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ABSTRACT 
Repeated seizures brought on by irregular electrical activity in the brain characterize epilepsy, a long-term neurological 
condition. In order to improve outcomes and avoid cognitive decline, early detection is essential. Electroencephalography 
(EEG) is a key diagnostic tool, but manual interpretation is prone to delays and variability, prompting the need for 
automated methods using Artificial Intelligence (AI). While Machine Learning (ML) relies on handcrafted features, 
leading to limitations in complex scenarios, Deep Learning (DL) methods improve performance by extracting features 
directly from raw data. DL methods often require large training datasets for effective model learning. In the case of 
epileptic EEG samples, collecting a substantial number of labeled signals is impractical. So, the detection can rely on a 
few-shot learning scenario, where there are limited labeled samples available. However, directly using raw data in such 
cases risks local optima, overfitting, and reduced test accuracy. To solve these issues, Empirical mode decomposition 
with Power Spectral density and One-dimensional Convolutional Neural Network with ResNet (EMD-PSD-CNN1D-
5Res) model was introduced for epilepsy detection. However, it suffered from poor generalization issue. This research 
introduces a Phase-aware Symmetric-Percussive Source Separation (PSPSS) technique as an alternative to the DFT in 
the EMD-PSD method. PSPSS effectively isolates the harmonic components of EEG signals by eliminating percussive 
signals, which are treated as noise, thereby enhancing the quality and interpretability of the EEG harmonics. In the 
classification module, an improved CNN1D-5Res (ICNN1D-5Res) model is introduced where a channel attention block 
is integrated with the existing CNN1D-5Res model to enhance the accuracy of epilepsy seizure detection. To further 
improve the accuracy, a novel optimization approach called Adaptive Gradient Descent with Exponential Growth 
(AGDEG) is used for training the ICNN1D-5Res model. This algorithm offers stable and fast convergence while working 
with EEG data. The ICNN1D-5Res model is proven to be a strong and effective method for detecting epileptic seizures, 
as shown by comparative analysis utilizing the CHB-MIT, Bonn EEG, and TUEP datasets. The model achieves an 
accuracy of 94.51%, 94.62%, and 93.79%, respectively, outperforming existing methods. 
Keywords: Epilepsy detection, Harmon Separation, Deep Learning, Electroencephalography, Adaptive Gradient 
Descent 
1. INTRODUCTION 
In epilepsy, aberrant electrical activity in the brain causes seizures, which are a chronic neurological condition. Seizures 
can take many forms, such as convulsions, unconsciousness, or minor alterations in behavior. [1]. Early and accurate 
detection of epilepsy is crucial, as delayed diagnosis can lead to progressive worsening of the condition, cognitive 
decline, and reduced quality of life [2]. Electroencephalography (EEG) is widely utilized for the diagnosis and 
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monitoring of epilepsy due to its ability to non-invasively record electrical brain activity. EEG signals contain critical 
information about normal brain function and abnormalities indicative of epileptic seizures, making them a key diagnostic 
tool for clinicians [3]. 
However, traditional EEG analysis often relies on manual interpretation by medical professionals, which can introduce 
subjectivity, variability, and potential delays in detecting epileptic activity. Additionally, the transient and unpredictable 
nature of seizures poses a challenge for timely detection. To address these limitations, advancements in automated seizure 
detection methods have gained significant attention. These methods leverage Artificial intelligence (AI) algorithms to 
enhance the accuracy and consistency of epilepsy diagnosis [4]. 
Seizure prediction has been greatly impacted by machine learning. It has provided tools to handle the complicated EEG 
signals and can quickly identify hidden pre-ictal features. Feature extraction, classification, and pre-processing are the 
typical processes in a machine learning-based seizure detection technique [5]. When it comes to EEG signal 
classification, feature extraction is crucial since it influences the final classification performance by reducing the data 
dimensionality. With its computational advantages, DL has recently found uses in clinical processing, where they 
outperform more conventional ML methods [6]. Consequently, DL has aimed to use a multi-layer neural network to 
automatically extract latent characteristics from large datasets, and it has become a research hotspot in ML disciplines 
[7]. The DL architecture improves feature classification capabilities by converting features into a relative low-
dimensional space that can learn features from data on its own [8]. 
In order to automate the process of seizure identification using scalp EEG, Vidyaratne et al. [9] presented a new design 
for deep recurrent neural networks (DRNNs). Seizure identification using high-resolution and multi-channel EEG data 
was tackled by Turner et al. [10] using DBNs. A multi-view deep learning approach is suggested by Yuan et al. [11] to 
detect seizures in multi-channel epileptic EEG recordings by capturing brain abnormalities. 
The combination of EEG signals and DL algorithms has been shown in promising studies, although automatic epilepsy 
detection still faces obstacles. In order to train and support the network model, deep learning methods often require a 
huge amount of training examples. When the sample size is small, its performance will be affected to some extent. For 
epileptic EEG samples, building a large number of tagged samples means that a large number of EEG signals of epileptic 
patients need to be collected, which is often impractical. 
Pan et al. [12] devised a dual-DL based Empirical Mode Decomposition (EMD) approach to detect epilepsy in 
electroencephalogram (EEG) signals, especially in few-shot situations, in response to these difficulties. The process 
begins by decomposing EEG signals using EMD, followed by splicing the components, which are then input into CNNs. 
The EMD-PSD method further processes each component by applying the discrete Fourier transform (DFT), computing 
the Power Spectral Density (PSD), and feeding the spliced PSD sequences into CNNs for detection. 
However, DFT has limitations, including its inability to distinguish between harmonic and percussive components of 
intrinsic mode functions (IMFs), which can lead to misdetection of seizures due to ignored phase dynamics. Additionally, 
DFT requires fixed-length EEG signal segments, which increases sample sizes when processing long-duration signals. 
The CNN1D-5Res model, optimized with Adam for fast convergence, may also suffer from local minima, resulting in 
poor generalization performance. 
To overcome these issues, this research introduces a PVPSS technique as an alternative to the DFT in the EMD-PSD 
method. PVPSS effectively isolates the harmonic components of EEG signals by eliminating percussive signals, which 
are treated as noise, thereby enhancing the quality and interpretability of the EEG harmonics. In the classification module, 
an ICNN1D-5Res model is introduced where a channel attention block is integrated with the existing CNN1D-5Res 
model to enhance the accuracy of epilepsy seizure detection. In order to train the ICNN1D-5Res model with high 
convergence speed and stability when working with EEG data, a new optimization algorithm called AGDEG is utilized, 
which further improves the accuracy. Here is how the rest of the research is structured: The study is organized as follows: 
Section II provides a review of previous DL models for epilepsy detection; Section III explains out the methodology that 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024; Vol 13: Issue 7 

www.healthinformaticsjournal.com 

Open Access 

335 

 

 

will be used; Section IV assesses how well the EEG-FEDNN model performs; and Section V concludes the research. 
2. LITERATURE SURVEY 
Using EMD's first four high-frequency intrinsic mode functions (IMFs), Parija et al. [13] processed EEG signals. 
Unfortunately, the method's efficacy may have been hindered due to the absence of a solid theoretical basis in the 
selection criteria. Lightweight 2D-CNNs were suggested by Pan et al. [14]; these networks could handle raw data as well 
as data that had been transformed using methods like Discrete Fourier Transform (DFT) and Short-Time Fourier 
Transform (STFT). The absence of test set data raised concerns about the reliability of the model, even though this hybrid 
approach improved detection performance with limited data. 
In order to distinguish between focal and non-focal EEG signals, Srinath & Gayathri [15] suggested a deep learning-
based approach that uses a convolutional neural network (CNN) for classification and empirical mode decomposition 
(EMD) for signal processing. Nevertheless, the signal severity diagnosing rate is diminished due to the minimal use of 
external features in this work. 
Illias et al. [16] developed STFT and CNN methods for distinguishing healthy, interictal, and ictal EEG cases without 
feature extraction. However, the process involves tedious feature extraction from both time and frequency domains, 
followed by training shallow machine learning classifiers. Kaur & Gandhi [17] proposed an automated seizure detection 
system using EEG image representations and transfer learning, achieving high classification performance. However, this 
method is computationally expensive and may lack generalization on clinical EEG datasets. 
Kunekar et al. [18] LSTM for binary classification of healthy and seizure EEG signals achieved 97% validation accuracy 
and 2.06% false negatives, outperforming conventional machine learning models. However, the dataset was insufficient 
and unbalanced, and the system needs improvement in false-negative detection and testing for multiclass classification 
on other datasets. In order to reduce processing costs through statistical feature extraction and Local Mean 
Decomposition (LMD), Kumar et al. [19] developed a method for seizure detection that employs a Bidirectional Long 
Short-Term Memory (Bi-LSTM) network. This network also preserves the nonstationary nature of EEG data. However, 
further improvements may be needed in handling real-time processing and testing on more diverse datasets. 
3. PROPOSED METHODOLOGY 
Figure 1 shows the ICNN1D-5Res Model, which is described in this section. 

 
Figure 1. Overall framework of the proposed model 
3.1 Dataset Description 
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(i) CHB-MIT Dataset: At Children's Hospital Boston, researchers obtained multi-channel EEG signals from 24 patients 
with epilepsy ranging in age from 1.5 to 22 years. This dataset is known as the CHB-MIT Dataset. The sampling rate for 
these signals was 256 Hz with a resolution of 16 bits and recorded using the international 10-20 system with scalp 
electrodes under both normal conditions and during epileptic seizures. Most recordings include 18-23 dual electrode 
channels, and each EEG recording is extensively annotated with the start and end times of epileptic seizures, providing 
both non-seizure (inter-ictal) and seizure (ictal) EEG segments. The CHB-MIT dataset is detailed in Table 1. 
Table 1. CHB-MIT dataset 

Parameter Description 
Number of Subjects 24 
Number of Channels 23 
Recording Type Scalp EEG 
No. of Epileptic Seizures 198 
Duration of Each Recording (Hour) 1 (some cases have 2 – 4 hours of recording) 
Sampling Frequency (Hz) 256 

(ii) Bonn EEG Dataset: The Bonn EEG Dataset contains EEG recordings from both healthy individuals and epilepsy 
patients. It is divided into five subsets (A-E), each representing distinct brain states, including normal, inter-ictal, and 
ictal conditions. With a sampling rate of 173.61 Hz and a duration of 23.6 s per segment, each subset contains 
100 individual EEG segments. Research on the identification and categorization of epilepsy makes extensive use of this 
dataset. Data from the Bonn EEG study is detailed in Table 2. 
Table 2. Bonn EEG dataset 

Parameter Description 
No. of Subjects 25 (5 sets, each with five subjects recorded) 
No. of Channels 1(each set contain 100 files of single channel data) 
Recording Type Scalp/ iEEG 
No. of Epileptic Seizures Dataset E contains the ictal stage recordings. 
Duration of Each Recording (Hour) 23.6 
Sampling Frequency (Hz) 173 

 
(iii) Temple University Hospital EEG Epilepsy Corpus (TUEP) dataset: The TUEP includes EEG signals recorded 
using the international 10 to 20 system. The majority of these signals were sampled at frequencies of either 256 Hz or 
250 Hz.  
Table 3. TUEP dataset 

Parameter Description 
No. of Subjects 10874 
No. of Channels 24-36 
Recording Type iEEG 
No. of Epileptic Seizures ≈14777 
Duration of Each Recording (Hour) - 
Sampling Frequency (Hz) 250 

Typically, training uses up to 80% of the data in all three datasets, while testing uses up to 20%. ensuring a standardized 
approach to evaluating epilepsy detection algorithms. Table 3 shows the details of the TUEP dataset. 
3.2 Overview of the Proposed model 
In the existing EMD-PSD approach, each EMD-derived component is processed using the Discrete Fourier Transform 
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(DFT), followed by the computation of the Power Spectral Density (PSD) for each component. The PSDs of all IMFs 
and the residual component are concatenated to form a matrix. This matrix is then fed to the CNN1D-5Res model, which 
uses 5 residual stacks, for learning and detection of epileptic seizures. However, in this research phase, a PVPSS  
technique is employed as an alternative to the DFT in the EMD-PSD method. PSPSS, originally developed for sound 
signal processing, is used to separate actual rhythm (harmonic content) from side information (percussive noise). This 
research uses the same approach on EEG signals' Intrinsic Mode Functions (IMFs). PVPSS effectively isolates the 
harmonic components of EEG signals by eliminating percussive signals, which are treated as noise, thereby enhancing 
the quality and interpretability of the EEG harmonics. Additionally, a CNN1D-5Res model that incorporates a channel 
attention block into the current model is presented, which improves the accuracy of seizure detection in epilepsy. For 
ICNN1D-5Res model training, a novel AGDEG optimization algorithm is implemented during the training phase to 
ensure stable and rapid convergence when processing EEG data.  
3.3 Empirical Mode Decomposition 
An often-used data-driven method for analyzing EEG signals and other nonlinear and non-stationary data is Empirical 
Mode Decomposition (EMD) [12]. Decomposing the signal into components that represent different scales of 
fluctuations and trends is how EMD operates in the context of EEG analysis. The components in question are known as 
Intrinsic Mode Functions (IMFs). If the original signal contains many oscillatory modes, each IMF can be used to analyze 
each mode independently, providing a more precise and localized picture of the signal. In addition, once all relevant 
IMFs have been extracted, a residual component is obtained, which stands for the signal's general trend or baseline. This 
means that the total of 𝐾 IMFs and a residual component is the EEG signal.    For a component can only be considered 
an IMF if it satisfies two requirements:    
1. Within the component, there can be no more than one difference between the number of zero crossings and the number 
of extrema (maxima and minima combined). This guarantees that the IMF is depicting a genuine oscillatory mode.   
2. At every point, the average of the envelopes defined by the signal's local maximum and minimum values must be zero. 
This ensures that the IMF is symmetric with respect to the local average, reflecting the intrinsic oscillatory behavior 
without any spurious trends. Figure 2 depicts the basic steps in EMD technique. 
 
 
 
 
 
 
 
 
Figure 2. Steps in EMD technique 
3.4 Phase-aware Symmetric- Percussive Source 
Separation (PSPSS) model 
EEG signals inherently possess an associated 
spectrum, which can be decomposed into a series of sine and 
cosine waves. These spectral characteristics, particularly 
harmonic patterns (H patterns), are often observed in EEG 
signals of individuals with focal epilepsy. Multiple high-
density frequency bands that evolve over time and are 
especially prominent in the early and late stages of seizures 
define H patterns. The percussion components display continuity in the frequency direction, whereas the harmonic 
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components are smooth in the time direction.  
(i) Harmonic-Percussive Source Separation 
HPSS takes advantage of power spectrograms' anisotropic smoothness. Assumption: The power spectrograms of 
harmonic components 𝐻 ∈ ℝା

௄×் and percussive components 𝑃 ∈ ℝା
௄×் follow these relations:. 

For harmonic components, the spectrogram values are approximately smooth along the time axis: 
𝐻ఠ,ఛ ≈ 𝐻ఠ,ఛ±ଵ,                                                         (1) 

For percussive components, the spectrogram values are approximately smooth along the frequency axis: 
𝑃ఠ,ఛ ≈ 𝑃ఠ±ଵ,ఛ,                                                            (2) 

where 𝜔 = 1, … , 𝐾 represent frequency 𝜏 = 1, … , 𝑇 represent time, respectively. 
To achieve this separation, optimization-based HPSS minimizes the following cost function: 

min
ு,௉

ଵ

ଶఙ೓
మ ‖𝐷ఛ(𝐻)‖ி௥௢

ଶ +
ଵ

ଶఙ೛
మ ‖𝐷ఠ(𝑃)‖ி௥௢

ଶ                    (3) 

s.t. 𝐻ఠ,ఛ + 𝑃ఠ,ఛ = ห𝑋ఠ,ఛห
ଶఊ

,             𝐻ఠ,ఛ ≥ 0,           𝑃ఠ,ఛ ≥ 0 

In this context, 𝐷ఛ  and 𝐷ఠ represent the time and frequency-directional differences, 𝜎௛ and 𝜎௣ are parameters that can 

be used to modify the smoothness of the harmonic and percussive spectrograms and 𝑋 ∈ ℂ௄×் is the complex-valued 
spectrogram of the audio mixture that needs to be separated. For the sake of simplicity, the hyperparameter 𝛾, which is 
valid for range compression 0 < 𝛾 ≤ 1, will be set to 1 throughout the remainder of this paper. 
It is the sinusoidal model that HPSS is built upon. Assume that the signal 𝑥 ∈ ℝ௅ and its short-time Fourier transform 
(STFT) is 

                                ℱ(𝑥)ఠ,ఛ = ∑ 𝑥௟ା௔ఛ 𝑔௟ 𝑒
ି

మഏೕഘ

ಽ௅ିଵ
௟ୀ଴ ,                         (4) 

      Index overflow is handled by zero-padding in the following equation: 𝑔 ∈ ℝ௅ is a window, , 𝑗 = √−1, 𝑎 and 𝑏 are 
the time and frequency shifting steps. 
(ii) Sinusoidal Model in HPSS 
Because the sinusoid's amplitude is constant, the following connection holds for its complex-valued spectrogram: 

                               ℱ(𝑥)ఠ,ఛ = ℱ(𝑥)ఠ,ఛିଵ𝑒ଶగ௝௙௔/௅                                 (5) 

Hence, when the sinusoid's phase evolution is removed, the complex-valued spectrogram in each sub-band has the same 
value. The proposal of instantaneous phase corrected STFT (iPC-STFT) aims to eradicate this phase evolution. 
ℱ௜௉஼(𝑥) = 𝐸 ⊙ ℱ(𝑥),                                      (6) 

The Hadamard product is ⊙ and E is the instantaneous phase correction matrix defined by 𝐸ఠ,ఛ = ∏ 𝑒ିଶగ௝௩ೢ,ആ௔/௅ఛିଵ
ఎୀ଴    

with 𝐸ఠ,଴ = 1  for every ω. 

(iii) Phase-Aware SPSS  
PSPSS extends HPSS by considering both amplitude and phase information. Using iPC-STFT, PSPSS reformulates the 
optimization problem as:  

                        min
௫೓, ௫೛

ଵ

ଶ
‖𝑊 ⊙ 𝐷ఛ(𝑋௛)‖ி௥௢

ଶ + 𝜆ฮ𝑋௣ฮ
ଶ,ଵ

                              (7) 

                 s.t. 𝑥 = 𝑥௛ + 𝑥௣, 𝑋௛ = ℱ௜௉஼(𝑥௛), 𝑋௣ = ℱ൫𝑥௣൯ 

     where 𝑊 ∈ ℝା
௄×் is a weight that is pre-constructed, 𝜆 > 0  is the hyperparameter that modifies the quantity of 

harmonic and percussive components and 𝑥௛ ,  𝑥௣,  𝑥 are the time-domain signals of harmonic components, percussive 

components and the EEG signal respectively.   
PSPSS formulates the problem as a convex optimization task solved using a primal-dual splitting algorithm. This avoids 
computationally expensive operations, such as matrix inversion, and iteratively refines harmonic and percussive 
components. This model specifically includes only harmonic components and removes percussive components. In order 
to account for harmonic components, PSPSS uses the sinusoidal phase model to infer that the iPC-STFT spectrogram is 
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time-directionally smooth. By simultaneously treating amplitude and phase, PSPSS achieves more accurate separation 
of harmonic components. 
3.5 Density of Power Spectral  
As shown by Power Spectral Density (PSD) [12], the distribution of a signal's power across its various frequency 
components can be described. It offers a method for analyzing a signal's frequency content and calculating the power or 
energy at each frequency. In the context of EEG signal analysis, PSD helps to understand the contribution of various 
frequency bands (like alpha, beta, theta, or delta waves) to the overall signal. This is crucial for identifying patterns and 
abnormalities, such as those seen in epileptic seizures. By breaking down the signal into its frequency components and 
calculating the power associated with each, PSD allows researchers to create a clear representation of the signal's 
frequency characteristics, which is then used for further processing and classification tasks. 
3.6 Improved CNN1D-5Res model for Few-shot Classification 
In the next stage, the separated harmonic component of the EEG signal is processed for epilepsy seizure detection using 
a classification model. For this purpose, the ICNN1D-5Res model is employed. This model is specifically designed for 
accurate seizure detection by leveraging channel attention mechanism. Figure 3 depicts the structure of proposed 
ICNN1D-5Res Model and the residual stack with channel attention. 

Figure 3. 
Structure of 
Proposed (a) 
ICNN1D-5Res 
Model and (b) 

Residual 
Stack with 

Channel 
Attention 
3.6.1 Channel 

Attention 
Mechanism 

To enhance the capability of the CNN1D-5Res model in identifying and prioritizing significant channel features, a 
channel attention strategy is integrated into its residual stack. This mechanism enables the model to automatically learn 
the relative importance of features from different channels, thereby improving its performance in tasks like epilepsy 
seizure detection. The channel attention block, referred to as CAt5, is applied to the features extracted from the residual 
stack, as illustrated in Figure 4.  
 
 
 
 
 
Figure 4. Structure of Cat5 block 
Global maximum pooling (GMP) and Global Average Pooling (GAP) are 
applied to the features generated by the residual stack. Each channel's 
data is summarized across spatial dimensions by these pooling operations:   
Global Average Pooling (GAP): Provides a holistic representation by 
averaging all pixel values within each channel:   



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

2024; Vol 13: Issue 7 

www.healthinformaticsjournal.com 

Open Access 

340 

 

 

𝑧௖
௔௩௚

=
1

𝐻
෍ 𝑢௖(𝑖)

ு

௜ୀଵ

 

where 𝑧௖
௔௩௚ represents the average-pooled value for channel 𝑐, 𝑢௖(𝑖) denotes the 𝑖௧௛ element of the feature map in 

channel 𝑐 and 𝐻 is the total number of spatial elements in the channel.   
Global Maximum Pooling (GMP): Captures the most significant spatial responses within each channel:   
𝑧௖

୫ୟ୶ = max
௜ୀଵ,…,ு

𝑢௖(𝑖)              (8) 

where 𝑧௖
୫ୟ୶ represents the maximum-pooled value for channel 𝑐.   

Both pooling operations yield one-dimensional feature vectors 𝑧௔௩௚ ∈ ℝ஼ and 𝑧௠௔௫ ∈ ℝ஼ \( which 𝐶 represents the 
overall count of channels. 
The pooled feature vectors, 𝑧௔௩௚ and 𝑧௠௔௫, are independently passed through two convolutional layers to compute 
intermediate feature representations:  

𝑠௖
௔௩௚

= 𝜎 ቀ𝑊ଶ
௔௩௚

. 𝛿൫𝑊ଵ
௔௩௚

 . 𝑧௖
௔௩௚

൯ቁ                      (9) 

𝑠௖
௠௔௫ = 𝜎൫𝑊ଶ

୫ୟ୶. 𝛿(𝑊ଵ
௠௔௫ . 𝑧௖

௠௔௫)൯                                            (10) 

where, 𝑊ଵ
௔௩௚ and 𝑊ଵ

௠௔௫   are the weights of the first convolutional layers,  𝑊ଶ
ୟ୴୥ and 𝑊ଶ

୫ୟ୶ are the weights of the second 

convolutional layers. 
 
 

The significance weights for the average pooled and maximum pooled features are denoted by 𝑠௖
௔௩௚ and 𝑠௖

௠௔௫,, 
respectively, as a result of these two procedures. The final channel attention weights are computed by adding the two 
feature vectors:   

𝑠௖ = 𝑠௖
௔௩௚

+ 𝑠௖
௠௔௫                                    (11) 

The channel attention weights 𝑠௖ are used to scale the original feature map for each channel:   
𝐹௖

ᇱ = 𝐹௖ . 𝑠௖                                                     (12) 

where, 𝐹௖ is the original feature map for channel 𝑐, 𝑠௖ is the calculated attention weight for the 𝑐௧௛ channel. 
By incorporating the channel attention mechanism into the residual stack, the ICNN1D-5Res model effectively focuses 
on critical features across multiple channels. This dual-pooling approach not only improves the ability to learn 
hierarchical feature representations but also enhances the accuracy of the model in tasks like epilepsy seizure detection. 
The resulting feature maps are fine-tuned to highlight essential patterns, leading to improved performance and 
robustness.   
3.5 Training the ICNN1D-5Res model using AGDEG optimization algorithm 
To ensure effective training of the ICNN1D-5Res model, we employ the Adaptive Gradient Descent with Exponential 
Growth (AGDEG) optimization algorithm, an advanced technique that combines the strengths of gradient-based methods 
and evolutionary strategies to balance exploration and exploitation during the learning process. 
This novel optimizer incorporates discrete second derivative gradients, parameter adjustment, exponential smoothing 
and gradient accumulation as part of its adaptive learning process. In order to attain a stable and high convergence rate, 
the AGDEG optimizer employs a mix of the following techniques: 
(1) Exponential Decay: It helps to more accurately adapt to the present optimization conditions by gradually reducing 
the impact of prior gradients and accumulated values. 
 (2) Second Order Derivative Discretization: Calculates the discrete second derivative of gradients to estimate the loss 
function's curvature. To do this, it divides the difference in corresponding parameters (𝜃௧– 𝜃௧ିଵ) by the difference 
between the current and previous gradients (𝑔௧– 𝑔௧ିଵ) The outcome is then multiplied by the square of the magnitude 
of the gradient changes and added to the total value (𝑛௧), which incorporates squares of previous gradients. This 
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technique offers an effective adjustment of the optimization step and enhances stability by avoiding excessively big or 
tiny adjustments. 
(3) Rate of Adaptive Learning: Improves efficiency in reaching the loss function minimum by adjusting to the present 
state of gradients and accumulated values. This is achieved through parameter correction mechanisms, such as 
normalizing moments (𝑚௧) and analogous (𝑛௧) by dividing by (1 – 𝛽௧መଵ) and (1 – 𝛽௧መଶ), compensating for initial biases 
in early iterations and ensuring proper learning rate adaptation. 
(4) Exponential Damping: Iteratively decreases the impact of accumulated gradients, improving optimization stability 
and reducing oscillations. This feature aligns AGDEG with quasi-Newtonian methods but avoids the computational 
overhead of Hessian calculations, making it efficient while leveraging discrete acceleration principles. 
The AGDEG optimizer also includes key parameters such as: 
Exponential smoothing coefficients (𝜷𝟏𝒂𝒏𝒅 𝜷𝟐): Values range between [0, 1) and decay over iterations. 
Learning Rate Coefficient (𝜼): Usually set to 𝜂 =  0.001 in the initial approximation. 
Exponential Damping Factor (𝒌): A value in [0, 1) determining the rate of damping. 
Smoothing Parameter (ε): A small value (e.g., 10-7) to avoid division by zero. 
The choice of hyperparameters is crucial for ensuring a balance between convergence speed and stability. Selecting an 
appropriate damping factor is particularly important; very small values may cause the algorithm to overshoot the global 
minima, while very large values could result in premature damping. The optimizer’s ability to dynamically adjust 
gradient influences ensures robust training of the ICNN1D-5Res model. By mitigating oscillations and leveraging 
gradient accumulation, AGDEG delivers high convergence speed and stability, making it ideal for applications such as 
epilepsy seizure detection, where precision and robustness are paramount. 
Despite its advantages, AGDEG requires storing weights and gradients from the previous iteration, which can increase 
memory usage for large models. Because of its fast convergence time, reduced oscillations and robust handling of 
gradient accumulations, however, this drawback is neutralized. These features make AGDEG particularly suitable for 
training ICNN1D-5Res, ensuring superior performance and stability in epilepsy seizure detection, where precise pattern 
recognition in EEG data is critical. 
Algorithm 1: AGDEG Optimization 

1. 𝑔௧ ← 𝛻஘౪షభ
𝑓(𝜃௧ିଵ) 

2. 𝛽መଵ ← 𝛽ଵ exp(−𝑘𝑡) 

3. 𝛽መଶ ← 𝛽ଶ exp(−𝑘𝑡) 
4. 𝑚௧ ← 𝛽ଵ𝑚௧ିଵ + (1 − 𝛽ଵ)𝑔௧ 
5. 𝑛௧ ← 𝛽ଶ𝑛௧ିଵ + (1 − 𝛽ଶ)𝑔௧ 

6. 𝑎 ← ටቀ
௚೟ି௚೟షభ

ఏ೟ିఏ೟షభାఢ
ቁ

ଶ
+ 𝑛௧ 

7. 𝑚ෝ௧ ←
௠೟

ଵିఉభ
೟ 

8. 𝑎ො ←
௔

ଵିఉ෡మ
೟ 

9. 𝜃௧ ←  𝜃௧ିଵ − 𝜂
௠ෝ ೟

௔ොାఢ
 

Algorithm 2: Overall Algorithm for the proposed model 
Input: EEG datasets 
Output: Normal and Epileptic Seizure Patients 

1. Begin 
2. Split the dataset into training and test sets; 
3. For training set 
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4.    Apply EMD technique to decompose the given EEG signals into IMFs; 
5.    For each IMF, obtain harmonic and percussive components using PSPSS technique; 
6.    Determine PSD for all IMF components and concatenate them to obtain a matrix; 
7.    Initialize the ICNN1D-5Res model; 
8.    Train the model using AGDEG optimization; 
9. End for 
10. For test set 
11.    Use the trained ICNN1D-5Res model to classify the test EEG signals; 
12.    Detect normal and epileptic seizure patients; 
13. End for 
14. Evaluate the model performance; 
15. End 

The AGDEG optimization method, with its hybrid gradient-based and evolutionary design, effectively enhances the 
ICNN1D-5Res model’s ability to extract and learn subtle patterns in EEG data. This approach ensures high precision 
and robustness, making it a suitable solution for detecting epilepsy seizures and distinguishing between normal and 
abnormal EEG signals. 
4. RESULTS AND DISCUSSION 
On Windows 10 PCs running version 21H2, with a 64-bit operating system, an Intel(R) Xeon(R) 4.01 GHz processor 
and 64 GB of RAM, the effectiveness of the ICNN1D-5Res model is measured and evaluated using the existing DL 
algorithms. MATLAB 2019B is used as the programming language. The EMD-PSD-ICNN1D-5Res model is compared 
against PS-BiLSTM-Attention [20], SE-TCN-BiGRU [21] and EMD-PSD-CNN1D-5Res [12] highlighting the 
effectiveness of epilepsy detection. The concepts to be known for predicting the results are as follows: 
Seizure detection is to determine whether there is seizure based on the collected EEG signals. There are two possible 
results: normal (without seizure) or abnormal (with seizure). Therefore, the problem can also be expressed as a binary 
classification problem.  
The most commonly used evaluation metrics for binary classification in deep learning are the accuracy, recall, precision, 
and F1-score. These metrics are determined using the confusion matrix. A confusion matrix displays the total number of 
True Positive (TP), False Positives (FP), False Negatives (FN) and True Negatives (TN) in the model's predictions. 

 TP: It indicates correct identification of seizures 

 TN: It indicates correct identification of normal activity 
 FP: It indicates incorrectly identified seizures as normal activity 

 FN: It indicates incorrectly identified normal activity as seizure 
 
 
 
 
 
 Figure 4. Confusion Matrix 
The performance metrics used for evaluating the models are described as: 

 Accuracy: It is a metric used to assess the overall effectiveness of 
epileptic seizure detection and is calculated as the ratio of 
samples that correctly detect epileptic seizures to all samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்௉ା

்௉ା்ேାிேାி  
                                               (13) 
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 Specificity: This metric measures how many TNs and misclassified positive detections there were in relation to 
how many correctly identified negative values. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
்ே

்ேାி௉
                                                         (14) 

 Sensitivity: It represents the percentage of a specific detection out of the total number of accurate and incorrect 
detections of disease, that is, among all actual epilepsy patients. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
்௉

ிேା்
                                                          (15) 

 F1-score: It is calculated as the precision and recall harmonic means. 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
ଶ×௉௥௘௖௜௦௜௢௡×ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟
                                          (16) 

4.1 Comparison of proposed EMD-PSPSS-PSD-ICNN1D-5Res and existing models in different datasets 
Table 4 and Figure 5 compares the performance of the proposed EMD-PSPSS -ICNN1D-5Res model with three other 
methods: PS-BiLSTM-Attention, SE-TCN-BiGRU, and EMD-PSD-CNN1D-5Res, using CHB-MIT dataset. 
Table 4. Comparison of proposed and existing models on CHD-MID dataset 

Metrics PS-BiLSTM-
Attention 

SE-TCN-
BiGRU 

EMD-PSD-
CNN1D-
5Res 

EMD-PSPSS-PSD-
ICNN1D-5Res 

Accuracy (%) 92.60 92.97 93.84 94.51 

Specificity (%) 91.12 91.70 93.28 94.09 

Sensitivity (%) 92.07 92.43 92.91 94.46 

F1-score (%) 92.44 92.86 93.15 94.28 

 
Figure 5 

Performance 
analysis of 
proposed and 
existing models on 
CHB-MIT dataset 
The ICNN1D-5Res 
model demonstrates 
superior results 
across key metrics, 
including Accuracy, 

Specificity, 
Sensitivity, and F1-
Score. It achieves an 
Accuracy of 

94.51%, 
outperforming PS-

BiLSTM-Attention by 1.91%, SE-TCN-BiGRU by 1.54%, and EMD-PSD-CNN1D-5Res by 0.67%. Similarly, in 
Specificity, the model records 94.09%, showing an improvement of 2.97%, 2.39%, and 0.81% over PS-BiLSTM-
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Attention, SE-TCN-BiGRU, and EMD-PSD-CNN1D-5Res, respectively. For Sensitivity, ICNN1D-5Res achieves 
94.46%, surpassing PS-BiLSTM-Attention by 2.39%, SE-TCN-BiGRU by 2.03%, and EMD-PSD-CNN1D-5Res by 
1.55%. Finally, compared to PS-BiLSTM-Attention, SE-TCN-BiGRU, and EMD-PSD-CNN1D-5Res, the model 
accomplishes an F1-Score of 94.28%, which is an improvement of 1.84%, 1.42%, and 1.13%, respectively. It is clear 
from these data that the ICNN1D-5Res model is the most trustworthy method for correctly diagnosing epileptic episodes, 
demonstrating its resilience and effectiveness. 
Table 5 Comparison of proposed and existing models on Bonn EEG dataset 

 
 
 
 
Figure 6 

Performance 
analysis of 
proposed and 
existing models on 
Bonn EEG dataset 
Figure 6, which 

show their respective 
performances: The 
Bonn EEG dataset 
was utilized by PS-

BiLSTM-Attention, 
SE-TCN-BiGRU, and 
EMD-PSD-CNN1D-

5Res. The ICNN1D-
5Res model 
demonstrates superior 
results across key 

metrics, including Accuracy, Specificity, Sensitivity, and F1-Score. It achieves an Accuracy of 94.62%, outperforming 
PS-BiLSTM-Attention by 1.44%, SE-TCN-BiGRU by 1.08%, and EMD-PSD-CNN1D-5Res by 0.45%. In terms of 
Specificity, the model records 94.31%, showing an improvement of 1.86%, 1.39%, and 0.42% over PS-BiLSTM-
Attention, SE-TCN-BiGRU, and EMD-PSD-CNN1D-5Res, respectively. For Sensitivity, ICNN1D-5Res achieves 
94.06%, surpassing PS-BiLSTM-Attention by 1.07%, SE-TCN-BiGRU by 0.89%, and EMD-PSD-CNN1D-5Res by 
0.42%. In conclusion, the model outperforms PS-BiLSTM-Attention, SE-TCN-BiGRU, and EMD-PSD-CNN1D-5Res 
with an F1-Score of 93.94%, 1.11%, and 0.53%, respectively. These findings prove that the ICNN1D-5Res model is the 
most trustworthy method for detecting epileptic seizures, demonstrating its resilience and effectiveness. 
 
 
Table 6 Comparison of proposed and existing models on TUEP dataset 

Metrics PS-BiLSTM-
Attention 

SE-TCN-
BiGRU 

EMD-PSD-
CNN1D-5Res 

EMD- PSPSS -
PSD-ICNN1D-
5Res 

Metrics PS-BiLSTM-
Attention 

SE-TCN-
BiGRU 

EMD-PSD-
CNN1D-5Res 

EMD-PSPSS-
PSD-ICNN1D-
5Res 

Accuracy (%) 93.18 93.54 94.17 94.62 

Specificity (%) 92.45 92.92 93.89 94.31 

Sensitivity (%) 92.99 93.17 93.64 94.06 

F1-score (%) 92.35 92.83 93.41 93.94 
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Accuracy (%) 92.09 92.77 93.14 93.79 

Specificity (%) 91.95 92.44 92.90 93.51 

Sensitivity (%) 92.28 92.88 93.35 93.67 

F1-score (%) 92.24 92.77 93.12 93.60 

 
Figure 7 

Performance 
analysis of 
proposed and 
existing models on 
TUEP dataset 
 
Table 6 and Figure 7 
shows how the 

suggested 
ICNN1D-5Res 

model compares in 
terms of 
performance with 
three other methods: 

PS-BiLSTM-Attention, SE-TCN-BiGRU, and EMD-PSD-CNN1D-5Res, evaluated using EEG datasets. The ICNN1D-
5Res model exhibits superior performance across critical metrics, including Accuracy, Specificity, Sensitivity, and F1-
Score. It achieves an Accuracy of 93.79%, which is 1.70% higher than PS-BiLSTM-Attention, 1.02% higher than SE-
TCN-BiGRU, and 0.65% higher than EMD-PSD-CNN1D-5Res. For Specificity, the model attains 93.51%, surpassing 
PS-BiLSTM-Attention by 1.56%, SE-TCN-BiGRU by 1.07%, and EMD-PSD-CNN1D-5Res by 0.61%. In terms of 
Sensitivity, ICNN1D-5Res achieves 93.67%, which is 1.39%, 0.79%, and 0.32% higher than PS-BiLSTM-Attention, 
SE-TCN-BiGRU, and EMD-PSD-CNN1D-5Res, respectively. Finally, for F1-Score, the model records 93.60%, 
outperforming PS-BiLSTM-Attention by 1.36%, SE-TCN-BiGRU by 0.83%, and EMD-PSD-CNN1D-5Res by 0.48%. 
These results emphasize the effectiveness and robustness of the ICNN1D-5Res model, solidifying its position as a 
leading method for epilepsy seizure detection. 
5. CONCLUSION 
By improving upon prior machine learning models and overcoming the shortcomings of conventional EEG analysis, this 
study contributes significantly to the science of automated epilepsy detection. The proposed EMD-PSPSS-PSD-
ICNN1D-5Res model, which incorporates PSPSS and STFT, enhances feature extraction from EEG signals, effectively 
overcoming poor generalization issues. Additionally, the introduction of the AGDEG optimization algorithm ensures 
efficient and stable model training. Comparative evaluations on CHB-MIT, Bonn EEG, and TUEP datasets demonstrate 
the robustness and superior performance of the proposed model, achieving accuracies of 94.51%, 94.62%, and 93.79%, 
respectively. These results establish the ICNN1D-5Res model as a reliable and effective solution for epileptic seizure 
detection, particularly in small dataset scenarios. The results of this study highlight the possibility of improving patient 
outcomes and diagnostic practices through the use of automated epilepsy diagnosis by incorporating cutting-edge feature 
extraction and optimization methods. 
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