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Abstract: In this paper, we propose the machine learning model which apply Zero-Shot Learning (ZSL) with 
CNNs to predict river water DO and salt without tagged data or additional environmental factors. CNNs 
determine important water quality and meteorological factors. ZSL adaptability forecasts new situations. The 
proposed model can project accurately without direct training data by modelling these features in a semantic 
space with domain expertise and variable linkages. CNN analyses raw input data to find complicated patterns 
and connections to understand water quality changes. In the proposed model, temperature, pH, and flow rate 
affect DO and salinity. This model forecasts unexpected events using semantic linkages. This proposed model 
improves real-time predictions and environmental adaptation. Use semantic linkages to estimate dissolved 
oxygen (DO) and salinity effects in severe weather or locations with poor monitoring systems with the ZSL-
CNN model. This aids fast, accurate forecasts. Adaptability makes the model powerful for water quality 
management, where quick and precise decision-making is essential to handle environmental challenges and 
preserve aquatic ecosystems. Zero-shot learning (ZSL) and convolutional neural networks allow the model to 
adapt to new input and forecast without retraining. This proposed model enables environmental monitoring 
systems adapt to new data and conditions. Proposed CNN model improve performance from RMSE 0.5 to 
RMSE 0.4 and R² 0.7, while GRU models improve performance to RMSE = 0.35 and R² = 0.8. The CNN-GRU 
model can lower RMSE to 0.3 and boost R² to 0.85. These results show the model's sequence learning and 
feature extraction. This proposed model leverages CNNs' feature extraction and Zero-Shot Learning's 
flexibility. Water resource management and environmental protection improve. 
Keywords: Zero-Shot Learning, Convolutional Neural Network (CNN), Dissolved Oxygen Prediction Salinity 
Prediction, Environmental Monitoring, Feature Embedding 
1. Introduction 
DO is the amount of oxygen gas dissolved in water. Dissolved oxygen, measured in mg/L or saturation %, is 
an important water quality indicator. The saturation percentage compares oxygen to water's maximal capacity 
at a given temperature [1]. Invertebrates, fish, and aerobic microorganisms need dissolved oxygen (DO) to 
breathe. For survival and growth, aquatic species need dissolved oxygen (DO) levels of at least 5 mg/L. In 
aquatic animals, sufficient dissolved oxygen (DO) levels enable metabolism and development. High dissolved 
oxygen (DO) levels indicate a healthy ecosystem that can support many species. Low dissolved oxygen (DO) 
levels may indicate pollution or eutrophication. Dissolved oxygen (DO) levels can indicate organic pollution. 
Organic matter consumes oxygen during decomposition, so a low DO level may indicate high organic matter 
concentrations. Aquatic plants and algae photosynthesise oxygen, raising DO levels during daytime. This 
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process is essential for aquatic oxygen balance. Respiration consumes oxygen, but atmospheric oxygen 
generation and diffusion must balance it. Dissolved oxygen (DO) oxidises ammonia to nitrate. The aerobic 
decomposition of organic matter requires sufficient dissolved oxygen (DO) levels to prevent waste buildup and 
preserve water quality [2-5]. Dissolved oxygen (DO) levels affect fisheries and aquaculture productivity. 
Insufficient oxygen can kill fish, lowering economic productivity. Transparent, visually pleasing water with 
high dissolved oxygen (DO) levels encourages recreation and tourism. Lower water temps dissolve oxygen 
better. Water loses oxygen as temperature rises. Due to turbulence and mixing, flowing water like rivers and 
streams has higher dissolved oxygen (DO) levels. Photosynthesising plants and algae can significantly affect 
dissolved oxygen (DO) levels. High amounts of organic waste can lower dissolved oxygen (DO) levels because 
bacteria consume oxygen during decomposition. As microorganisms breakdown certain pollutants, especially 
those with a lot of organic content, dissolved oxygen (DO) levels drop. Chemical titration methods like the 
Winkler method or electronic DO metres and sensors can quantify dissolved oxygen (DO). Water quality must 
be monitored often, especially in ecosystems that are vulnerable to human influence or support important 
species [6]. 
Problem Formulation 
Salinity measures water salt concentration. It is usually measured in parts per thousand (ppt or ‰), practical 
salinity units (PSU), or milligrammes per litre (mg/L). From less than 0.5 ppt in fresh water to over 35 ppt in 
ocean, salinity levels vary widely. Salinity limits the organisms that can live in water. Freshwater, brackish, and 
marine species thrive at different salinities. Maintaining natural salt levels is crucial to biodiversity. Salt levels 
can stress or kill sensitive organisms and disrupt ecosystems. Salinity indicates contamination from agricultural 
runoff, industrial discharge, and urbanisation. Fertilisers, road salts, and effluents often cause high salinity. 
Salinity helps explain the water cycle, which includes evaporation, precipitation, and estuary mixing of 
freshwater and seawater. High salt levels in drinking water can cause health problems and make it unfit for 
consumption. Desalination may be needed to ensure potable water [7-10]. Salinity affects soil health and 
agricultural yield. High irrigation water salinity can promote soil salinization, which reduces agricultural 
productivity and harms crops. Several industrial operations require exact water salinity. High salinity can cause 
scaling, corrosion, and industrial system inefficiency. Water salinity affects power plant and industrial cooling 
system performance and maintenance. Salinity affects fisheries and aquaculture efficiency and well-being. 
Aquaculture organisms often need specific salinity for growth and reproduction. Salinity influences water 
clarity and quality, which impacts swimming, boating, and fishing. The soil and bedrock around a river or other 
aquatic system can affect its salinity. Salts precipitate during evaporation, raising water salinity. This is crucial 
in arid and semi-dry conditions [11]. 
Precipitation and runoff lower water salinity. However, low precipitation may raise salinity. Seawater and 
freshwater combine in estuarine ecosystems, causing salinity fluctuations. Tides and river flow affect mixing. 
Fertilisers, industrial wastes, and road salts can increase water salinity. Conductivity metres measure water's 
electrical conductivity, or chloride concentration is measured chemically. In human-affected or climate-changed 
places, salt levels must be monitored regularly to manage water resources [12-15]. 
Research contributions 
Three key scientific advances result from integrating Zero-Shot Learning (ZSL) with CNNs to predict river 
water DO and salinity: 

 Predicts DO and salinity under unexpected conditions using semantic links between water quality 
measurements and ambient elements, enhancing model generalisation beyond training data. 
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 Uses attribute correlations to produce accurate predictions in data-sparse environments like remote or 
under-monitored areas, solving a common environmental monitoring problem. 

 In dynamic and uncertain contexts, strong prediction models that adapt to changing environmental 
circumstances and extreme events increase water quality forecast dependability. 

 Integrates domain knowledge into the model by extracting latent features from input data and translating 
them to a semantic space where attribute correlations affect predictions using CNNs. 

 Complex environmental prediction models for transdisciplinary study and application including 
computer vision (CNNs), environmental science, and domain-specific knowledge (ZSL). 

 Integrates new semantic space input without retraining to keep the model current and accurate. 

 Estimates water quality fast and accurately to improve water resource management, environmental, and 
public health decisions. 

 CNNs verify ZSL for ecological and environmental prediction in real-world environmental monitoring. 
The rest of this work is organized as follows: Section 2 describes the details of the existing works; in Section 3, 
the proposed methods are utilized to predict water quality; the results are represented in Section 4; and finally, 
the conclusions are summarized. 
2. Related Work 
Imen et al. (2018) evaluate technical approaches in a literature review and then design a model-based decision 
support system (DSS). The DSS's main goal is to help water treatment plant managers estimate source water's 
impact. This DSS uses model-based, remote sensing, and quick learning. It is user-friendly and easy to use. The 
DSS displays source water quality variations across time and space. The device can analyse water quality at 
water intake points and predict future water quality trends one day in advance. This helps compare completed 
water quality to treatment goals. A Las Vegas water treatment facility case study analysed the model-based 
Decision Support System (DSS). 
According to MacIel et al. (2020), the Soil Moisture Accounting Procedure (SMAP) hydrological model should 
be integrated with Conv3D-LSTM Deep Learning. The recommended method optimises SMAP to determine 
hydrographic basin parameters. The Conv3D-LSTM estimator uses this optimised model's output to produce 
the final results. The grey estimator method is fast and accurate. A approach to estimate the natural flow of two 
major Brazilian hydropower facilities seven days in advance is being tested. Disconnected methods perform 
poorly relative to the architecture. 
According to Dong & Yang (2020), a data-driven model may efficiently schedule water diversion and drainage 
pumping stations despite complex hydrometeorological limits. MPC architecture uses the long short-term 
memory (LSTM) network to start the solution. The unit commitment (UC) optimisation problem is solved using 
Particle Swarm Optimisation (PSO) to establish the best water pumping unit operational schedules, including 
starting time and working hours. A field case study of the urban river diversion system confirms the optimal 
water pumping schedule solution's effectiveness and economic performance. The numerical findings show its 
advantage over the benchmark technique. 
Pattanayak et al. (2020) explores Machine Learning (ML) models to find one that can accurately recognise non-
linear correlations and correlate input and output parameters for COD soft sensor design. The IoT architecture 
forecasts Chemical Oxygen Demand (COD) in real time using the selected models. The proposed IoT 
architecture was tested using over 16,000 Ganga water quality data samples from ten metrics. To verify COD 
measurement accuracy in real time, the authors' institute evaluated the recommended KNN model with the IoT 
setup at the Sewage Treatment Plant (STP) output. 
The dissolved oxygen (DO) concentration of Kinta River in Malaysia was modelled using four artificial 
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intelligence models: LSTM, ELM, HW, and GRNN (Abba et al., 2020). Training these models used water 
quality (WQ) parameters. The first case used four ensemble techniques. Two linear ensembles, SAE and WAE, 
and two nonlinear ensembles, BPNN-E and HWensemble, exist. In the second scenario, a hybrid random forest 
(RF) ensemble improved model prediction accuracy. A separate pre-analysis test determined WQ parameter 
stability. The mean absolute error (MAE) of BPNN-E (with a weighted index of 0.9764) was over 2% lower 
than the other three ensemble models. All hybrid models were accurate, but the HW-RF (CC = 0.981) ensemble 
performed best. The results showed that HW-M3, ET, and hybrid RF ensemble improve DO concentration 
forecasting in the Kinta River, Malaysia. 
Khan et al. (2020) used multi-temporal Sentinel-2 data to categorise glacier covers using supervised machine 
learning. The categorization used textural, topographic, and spectral data. The study analysed the three most 
popular supervised machine learning methods: SVM, ANN, and RF. The approach was used to Passu watershed 
data from Pakistan's Hunza Basin along the river. Three main types were considered: glaciers, debris-covered 
glaciers, and non-glaciated areas. Training (70%) and testing (30%) datasets were used. Finally, each classifier's 
results were compared to the reference data to determine geographical precision. The trials showed that the 
classifiers regularly produced correct results that matched glacier cover class visuals. Kappa and f-measure-
wise, the random forest approach outperformed the ANN and SVM algorithms in all experiments. The random 
forest has a Kappa of 0.95 and f-measure of 95.06% for all three classes. The ANN had a Kappa of 0.92 and an 
f-measure of 92.05%, whereas the SVM had 0.89 and 91.86%. Our method's high classification accuracy in 
differentiating debris-covered glaciers will help determine water supplies for hazard and water resource 
management. 
Gu et al. (2020) developed a new model for evaluating river turbidity using free hyperspectral remote sensing 
data from Google Earth Engine (GEE). Their model uses random forest ensemble. The newly recommended 
whole combination subspace is initially used to exploit all spectral information and their finely adjusted spectral 
information. All possible basic random forests are created using this method. We also provide a dynamic 
threshold-based pruning method that selectively removes underperforming base random forests in a cyclical 
manner to reduce mistakes. Regularised linear regression is used to weighted average the pruned random forests. 
This completes river turbidity measuring. Experimental findings show that our model outperforms the most 
advanced competitors and their simplified variants. 
Addressing insufficient distant sensing for urban river water quality monitoring. In B's study. Chen et al. (2021) 
model study area water quality parameters using GA_XGBoost. This method uses UAV photos and water 
quality data. The GA_XGBoost algorithm has R2 values of 0.855, 0.699, 0.787, 0.694, and 0.597. This indicates 
good accuracy, and anticipated results match measured data. To verify the model's appropriateness, data from 
different time periods were added. Using the inversion data, analyse point source pollution, non-point source 
pollution, and other factors to determine urban river pollution causes. The proposed method advances intelligent 
and automated water environment monitoring technologies for ecological and urban water resource protection. 
Water Quality Index prediction models were created by Aslam et al. (2022) using water samples from wells in 
North Pakistan. This study used four distinct algorithms: RT, RF, M5P, and REPT. 10 random input 
permutations were constructed using Pearson correlation coefficients to find the best dataset mix for algorithm 
prediction. Hybrid algorithms improved many independent algorithms' prediction power for variables with 
extremely weak correlations. The Hybrid RT-Artificial Neural Network (RT-ANN) outperformed all other 
methods with RMSE of 2.319, MAE of 2.248, NSE of 0.945, and PBIAS of -0.64. 
Chopade et al. (2022) describe a sensor-based deep neural network river water quality evaluation system. The 
technique first classifies laboratory samples by analysing the water quality index (WQI). Essential tools like the 
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Water Quality Index (WQI) standardise extensive water data into a single numerical number. The technique 
also exceeds 90% accuracy with 20% noisy labels. The word "The" is clear. 
Adli Zakaria et al. (2023) used MLP-NN, LSTM, and XGBoost to create Muda River water level prediction 
models in Malaysia. A limited amount of 2016–2018 daily water level and weather data was used to build the 
models. To evaluate model performance, multiple input conditions were used. In the evaluation, the MLP model 
predicted water levels better than the LSTM and XGBoost models. MLP outperformed LSTM and XGBoost 
with an accuracy score of 0.871, 0.865, and 0.831, respectively. No improvement has been shown from adding 
meteorological data to models. With its powerful parallel processing and distributed computing design, 
XGBoost is the fastest of the three algorithms despite having the lowest advertised performance. In 7-day 
forecasting, the LSTM model outperformed the MLP and XGBoost models. This shows that the LSTM model 
captures long-term associations better. Thus, every machine learning model has pros and cons, and their 
usefulness depends on the scenario because they significantly rely on the quantity and quality of training data. 
Chen et al. (2023) propose a multi-data source remote sensing method for water quality. Their strategy addresses 
scale inconsistency in data sources and aims to efficiently and large-scale invert urban river water quality. By 
using few samples, the authors achieve this. Self-optimizing machine learning monitoring is developed to solve 
complex nonlinear interactions between ground point data and distant sensing data in water quality inversion. 
This method automatically finds the appropriate model parameters using a few samples, decreasing training 
time. The feature improvement method was used to create input data to improve the link between water quality 
measures and remote sensing data. Spatial mapping was used to handle the issue of variable volumes and 
qualities of multi-source data, maintaining water quality information homogeneity despite their nonlinear 
features. According to the experiments, the R2 values for chlorophyll a (Chla), turbidity (TUB), and ammonia 
nitrogen (NH3-N) in UAV pictures were 0.917, 0.877, and 0.846. The satellite image shows R2 values of 0.827, 
0.679, and 0.779 for Chla, TUB, and NH3-N. This system offers a fresh method to future air-space-ground 
surveillance of urban inland waterways. 
Li et al. (2024) propose a machine learning technique to expedite parameter optimisation with limited data and 
improve parameter search efficiency. The machine learning parallel system (MLPS) improves integrated 
process-based model performance and efficiency. It does this by assuring thorough, accurate, and reliable 
models. MLPS optimises integrated process-based models, making extremely accurate complex environmental 
management models easy to deploy. For optimising complex models in numerous fields, the MLPS architecture 
provides useful information. 
Kedam et al. (2024) used historical data from five significant river sites, including the East and central 
highlands, to estimate streamflow. The 1978–2020 dataset is screened and normalised using StandardScaler. A 
comprehensive technique was utilised to train models on 70% of previous data, validate on 15%, and test against 
future targets on 15%. Machine learning algorithms like CatBoost, LGBM, Random Forest, and XGBoost are 
used to make accurate projections. MSE, MAE, RMSE, RMSPE, NRMSE, and R-squared are used to evaluate 
these models' performance. Random Forest is the most durable streamflow prediction model, proving its 
hydrological forecasting expertise. This research improves Narmada River basin streamflow forecasting by 
revealing the efficacy of multiple machine learning algorithms. 
Various machine learning models are used to assess water quality in India's rapidly urbanising and 
industrialising Bagh River Basin (Kushwaha et al., 2024). The Relief algorithm identified the key water quality 
input factors which were used to compare developed artificial neural network (ANN) models and their hybrid 
counterparts. Combining support vector machine (SVM) and artificial neural network (ANN) improves 
performance, resulting in excellent statistical metrics: NSE of 0.879, R-squared (R2) of 0.904, MAE of 22.349, 



 
 
 
Frontiers in Health Informatics  

ISSN-Online: 2676-7104  

www.healthinformaticsjournal.com 

2024; Vol 13: Issue 4   Open Access 
 

1553 
 

and MBE of 12.548. This work can be utilised as a paradigm to improve ANN model prediction in 
environmental and ecological applications, encouraging sustainable development and safeguarding natural 
resources. 
Xue et al. (2024) propose using random forest (RF), a robust machine learning technique, to estimate and map 
total nitrogen (TN) and phosphorus (TP) in the Wen-Rui Tang River (WRTR) watershed. This east coastal 
Chinese watershed is recognised for its urban-rural transitional characteristics. The framework estimates and 
maps with high spatial resolution using geo-datasets. A complete Geographic Information System (GIS) 
database of 26 environmental variables was established in-house to develop predictive models for total nitrogen 
(TN) and total phosphorus (TP) in open streams over the watershed. RF regression models were compared to 
in-situ measurements. The results showed that RF regression models can accurately predict river N and P 
concentrations. This work mapped TN and TP concentrations across the river with a daily, 1 km x 1 km spatial 
resolution, yielding useful insights. 
Research Gaps 
The application of CNNs to predict river water dissolved oxygen (DO) and salinity shows potential, however 
important research gaps remain: 

 Current CNN models may not adequately depict the intricate, non-linear linkages and temporal 
dynamics of environmental factors affecting DO and salinity, necessitating more advanced modelling. 

 Existing models may prioritise spatial data above temporal and historical data. CNNs with LSTM or 
other recurrent neural networks could improve temporal modelling. 

 Lack of labelled training data, especially in extreme environments, might cause overfitting and model 
instability. Handling unbalanced datasets and increasing training data may help. 

 CNN models may struggle to generalise across climates and environments due to water quality 
parameter heterogeneity. Domain adaption and transfer learning research may improve model 
generalisation. 

 Remote sensing, in-situ, and meteorological data integration is problematic. Multimodal data fusion 
may increase model performance. 

 CNN projections are sometimes called "black-box" and confusing. Better CNN model transparency and 
explainability are needed to generate trust in its predictions, especially for environmental management. 

 Computationally expensive CNN model training and deployment affect large-scale and real-time 
applications. Scalability issues can be addressed by algorithm and hardware acceleration research. 

 Real-world water quality datasets may include gaps. CNN missing data methods must improve for 
accurate predictions. 

 Lack of CNN model water quality prediction benchmarks and validation studies. Benchmarks and 
comprehensive validation across datasets are needed to compare model performance. 

 Policymaking and operational water management are hard to apply research models to. Model 
predictions must be researched to be implemented in water management systems. 

3. Dataset 
The 5 river water quality indicators from 8 state water monitoring stations are in this dataset. The model should 
predict the eighth station's value using data from the first seven. The dataset numbers stations upstream by 
proximity to the target station, starting with the closest. The data is monthly mean. Station observations range 
from 4 to 20 years. The training and test data are chosen to guarantee that stations with long and short series 
data have nearly equal non-NA values. The test data does not have a goal column since a prediction competition 
is planned. This dataset's river water quality indicators: Milligrammes of dissolved oxygen (O2) per cubic 
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decimeter have been used to measure it. milligrammes per cubic decimeter (mg/cub. dm) of ammonium ions 
(NH4). In milligrammes per cubic decimeter, nitrite ions (NO2) are measured. milligrammes per cubic 
decimeter (mg/cub. dm) of nitrate ions (NO3). BOD5, or biochemical oxygen demand, is the quantity of oxygen 
bacteria need to break down organic matter in water over five days. BOD5 is measured in mgO/dm³. Ukraine's 
minimal O2 level is 4 mgO2/cub. dm. Id is a monthly averaged data set's unique identifier. The target variable 
shows monthly averaged O2 data for the target station in mgO2/cub. dm. Monthly averaged data for stations 1-
7 upstream from the target station is 1-6. 
 

 
Figure 1 Salinity statistics for 30 days 
Figure 1 illustrates salinity variations over time. This knowledge is needed to train and validate models that 
forecast dissolved oxygen and salinity. These models use zero-shot learning and sophisticated neural networks. 
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Figure 2 Feature Importance 
The combined model uses a CNN to extract spatial characteristics from sensor input and Zero-Shot Learning to 
add external information shown in figure 2. The embedding space bridges features and knowledge 
representations, helping the mapping function resolve data conflicts. A similarity metric helps the prediction 
module make accurate predictions from sensor data and contextual knowledge. 
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Figure 3 Dissolved oxygen over dates 
Figure 3 helps in visualizing how well the CNN model predictions align with the actual dissolved oxygen levels 
over time. 

 
Figure 4 Dissolved oxygen over years 
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Figure 4 shows river water dissolved oxygen levels over time and compares real and anticipated values over 
multiple years to evaluate the CNN model. This graph shows how well the model predicts key water quality 
metrics. 

 
Figure 5 Salinity (ppt) over dates 
Figure 5 shows how well the CNN model predicts river water salinity. Examining the congruence between 
observed and projected values, understanding recurring patterns, and examining forecasting discrepancies can 
help individuals assess the model's precision and dependability and make necessary changes to improve its 
predictive accuracy. 

 
Figure 6 Dissolved oxygen vs Salinity (ppt) 
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Figure 6 illuminates the relationship between these two crucial environmental elements. Interpreting the 
correlation patterns and measuring the CNN model's predicted accuracy is needed to understand this picture. 
The figure helps environmental scientists and politicians evaluate the model's efficiency and manage river water 
quality. 
4. Proposed Methodology 
To protect aquatic ecosystems and govern water supplies, river water dissolved oxygen (DO) and salinity must 
be accurately projected [16-19]. Water quality depends on several traits, which affect the ecology and human 
activity. Due to their complex and ever-changing structure, riverine habitats are challenging to predict for 
dissolved oxygen (DO) and salinity. Forecasting dissolved oxygen (DO) and salinity is difficult due to the lack 
of high-quality data. Datasets with several temporal and spatial dimensions are needed for accurate forecasts 
[20]. Monitoring stations are scarce on many rivers, resulting in data gaps. Due to space constraints, dissolved 
oxygen (DO) and salinity fluctuations cannot be fully captured. Understanding daily and annual patterns 
requires regular monitoring. Time intervals caused by equipment failures or maintenance issues may disrupt 
data consistency and model correctness [21-25]. Due to differences in measuring methods and calibration 
standards, data can be biassed. Data accuracy and homogeneity are crucial for model training and validation. 
Rivers are complex, dynamic systems with many causes, making dissolved oxygen (DO) and salinity 
predictions difficult. River discharge changes due to precipitation, snowmelt, and upstream water use affect DO 
and salinity levels. High water volumes reduce saltiness but increase cloudiness, affecting dissolved oxygen. 
Water temperature affects DO solubility and biological activity. Seasonal and diurnal temperature swings 
complicate prediction models, therefore thermal dynamics must be considered. Aquatic plants, algae, and 
microbial populations affect DO levels through photosynthesis and respiration. Predictions are complicated by 
regional and temporal biological activity. Industrial discharges, agricultural runoff, and urban expansion can 
significantly change dissolved oxygen (DO) and salinity levels, polluting. Land use changes affect river 
hydrology and chemical inputs, complicating forecasting. Modelling dissolved oxygen (DO) and salinity levels 
is difficult due to technological and methodological challenges. Environmental variables that affect dissolved 
oxygen (DO) and salinity often interact non-linearly and mutually. Advanced modelling and computing 
resources are needed to accurately reflect these complex linkages. Selecting and calibrating statistical or 
machine learning models is crucial. Every model has pros and cons, and improper calibration can lead to 
inaccurate predictions. Keeping models from overfitting to training data and generalising to new data is a 
constant challenge. Regularisation and validation must be done carefully. Integrating data from in-situ 
measurements, remote sensing, and historical records to improve model reliability and precision is complicated. 
Data integration involves resolving spatial and temporal discrepancies and guaranteeing data compatibility. 
Technological advances offer additional surveillance and simulation opportunities, yet there are also 
restrictions. DO and salinity sensors can drift, foul, and be affected by external factors. Maintaining sensor 
functionality over time is difficult. Remote sensing provides important data on a large scale, but it often lacks 
the detail and precision needed for reliable forecasts. Cloud cover, water turbidity, and sensor calibration might 
affect data quality. Advanced modelling approaches, especially machine learning and deep learning, require 
plenty of computer power. Many academics and practitioners struggle without high-performance computer 
resources [26-30]. 
Forecasting river water dissolved oxygen and salinity is difficult due to data availability, environmental 
variations, modelling complexity, and technology limitations. These issues require a comprehensive plan that 
incorporates improved monitoring networks, modelling methods, and data integration technologies. Research 
and technology progress are essential for developing more accurate and reliable prediction models, which 
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improve water quality management and aquatic ecosystem preservation. River water quality must be monitored 
and preserved for ecological and public health. Salinity and dissolved oxygen (DO) are important water quality 
indicators. Aquatic species need dissolved oxygen to survive, but salinity determines its use in drinking, 
irrigation, and industry. These variables can be accurately projected to prevent environmental damage and 
ensure water quality. Because they can handle complex, non-linear data correlations, neural networks, 
especially deep learning models, are effective prediction tools. Water contains dissolved oxygen, which fish 
and other aquatic creatures need to survive. Low dissolved oxygen (DO) levels can cause hypoxia, which 
threatens aquatic creatures and disrupts ecosystems. DO levels depend on water temperature, flow rate, organic 
matter, and microbial activity [31-39]]. 
Salinity measures salts in water, which affects its quality and usability [40]. High salinity levels can harm 
freshwater species and reduce drinking and agricultural water quality. Evaporation, precipitation, water 
movement, and industrial and agricultural runoff affect salinity. Convolutional and Recurrent Neural Networks 
(RNNs) have shown success in time-series data prediction [411. These networks can effectively estimate 
dissolved oxygen (DO) and salinity by incorporating complicated environmental data connections and time-
based trends. CNNs, originally designed for image processing, can identify and evaluate spatial and local data 
patterns. CNNs can assess environmental data by incorporating temporal and spatial variables like seasonal 
fluctuations and regional water quality measurements [42]. 
CNN-GRU Model: Combining CNNs with RNNs to increase prediction accuracy. 
Combining CNNs and GRUs takes advantage of both architectures. Local spatial information like water quality 
trends and patterns can be extracted from input data via CNN layers. GRU layers capture temporal dependencies 
throughout time. This integrated technique can explain DO and salinity variations. 
Model Architecture: 
1. Data Input:  
Past observations of dissolved oxygen (DO), salinity, water temperature, pH, flow rate, and meteorological data 
feed the model. 
2. CNN Layers:  
First, 1D convolutional layers examine input data to extract relevant features. 
3. Layers of Pooling:  
Pooling layers reduce data dimensions, keeping vital properties while reducing computing work. 
4. GRU Layers:  
The features are then fed into GRU layers to simulate temporal relationships and parameter evolution. 
5. Output layer:  
A dense layer estimates DO and salinity. 
To run the CNN-GRU model, you need a valid dataset with past water quality metrics. Data is preprocessed to 
remove missing values, standardise the scale, and create training and validation sets. The model is trained with 
MSE and optimised using Adam optimizer. Regularisation methods like dropout and early pausing reduce 
overfitting. 
Algorithm: Integrating Zero-Shot Learning with CNN for DO and Salinity Prediction 
Step 1. Collect a dataset D = {(xi, yi)}) containing river water samples xi with corresponding DO and salinity 

measurements yi. 
1.1 Normalize the sensor readings in xi to a common scale (e.g., min-max scaling). 
1.2 Split the data into training set Dt, validation set Dv, and test set Dt'. 
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Step 2. Create a CNN model to extract features from water sample data xi. Common architectures include 
ResNet. 

2.1 The CNN model output a feature vector Fi for each water sample xi. 
Step 3. Convert textual data k into word embeddings w(k). The author use image recognition methods to extract 

features ftextimg(k) from images and  
3.1 Develop a graph G with nodes for environmental factors and edges for relationships, then use graph 

embedding techniques to get a node embedding matrix Ek. 
Step 4. Create an embedding space E as a high-dimensional matrix where CNN features Fi and external 

knowledge representations coexist. 
4.1 Design a mapping function f to transform external knowledge representation K into the embedding 

space: 
Fk = f(w(k)) = Wf*w(k) + bf 
Fk = f(f(textimg(k) 
Fk = Ek[i, :] where i is the node index in G for DO/salinity. 
Wf and bf are trainable parameters. 

Step 5. Use training set Dt to train the CNN model with backpropagation. 
5.1 Minimize the combined loss function: 

L=LDO(DOpredicted, yi[0]) + LSalinity(Salinitytpredicted, yi[1]) 
5.2 Map external knowledge representations K into the embedding space of CNN features and Define a 

similarity loss function  Lsim to measure the closeness between Fk and Fi : 
Lsim = |Fk - Fi|2 

5.3 Use an optimizer like Adam to update weights and biases in both the CNN model and mapping function 
to minimize the combined loss L + Lsim. 

Step 6. Given a new water sample xnew, extract features Fnew using the trained CNN model CNNmodelnew. 
6.1 Apply the mapping function f to convert external knowledge representation K into the embedding 

space: 
Fk = f(K)  

6.2 Use a similarity metric (e.g., cosine similarity or Euclidean distance) to find the nearest neighbor Fnn in 
the embedding space to Fnew. 

6.3 Predict DO and salinity values based on the nearest neighbor features Fnn. 
This algorithm outlines the steps required to develop, train, and deploy a CNN-GRU model for predicting 
dissolved oxygen and salinity in river water, integrating both data-driven and zero-shot learning approaches for 
robust performance shown in figure 7. 
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Figure 7: Flow chart 
Integrating CNNs and GRUs can accurately predict river water dissolved oxygen and salinity. Environmental 
data has complex, non-linear relationships and time-based interdependencies that these models can accurately 
reflect. Advanced neural network topologies and dependable data can provide accurate forecasts for proactive 
water quality management and environmental sustainability. Data collection, model development, and 
interdisciplinary collaboration will improve prediction model capabilities and uses. 
By following these steps, you can build and train a neural network to predict dissolved oxygen and salinity in 
river water. This approach leverages the power of neural networks to model complex relationships in 
environmental data. 
5. Results and Analysis 
Experiment setup 
CNN-GRU model training requires powerful hardware due to its computational demands. Data preparation 
requires a powerful server or workstation with a multi-core CPU like Intel Xeon or AMD Ryzen. For faster 
deep learning model training, a powerful GPU like NVIDIA’s Tesla, Quadro, or GeForce RTX series is needed. 
The GPU needs at least 8 GB of memory and preferably 16 GB to perform large datasets and complex 
computations. Data loading and processing are faster with 32 GB or more system RAM and NVMe SSDs. Linux 



 
 
 
Frontiers in Health Informatics  

ISSN-Online: 2676-7104  

www.healthinformaticsjournal.com 

2024; Vol 13: Issue 4   Open Access 
 

1562 
 

(Ubuntu or CentOS) is stable and compatible with deep learning frameworks, thus the software stack must have 
it. Python (3.6 or above) and TensorFlow or PyTorch for neural network model construction and training are 
required. Data handling and preparation require NumPy and pandas. Scikit-learn is useful for machine learning 
tasks and model evaluation using numerous criteria. Visualisation tools like Matplotlib and Seaborn can also 
help analyse model performance. To maximise GPU use, install CUDA and cuDNN that are compatible with 
the GPU and deep learning framework. IDEs like Jupyter Notebook and PyCharm help organise code and debug 
interactively, improving productivity. 

 
Figure 8 Correlation Heatmap for Water quality parameters 
In figure 8, each heatmap cell shows the correlation coefficient between two parameters, color-coded to 
represent strength and direction. Darker tones may strengthen associations while lighter ones weaken them. 
Understanding these links helps manage water quality by identifying key sources of change. Consider nitrates 
and phosphates. They may be substantially associated with turbidity and DO, suggesting that regulating fertiliser 
runoff is crucial to water quality. Identifying indicators with strong correlations can also improve monitoring 
tactics. This is because monitoring one metric may disclose others. 
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Figure 9: Prediction for Training Data 
Understanding the CNN-GRU model's training data prediction outcomes for river water dissolved oxygen (DO) 
and salinity requires addressing several essential elements in figure 9. Prioritise model performance indicators 
like MSE, RMSE, and MAE on the training dataset. These measurements quantify how well the model predicts 
dissolved oxygen (DO) and salinity. The model has learned the essential patterns and relationships in the 
training dataset if it performs well on the training data with low MSE, RMSE, and MAE values. To make 
reliable predictions, the CNN must accurately extract features and the GRU must capture temporal dependencies 
shown in figure 10-11. 

 
Figure 10: Prediction for Validation Data 



 
 
 
Frontiers in Health Informatics  

ISSN-Online: 2676-7104  

www.healthinformaticsjournal.com 

2024; Vol 13: Issue 4   Open Access 
 

1564 
 

 
Figure 11: Model loss at Training and testing phase 
According to accuracy scores, numerous models, notably the CNN-GRU model, can predict river water 
dissolved oxygen (DO) and salinity. These ratings show their ability to capture complex data linkages and 
temporal patterns. Model evaluation often involves MSE, RMSE, MAE, and R² score. 
Standard benchmarks include linear regression and rudimentary neural networks with fully connected layers 
without temporal components. These models can be accurate, but they struggle to capture non-linear interactions 
and temporal dependencies. Baseline models may have high MSE and low R² values, indicating limited 
prediction accuracy shown in figure 12. 

 
Figure12: Accuracy Score achieved by various models 
Convolutional Neural Networks (CNNs) excel at spatial feature extraction but cannot manage temporal 
connections. CNNs are good at collecting spatial correlations in sensor data, but they struggle to forecast time 
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series data. However, they only offer small increases in measurements like RMSE and R-squared. 
 
GRU networks are designed to capture temporal trends, making them ideal for time series data prediction. GRU 
models excel in capturing sequential associations in data, resulting in lower MSE and higher R² scores compared 
to baseline and CNN models shown in Figure 13. 

 
Figure 13: Confusion matrix 
CNN and GRU models use their strengths to extract spatial and temporal patterns, respectively. The hybrid 
model is usually the most accurate. A well-trained CNN-GRU model can significantly reduce MSE and RMSE 
while improving R² score. This indicates good data alignment and predictive power. 
 
Model R^2 Scores:  
------------------------ 
LinearRegression :: 55.38% 
Ridge            :: 55.32% 
Lasso            :: 19.53% 
ElasticNet       :: 30.96% 
  
Binary Classification  
-------------------------------- 
LogisticRegression        : 84.09% 
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DecisionTreeClassifier    : 86.36% 
RandomForestClassifier    : 75.00% 
GradientBoostingClassifier: 86.36% 
 
Because it handles spatial and temporal data, the CNN-GRU model often performs better in accuracy ratings. 
Proposed convolutional neural network (CNN) models can improve initial models with RMSE of 0.5 and R² of 
0.7 to RMSE of 0.4 and R² of 0.75. GRU models can enhance performance with an RMSE of 0.35 and R² of 
0.8. Proposed CNN-GRU model can achieve RMSE as low as 0.3 and R² as high as 0.85. These results show 
the model's feature extraction and sequence learning abilities. 
Discussion 
Zero-Shot Learning (ZSL) using Convolutional Neural Networks (CNNs) can greatly improve the accuracy of 
predicting dissolved oxygen (DO) and salinity in river water, particularly in situations where there is a lack of 
labelled data or when new environmental variables arise. The core concept underlying Zero-Shot Learning 
(ZSL) is to utilise semantic knowledge, such as environmental characteristics or interconnections among water 
quality factors, to provide forecasts regarding unobserved circumstances. This methodology enables models to 
extrapolate from familiar data (observed classes) to unfamiliar situations (unobserved classes) without explicit 
guidance. For example, a model that has been trained using data from certain river conditions can use shared 
features or domain knowledge contained in the semantic space to predict dissolved oxygen (DO) and salinity 
levels in new, previously unseen conditions. 
Practically, the implementation of Zero-Shot Learning (ZSL) for forecasting Dissolved Oxygen (DO) and 
salinity requires the utilisation of a Convolutional Neural Network (CNN) as a tool to extract features from the 
input data. This input data might consist of different water quality measurements, meteorological data, and other 
pertinent variables. The CNN produces a latent representation of this data, encapsulating fundamental patterns 
and connections. Subsequently, these characteristics are assigned to a semantic domain where established 
properties or connections are delineated, such as the impact of temperature, pH, or flow rate on dissolved oxygen 
(DO) and salinity levels. This mapping allows the model to generate informed predictions about unfamiliar 
situations by comparing the expected characteristics with the established semantic links obtained from the 
training data. 
ZSL excels in this setting because to its capacity to integrate and leverage domain expertise, rendering it highly 
flexible in response to evolving environmental circumstances. For instance, in situations of severe weather 
conditions or in areas where there is little monitoring data, conventional models may have difficulties because 
of the absence of sufficient training data that accurately represents the situation. Nevertheless, a zero-shot 
learning (ZSL) model can employ the semantic correlations it has acquired to deduce the probable effect on 
dissolved oxygen (DO) and salinity levels. This technique not only enhances the accuracy of predictions under 
unfamiliar settings but also improves the resilience and dependability of the model, which are essential for 
successful management and decision-making about water quality. Furthermore, the combination of zero-shot 
learning (ZSL) with convolutional neural networks (CNNs) enables the process of ongoing learning and 
adjustment. As additional data becomes accessible, it can be included into the semantic space without requiring 
considerable retraining, enabling the model to dynamically update its predictions. This attribute is especially 
advantageous for environmental monitoring systems, as they might experience quick changes in conditions, and 
accurate predictions are crucial. By integrating the robust feature extraction capabilities of Convolutional Neural 
Networks (CNNs) with the adaptable and flexible nature of Zero-Shot Learning (ZSL), we can create advanced 
models that offer precise and dependable forecasts of Dissolved Oxygen (DO) and salinity levels in river water. 
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Ultimately, this will enhance water resource management and environmental conservation efforts. 
6. Conclusion and Future work 
Zero-Shot Learning (ZSL) and Convolutional Neural Networks (CNNs) can predict river water dissolved 
oxygen and salinity. This strategy works well when specific conditions lack tagged data. A Convolutional 
Neural Network (CNN) may extract relevant characteristics from data using semantic qualities or domain-
specific embeddings connected with environmental variables like water temperature, pH levels, and historical 
data trends. These traits are then connected with the semantic domain using a well-trained model. The model 
estimates dissolved oxygen and salinity in new, unexpected conditions using attribute associations during 
prediction. This strategy improves the model's ability to adapt to new scenarios and reduces the requirement for 
tagged data, making environmental monitoring systems more dependable and adaptive. Zero-Shot Learning 
using CNNs uses semantic characteristics to bridge the gap between minimal data and accurate predictions. 
This innovation allows advanced environmental research and resource management methods. Zero-Shot 
Learning (ZSL) utilising CNNs to predict river water DO and salinity. This is crucial as environmental 
monitoring increasingly relies on powerful machine learning. Predictive models for dissolved oxygen (DO) and 
salinity have traditionally used huge datasets with comprehensive labels and a wide range of conditions and 
locales. Due to the variety of environmental factors that affect water quality, obtaining such thorough data is 
often impossible. ZSL uses semantic features or contextual signals to forecast new and unexpected scenarios 
without considerable data collection. Zero-shot learning (ZSL) and convolutional neural networks (CNNs) for 
water quality prediction could revolutionise environmental monitoring. Through this integration, models may 
easily adapt to new locales and varied climates with minimal training data. By understanding environmental 
trends, a Zero Shot Learning (ZSL) model trained on a limited dataset from certain rivers may predict Dissolved 
Oxygen (DO) levels and salinity in unmonitored rivers. This technology could considerably improve real-time 
water quality monitoring and control. It can detect ecological changes and assure water safety early on. 
As Zero-Shot Learning (ZSL) improves, predictive models could use satellite imagery and sensor networks. By 
combining geographical and temporal data with zero-shot learning (ZSL), models can improve prediction 
precision and resilience. ZSL's ability to predict water quality in unexpected situations makes it an essential tool 
for addressing climate change and human-induced impacts on aquatic ecosystems. Zero-Shot Learning (ZSL) 
and Convolutional Neural Networks (CNNs) to forecast Dissolved Oxygen (DO) and salinity are a promising 
way for environmental monitoring systems to improve scalability, adaptability, and efficiency. 
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