three defined classes. Self-injurious, aggressive, and general behaviors are defined, and in the 
case of general behavior, five behaviors are mixed: ‘walking’, ‘writing’, ‘reading’, ‘standing’, and ‘computer 
work’. The data collected from the IMU with a sampling rate of 30 Hz have an average length of about 2 
seconds. 50 samples per class were collected from four participants, constructing a dataset with a total of 600 
data samples, 3 classes, and 36 features. Of these, 240 samples, corresponding to 40%, were used as the test set, 
and the remaining 360 samples were used as the training set. The experiment consists of two experiments: one 
to evaluate a model trained with the original training set and the other one to evaluate a model trained with the 
augmented training set. The same test set (240 samples) is used in both cases.  
 

 
Fig. 6: Example of defined classes (General behavior, self-injurious behavior and aggressive behavior) 

 

4.2. Accuracy Changes According to Data Augmentation Ratio 
We conducted an experiment to verify whether the data shortage environment can be overcome by applying 
CGAN. In order to observe the change in accuracy according to the number of samples generated through the 
data augmentation technique, a training set was generated up to 5 times the size of the original dataset. As 
mentioned in Chapter 3, the highest accuracy was shown in the DNN with a 36×25×25×3 architecture based on 
the original dataset, so the search range of the DNN architecture is limited to a maximum of 25 nodes in the 
hidden layer. Of the 600 samples in the original dataset, 240, which is 40%, are used as a test set (80 per class, 
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240 in total). All samples generated through CGAN are used only in the training set (120 per class, 360 in total). 
Table 2 shows the performance change according to the augmentation ratio of CGAN. Since all augmented 
training sets contain the original training set, a 1× augmentation has a total of 720 samples. 
 

Table 2:  Accuracy of the model trained on the augmented dataset 
 No. of samples in the training set (Augmentation ratio) 
No. of 
hidden 
nodes 

360 
(Original) 

720 
(1×) 

1,080 
(2×) 

1,440 
(3×) 

1,800 
(4×) 

2,160 
(5×) 

5 95.42 93.33 92.08 95.83 91.67 94.58 
10 95.83 95.42 95.83 96.67 94.17 95.00 
15 95.83 96.67 95.42 95.83 95.42 95.00 
20 96.67 96.67 96.25 95.83 94.58 95.83 
25 97.08 96.25 95.42 95.83 94.58 95.00 

 
As a result of evaluating with the same test set, the accuracy of the model trained with data generated by CGAN 
is rather low overall. In the case of 25 hidden nodes, the accuracy decreases from a minimum of 0.83% to a 
maximum of 2.5% depending on the augmentation ratio. Despite the accuracy decrease, it shows a high 
accuracy of about 95% or more in most cases. 
An experiment was conducted to evaluate the scalability of the model trained with the data set augmented by 
CGAN. An additional experiment was conducted by configuring the test set with data collected from two new 
participants who had not been shown before. 50 samples were collected per class, and the results of the 
experiment with a total of 300 samples are as shown in the Table 3.  
 

Table 3:  Accuracy of the model trained on the augmented dataset (Evaluated using only the data from new 
participants) 

 No. of samples in the training set (Augmentation ratio) 
No. of 
hidden 
nodes 

360 
(Original) 

720 
(1×) 

1,080 
(2×) 

1,440 
(3×) 

1,800 
(4×) 

2,160 
(5×) 

5 78.33 80.00 64.33 82.33 78.33 81.00 
10 83.67 77.33 81.33 83.33 80.67 82.33 
15 71.67 83.00 79.67 81.67 86.00 83.67 
20 78.33 83.67 79.00 83.00 88.33 79.67 
25 79.00 83.00 80.67 85.33 84.00 89.33 

 
Experimental results show that when evaluating data from new participants with a model trained with data 
augmented by CGAN, the accuracy is up to 10% higher than that of a model trained using only the original 
dataset in the section with 25 hidden nodes. The higher the data augmentation ratio and the more complex the 
model, the greater scalability. 
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Fig. 7: Accuracy of the model trained on the original dataset and augmented dataset 

 
Figure 7 shows the performance change when training with the original dataset and the augmented dataset (5 
times). When there are 25 hidden nodes, when the participants' data is reflected in the training process (blue 
and yellow lines), the accuracy of the model applying the original dataset is about 2.5% higher. On the other 
hand, when evaluating with only the data of new participants (red and purple lines), the data of the model 
applying the augmented dataset is 10.33% higher. 
Conclusion 
In this study, a small-sized DNN was applied to perform HAR on a wearable device. A very small-sized custom 
dataset with 200 samples per class was augmented with the CGAN technique to increase the training set by up 
to 5 times. As a result, when the training set was augmented by 5 times in a DNN with two hidden layers with 
25 nodes each, the accuracy decreased by 2.08% compared to the case where the original dataset was used. On 
the other hand, for a new participant who had never been seen in the training set, an accuracy increase of 10.33% 
was confirmed. When the participant's data was reflected in the training process, the accuracy of the model 
trained with the augmented dataset decreased from 97.08% to 95.00%, but it still showed high accuracy. On the 
other hand, when evaluating only the data of a completely new participant, an accuracy increase of 10.33% was 
confirmed, confirming that the data augmentation using CGAN has high scalability. This allows for a bit more 
flexibility in dealing with overfitting issues that can occur when using very small datasets. 
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