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Abstract  
For effective resource allocation, patient management, and discharge planning, it is crucial to accurately forecast the 
length of stay (LOS) for patients undergoing general surgery. In this study, we suggest a predictive modeling strategy 
utilizing Artificial Intelligence (AI) methods to calculate the LOS for patients with adult spinal deformity (ASD).  LOS 
following ASD surgery denoted a crucial phase to enable the best possible recovery. The categorization of high-risk 
patients is made possible by predictive algorithms that estimate LOS. Patients with ASD were found in a multicenter 
database that was prospectively gathered. Patients who had staged surgery or a LOS for more than 30 days were not 
included. Redundancy and collinearity tests, as well as univariable predictor importance of 0.90, were used to choose 
the variables for the model. Using a dataset created from a bootstrap sample, the Gradient Ascent Decision Tree Model 
(GADTM) was suggested for prediction; patients who were not by chance chosen for the bootstrap sample were selected 
for the dataset. To determine an accuracy percentage, LOS forecasts, and actual LOS were compared. 653 patients 
complied with the inclusion requirements. 893 patients were modeled using bootstrapping. Accuracy of the prediction 
within two days of the actual LOS. Our approach accurately predicted LOS after ASD surgery within two days. Rehab 
accommodation and social assistance services are not included in large projected databases. Predictive analytics will 
become more important in ASD surgery as future models improve accuracy.  
Keywords: length of stay (LOS), Artificial Intelligence (AI), adult spinal deformity (ASD), Decision Tree Model 
(DTM), a bootstrap sample 

1. Introduction  
The treatment of ASD as a multifaceted medical condition has dramatically advanced during the past two decades. It is 
widely accepted that ASD is a complex disorder with a wide range of symptoms, including pain, impairment, and 
worsening deformity. Surgery has been an increasingly common and widely used method of treating autism spectrum 
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disorder as our understanding of the disorder has expanded. Surgical intervention has been shown in a large body of 
research with high levels of consistency to greatly improve patients' health-related quality of life, especially for those 
with severe disability. Although there may be benefits to surgical treatment, it is typically highly intrusive, requiring 
significant soft tissue release and bone excision (through Osteotomies) to obtain the desired outcomes. Surgery has a 
high success rate for correcting defects, but it also carries a high risk of perioperative and long-term damage, and it is 
quite expensive for healthcare systems [1]. As the field of medicine advances towards the precision medicine era, the 
field of spine surgery is rapidly approaching a turning point due largely to an explosion of available data and 
advancements in processing capability. As more and more information is digitized, technological and medical 
developments are progressing at a breakneck pace. They can now harness the power of AI by combining the vast volumes 
of available data with advanced computational tools. The ultimate target of artificial intelligence is to give machines 
capabilities formerly reserved for human beings. Because of AI, humans can now create systems that perform tasks that 
once required human intellect, such as learning from vast datasets, making judgments, providing suggestions, and 
adapting to new data and circumstances. However, the ultimate objective of developing a universal and automated 
intellect remains beyond of reach of AI at present. However, there is a subfield of AI known as machine learning that 
makes use of algorithms to develop intelligent models by learning from data and previous experiences. Algorithms for 
machine learning enable computers to understand associations between datasets and make predictions or judgments 
based on that data, all without the need for user-defined or pre-established rules [2]. 
Hospital stay duration following surgery is frequently used as an indicator of surgical success and patient outcomes. 
However, LOS is also often targeted to minimize healthcare costs in the face of rising healthcare costs. As bundled 
payments have grown in popularity, a lot of work has gone into finding ways to reduce patient LOS without 
compromising care. Arthroplasties of the hip and shoulder can sometimes be done as outpatient procedures, with the 
former often costing around 30 percent less than the latter. Total shoulder arthroplasties are also sometimes performed. 
Spinal fusion for ASD is an example of a more invasive orthopedic operation that cannot make this transition without 
assistance because of patient immobility, intraoperatively blood loss, and insufficient perioperative pain control. This is 
one of the reasons why this shift cannot occur naturally. In these situations, it is crucial to make sure that patient's hospital 
stays don't go on for any longer than necessary. Insurance expenditures for a scoliosis operation on a teenager averaged 
over $1100 per day, and hospital charges averaged close to $5200 per day. Patients with prolonged LOS also tend to 
spend up to $19,000 more on their hospitalization overall. Further study into techniques to either lower the operating 
duration or avoid needless delays [3] is warranted given the aforementioned patterns being found in spinal fusion surgery 
for ASD. Because of its unique qualities and the complexity of its patients, ASD is an ideal application sector for the use 
of advanced analytics in both nonsurgical and surgical care. Historically, spine surgeons have counseled patients about 
the risks and advantages of surgery for ASD based on aggregate rather than patient-specific experience, with the most 
accurate information often relying on the surgeon's substantial training and clinical judgment.Simple statistical 
approaches like linear or logistic regressions were used in the majority of studies in the literature, providing surgeons 
with population-level averages that may be only mildly applicable to the nuances of a given patient. The ability to 
interpret this data in profound and powerful ways has grown in tandem with the proliferation of digital medical records;it 
has allowed us to access previously unattainable quantities of patient data.  
In recent years [4], the medical community has begun to use computational tools capable of analyzing large datasets and 
developing intricate mathematical models illuminating the interconnectedness of seemingly unrelated occurrences. 
Several factors, such as patient and institution characteristics, contribute to the wide range of LOS experienced by 
patients requiring cardiac care. Medical complexity and frailty are key risk factors for cardiovascular disease. Cardiac 
departments often run at capacity during peak admission times due to a lack of available beds. Worrying that bed 
shortages could have such a large effect on other services. It is well established that LOS is a proxy for the effectiveness 
and efficiency of a hospital. To effectively address capacity management, resource planning, and personnel levels, it is 
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helpful to have an accurate prediction of LOS. It also has a considerable effect on institutional workflow efficiency, 
resource utilization optimization, and cost-cutting in healthcare. Recent years have seen a surge in interest and 
development of artificial intelligence methods. It has been shown that precise LOS estimate has a beneficial effect on a 
variety of healthcare outcomes, including better patient safety, lower healthcare expenditures, and a rise in the number 
of patients receiving treatment [5].We suggested an AI-based model to predict hospital stays for those having general 
surgery. 
 
Contributions of this research 

 ASD Surgical patient data were collected from the American Society of Anesthesiologists (ASA) in the United 
States. 

 The GA-DTM has been suggested as a prediction method employing a dataset built from a bootstrap sample; 
individuals who weren't randomly selected for the bootstrap sample were chosen for the dataset. By comparing 
the anticipated LOS to the actual LOS, the accuracy rate was calculated.  

The remaining sections of this research are as follows: Part 2 contains the literature review; the materials and methods 
are introduced in Part 3; the result analysis of the study is in Part 4; Part 5 contains the discussion; and the conclusion is 
in Part 6. 

2. Literature review   
The research [6] offered a decade's worth of data on the evolution of hospital stays, complications, and unexpected 
readmissions following total knee arthroplasty (TKA). Concerns about rising complication and readmission rates have 
been voiced in response to the trend toward shorter LOS.The study [7] proposed the development of many machine 
learning models, both deep and non-deep, for predicting COPD patients' risk of readmission. Two Machine Learning 
(ML) methods “the Random Forest (RF) and the Gradient Boosting model (GB)”, were compared and implemented in 
Study [8], using an open-source dataset. The research [9] discussed impartially evaluating the most recent and original 
orthopedics data on ML. Recent research has shown that using machine learning in orthopedics has the potential to 
improve patient care by allowing for more flexible patient-specific payment models, a quick analysis of imaging 
modalities, and remote patient monitoring.Several machine learning techniques were compared in the study [10] and 
discussed to which ones were the most effective at predicting hospital mortality following "transcatheter aortic valve 
replacement (TAVR)" in the United States. A decline in hemodynamic status after cardiac surgery is an indicator of, or 
contributor to, poor outcomes. While prediction models using EHRs or physiological waveform data have been reported 
in the past, their combined utility has yet to be fully articulated. It was hypothesized that combining the results of many 
modalities (electrocardiogram lead II, pulse plethysmography, arterial catheter tracing) into a single model would yield 
better results than utilizing any one of them individually [11]. Enhanced Recovery after Surgery (ERAS) is a 
comprehensive approach to postoperative treatment that improves functional recovery and reduces complications. 
Integration of ERAS protocols may be useful for procedures like spinal surgery, which are generally invasive and have 
a long recovery time [12].The study [13] goal was to the variations in blood loss and transfusion requirements between 
low-dose and high-dose tranexamic acid (TXA) regimens following ASD surgery. Concerning reducing surgical 
complications linked to blood loss and the requirement for transfusions during ASD surgery, the evidence suggests that 
high-dose TXA is superior to low-dose TXA.  
The research [14] examined the relationship between surgical factors and complication severity ratings to ascertain their 
effect on postoperative hospital LOS.  Hospital stays after ASD surgery could be shortened with careful planning. To 
better understand and forecast the implications of complications, surgeons might benefit by classifying problems by 
treatment intensity, which aids in surgical planning and therapy for patients.Study [15] analyzed the expenses incurred 
and the benefits gained from post-operative rehabilitation for ASD surgery. There is a direct expense involved with 
inpatient rehabilitation following surgery for ASD. Although 30% of the total cost was attributable to rehabilitation, the 
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financial investment was substantial.The research [16] evaluated the length of time spent in the “intensive care unit 
(ICU)” and in the hospital after surgery for mild to moderate ASD using circumferential minimally invasive surgery 
(cMIS) versus open surgery.The research [17] used spinal alignment, demographic information, and surgical 
invasiveness to develop a prediction model for problems following surgical treatment of ASD.The incidence of 
postoperative ileus (POI) following spinal surgery varies widely depending on the method of operation and the criteria 
for what constitutes POI. As a result, the true incidence is probably much greater overall. Both the patient and the 
hospital's resources are affected by POI, which can drive up the total cost of care [18]. 

3. Materials and Methods  
Spinal deformity in adults is characterized by an aberrant curvature of the spine or a misalignment of the vertebrae in 
patients who have reached the mature stage of skeletal development. It often comprises a combination of numerous 
spinal abnormalities, such as kyphosis (excessive forward curvature of the upper spine), scoliosis (sideways curvature 
of the spine), and/or degenerative disc disease (wear and tear of the spinal discs). Kyphosis refers to an excessive forward 
curvature of the upper spine. Imaging techniques, such as X-rays, MRI scans, or computed tomography (CT) scans, 
along with a comprehensive medical history and a physical examination are required to arrive at a diagnosis of adult 
spinal deformity. The degree of the deformity, the symptoms that are experienced, and the impact it has on everyday 
functioning all play a role in determining the available treatment choices. Treatments that do not involve surgery could 
include things like physical therapy, methods of pain management, braces, or medication. On the other hand, surgery 
may be suggested for more severe cases to stabilize the spine, rectify the spinal deformity, and relieve the pressure that 
is being placed on the nerves. Surgical procedures for adult spinal deformity may include osteotomies (bone cuts to 
realign the spine) or decompression (removal of bone or tissue to relieve nerve compression). Spinal fusion, in which 
the vertebrae are permanently joined together with the help of bone grafts or implants, is one option. Other procedures 
include spinal fusion, bone grafts, and implants. It is necessary for people who have adult spinal deformities to seek the 
advice of a spine specialist or an orthopedic surgeon who is knowledgeable in the treatment of spinal disorders. This will 
allow these folks to establish the treatment strategy that will be most effective for them given their unique condition and 
requirements. Figure 1 depicts the architecture of the proposed method. 

 
Figure 1: Architecture of the proposed method 
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3.1. Clinical Setting  
The International Spine Study Group compiled a prospectively obtained database of consistent ASD patients, which was 
retrospectively examined. Patients were gathered from 11 different American locations. Each institution received 
permission from the institutional review board.  

3.1.1. Inclusion and exclusion criteria 
 All patients had to be at least 18 years old and have a spinal deformity, as determined by a Cobb angle of at least 

20, a sagittal vertical axis of at least 5 cm, a pelvic tilt of at least 25, or a thoracic kyphosis of at least 60 degrees.  
 Spinal deformity caused by neuromuscular disorders, active infection or cancer, multiple hospitalizations for the 

same procedure, or LOS >30 days were all disqualifiers.  
3.2. Collection of Data 

Factors such as patients' ages, sexes, races, BMIs, comorbidities, the “Charlson comorbidities index”, and prior fusion 
or surgery on the spine were considered. The presence of a 3-column “osteotomy”, the type of graft used (allograft vs. 
autograft), the level of the first instrumented vertebra, and the level of the last instrumented vertebra were all noted. 
Smith-Peterson osteotomy with inter-body fusion for direct decompression, we recorded data on the existence (yes/no) 
and several levels [19]. 

3.3. Measures of Health-Related Quality of Life 
We evaluated the way people were living with scoliosis using the Scoliosis Research Society-22r, the Oswestry Disability 
Index, and the Short Form Health Survey (SF-36). Using the 36-item Short Form Health Survey, we were able to 
determine the summaries for both the physical and mental aspects of health. Subdomain scores (for things like exercise, 
pain, appearance, cognition, and satisfaction) are also included in the Scoliosis Research Society-22r questionnaire's 
overall score. Participants rated the intensity of their back and leg discomfort on a scale from 0 (no pain) to 10 (the worst 
possible pain).  
 
 

3.4. Radiographic Analysis 
In this study, we used validated software to examine the first lateral spine radiographs that were taken of the whole 
patient. “Coronal Cobb angles of the thoracic and lumbar curves, the coronal plumb line, the sagittal vertical axis, the 
pelvic tilt, and the spinal inclination”.  

3.5. Gradient Ascent Decision Tree Model (GADTM)  
For utilizing less-than-pristine data, GADT can develop highly robust, interpretable, and competitive classification 
processes. The GADT model iteratively constructs 𝐹 distinct individual decision trees 𝑠(𝑦; 𝛼ଵ),...,𝑠(𝑦; 𝛼௥)using the 
training data 𝐶 = 𝑦𝑦, 𝑥𝑥where the estimator 𝑙(𝑦) signifies an approximation function response to the label𝑦. The 
extension of a single decision tree, 𝑠(𝑦; 𝛼௥), is what we mean when we say 𝑙(𝑦)in Eq. (2).  

ቊ
𝑙(𝑦) = ∑ 𝑙𝑟(𝑦) = ∑ 𝛽௥𝑠(𝑦; 𝛼௥)ோ

௥ୀଵ
ோ
௥ୀଵ

𝑠(𝑦; 𝛼௥) = ∑ 𝜆௝௥𝐽(𝑦𝜖𝐾௝௥)ூ
௜ୀଵ

  (1) 

The input space is partitioned into 𝑀 regions𝐾ଵ௥,...,𝐾௝௥, and a constant value, 𝑗𝑟 is determined for each area, where 𝑖 = 1 

if 𝑦 is in 𝐾௝௥ and i=0 otherwise. In this context, 𝑙𝑟(𝑦) represents a function that adds the outputs of the first and kth 

decision trees. Average values for each partitioning variable and their corresponding leaf nodes in the 𝑟-th decision tree 
are represented by the parameters 𝛼௥. When the terminal nodes of many collections are known, the parameter 𝑟 indicates 
the relative importance of combining the resulting predictions. Minimizing a loss function 𝐹(𝑥௝),𝑙(𝑦)yields an estimate 

for the two parameters 𝛼௥and𝛽௥ according to Eq. (2).  

(𝛼௥, 𝛽௥) =
arg 𝑚𝑖𝑛

𝛼, 𝛽
∑ 𝐹(𝑥௝, 𝑙௥ିଵ൫𝑦௝൯ + 𝛽𝑠൫𝑦௝; 𝛼൯)ெ

௝ୀଵ =
arg 𝑚𝑖𝑛

𝛼, 𝛽
∑ 𝐹(𝑥௝, 𝑙௥ିଵ൫𝑦௝൯ + 𝛽 ∑ 𝛾𝑖ூ

௜ୀଵ 𝐽ெ
௝ୀଵ ൫𝑦௝𝜖𝐾௜൯)                                            

(2) 
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𝑙௥(𝑦) = 𝑙௥ିଵ(𝑦) + 𝛽௥𝑠(𝑦; 𝛼௥) = 𝑙௥ିଵ(𝑦) + 𝛽௥ ∑ 𝛾௜௥𝐽(𝑦𝜖𝐾௜௥)ூ
௜ୀଵ                                 (3) 

Friedman suggested using a gradient-boosting strategy to solve the model. To begin, least-squares error can be used to 
make estimates for the 𝛼௡parameters: 

𝛼௥ =
arg 𝑚𝑖𝑛

𝛼, 𝛽
∑ ൣ𝑥෤௜௥ − 𝛽𝑠(𝑦௝; 𝛼)൧

ଶ
=

arg 𝑚𝑖𝑛
𝛼, 𝛽

∑ ൣ𝑥෤௜௥ − 𝛽 ∑ 𝛾௜𝐽ூ
௜ୀଵ ൫𝑦௝𝜖𝐾௜൯൧

ଶெ
௝ୀଵ

ெ
௝ୀଵ (4) 

Here 𝑥෤௜௥is the gradient, described in Eq. (5). 

𝑥෤௜௥ = − ൤
డி(௫ೕ,௟൫௬ೕ൯)

డ௟൫௬ೕ൯
൨

௟(௬)ୀ௟ೝషభ(௬)

                                          (5) 

Using Eq. (6), we can calculate the values of the parameters 𝛽௥.  

𝛽௥ =
arg 𝑚𝑖𝑛

𝛽
෍ 𝐹(𝑥௝, 𝑙௥ିଵ൫𝑦௝൯ + 𝛽𝑠൫𝑦௝; 𝛼௥൯

ெ

௝ୀଵ

) 

=
arg 𝑚𝑖𝑛

𝛽
∑ 𝐹(𝑥௝, 𝑙௥ିଵ൫𝑦௝൯ + 𝛽 ∑ 𝛾௜௥𝐽(𝑦௝𝜖𝐾௜௥))ூ

௜ୀଵ
ெ
௝ୀଵ                                                                (6) 

Equation (7) can be used to update the estimate 𝑙௥(𝑦) for the𝑟th branch of the regression tree.  
𝑙௥(𝑦) = 𝑙௥ିଵ(𝑦) + 𝛽௥𝑠(𝑦, 𝛼௥)                                                                                                       (7) 
Estimator 𝑓(𝑦) is derived using Eq. (8).  
𝑓(𝑦) = ∑ 𝑙௥(𝑦)ோ

௥ୀଵ                                                                                                                         (8) 
The optimal values of the parameters m are determined by the gradient ascent method by minimizing the least square 
function provided by Eq. (4). Eqs. (4) and (6) provide a way to determine the values of m. Algorithm 1 is a description 
of the GADT algorithm. Figure 2 illustrates the basic structure of the decision tree model.  

 
Figure 2: Basic structure of decision tree model 
 

Algorithm 1: GADTM algorithm 

The label 𝒙 for each patient; the ASD feature vector𝒚; 
) Make certain: The final estimator is 𝒍(𝒚). 

Step 1: Initialize 𝒍𝟎(𝒚); 𝒍𝟎(𝒚) =
𝒂𝒓𝒈 𝒎𝒊𝒏

𝜷
∑ 𝑭(𝒙𝒋, 𝜷)𝑴

𝒋ୀ𝟏  

Step 2: Compute the negative gradient 𝒙෥𝒋𝒓𝑏𝑦𝐸𝑞. (7) 

Step 3: Compute the parameters 𝛼௥ 
Step 4: Fit the decision tree 𝒔(𝒚; 𝜶𝒓)to the gradient 𝒙෥𝒋𝒓 

Step 5: Compute the parameters 𝜷𝒓 by 
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Step 6: Update 𝒇𝒓(𝒚) by 
Step 7: For each choice tree, repeat steps 2 through 6. 
Step 8: The final estimator is𝒍(𝒚) 

3.6. Statistical Analysis  
Univariate significance testing, redundancy analysis, and Collinearity findings indicated that; only 40 of the original 66 
variables were kept in the final model. The state-of-the-art techniques of predictive analytics were used to develop a 
generalized linear regression model. The database's missing values were approximated using the mean and median 
imputation methods. All variables had coverage of 90% or higher, with no imputed data exceeding 10% of the total for 
any one variable. Using a bootstrap sample with the replacement for internal validation, we created a training and testing 
dataset. Patients who were unintentionally excluded from the bootstrap sample made up the dataset used for validation. 
The training dataset was used to train the model, while the testing dataset was used to evaluate the model's performance 
and predictions. Because of the skewed LOS results, natural log transformations were applied during model training and 
testing. Standard LOS in days was then recalculated from the final anticipated LOS. Accuracy was determined by 
comparing forecasted LOS to observed LOS in the validation set. The model was developed using a product that is 
currently on the market. 

i. Linear regression model 
Linear regression is a subset of multiple linear regression that allows for the gradual incorporation of new variables into 
the model by way of hospital observation periods. This is done regularly to "regulate" certain parameters analytically, to 
find out whether and when additional variables are needed to improve a model's ability to anticipate the exchange and 
to "explore" a variable. The following is observed in a linear regression where the slopes are created using a standard 
hyperprior: 

𝑜௙ௗ~𝑍൫𝛼௙ + 𝛽௙ ∙ 𝑠௙ௗ , 𝜎ଶ൯              (9) 

𝛽௣~𝑍൫𝛽଴, 𝜎ଶ
ఉ൯               (10) 

Where and represent, respectively, the interception and slope for 𝑡ℎ𝑒 𝑑thgroup, where 𝛽଴is the 𝑓th value in group 
𝑜௙ௗobtained at time t, and where 2 is the observational variability. We have 𝛽௤measured groups.Particularly, setting 

𝛼௙ + 𝛽௙when 𝑠 = 𝑠௙ௗyields a single command that enacts all of these priors, which is convenient. 

𝑦𝐶𝐿(𝜃|𝑤ଶ) =
ଶ

గ

௨

௨మାఏమ         (11) 

𝑜௙ௗ~𝑍൫𝛼௙ + ൫𝛽଴ + 𝜉ఎ௙൯ ∙ 𝑠௙ௗ , 𝜎ଶ൯            (12) 

𝜂௙~𝑍൫0, 𝜎ଶ
ఎ൯               (13) 

In this case, it enables fast evaluation of updated priors. If 0, then there is no difference between 𝑜௙ௗ and 𝜂௙ . 

𝜉~𝑍(0,1)                (14) 

𝜎ఎ~𝑇𝐸𝐶 ቀ
ଵ

ଶ
𝑜,

ଵ

ଶ
𝑥𝑢ଶቁ               (15) 

𝜎ఋ~|𝑝௢|(𝑤ଶ)                (16) 
Both the past and present methods are conditionally comparable, meaning that they take the same shape as the 
distributions with the same variables. 

4. Result  
4.1. Patient Demographics 

The total number of patients in the cohort was 653. The average age of the participants was 58.15 (range: 18-86), and 
there were 504 women and 143 men. The median ASA class was II, and the range was I to IV (47 to 254 cases). The 
mean BMI was 27. The average scores on the 36-item Short Form Health Survey were 31, while the Oswestry Disability 
Index averaged 44. 305 patients, or 47%, had prior surgical intervention, with 233 of those being fusions, accounting for 
36% of the total. Seven percent (45) of the patients were smokers. Table 1 summarizes the demographics and spinopelvic 
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characteristics of the patients. 
Table 1: Demographics and spinopelvic features of the patients 

Factors  Value 
Gender  
BMI, mean±SD 27±6 
Female 504 (78%) 
Male 143(22%) 

Age, years, mean±SD (range) 58±15(18-86) 
ASA Category 
4 9 (1%) 
3 254 (39%) 
2 315 (48%) 
1 47 (7%) 
Prior surgery 305 (47%) 
Smoker 45 (7%) 
SF-36 score, mean ± SD 31±10 
Prior fusion 233 (36%) 
Normal neurologic examination 458 (70%) 

ODI score, mean ±SD 44± 18 
Normal values of spinopelvic measurements (mean standard 
deviation) 
SVA, cm 6.9±7.5 
PI-LL mismatch, 16±21 
Pelvic tilt, 23±11 

 
Only 4% of fusions were performed anteriorly, while 642% were performed posteriorly. “Five cervical, 287 upper 
thoracic, 53 middle thoracic, 276 lower thoracic, and 23 lumbosacral vertebrae were instrumented”. There were 12 
thoracic, 139 lumbar, 493 sacroiliac, and 435 iliac instrumentation instances. Sixty percent of patients underwent surgical 
decompression. In 24% of the patients, a three-column osteotomy was necessary. The median length of stay was 7 days 
(range: 0–28 days), while the mean was 7.9 days. Table 2 displays the qualities of Surgery.  
Table 2: Qualities of Surgery 

Variable Value 
Site of fusion 
Posterior 643 (98.3%) 
Anterior 5 (0.6%) 
Upper instrumented vertebrae 
Upper thoracic (T1-T5) 288 (44%) 
Lower thoracic (T10-L2) 277 (42%) 
Middle thoracic (T6-T9) 54 (8%) 
Cervical 6 (0.8%) 
Lumbosacral 24 (4%) 
Lower instrumented vertebrae 
Lumbar 140 (21%) 
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Iliac fixation 436 (67%) 
Thoracic 13 (2%) 
Sacroiliac 494 (76%) 
Levels decompressed 
1 356 (54%) 
2 36 (5%) 
3 5 (1%) 
None 255 (39%) 
Osteotomies 
LOS, days, mean ±SD 9± 4 
Smith-Peterson 344 (53%) 
Three-column 156 (24%) 

 

 
Figure 3: Patients for LOS 
The patients' LOS is depicted in Figure 3. The training dataset consisted of 653 cases, whereas the testing dataset included 
an additional 240 patients (22%). The linear correlation in training was 0.632 while the correlation in testing was 0.507. 
Within 2 days of the actual LOS, 88% (181 of 240 patients) of the testing dataset were correct.  
The effectiveness of the suggested model is compared to that of a Random Forest (RF), Support Vector Machine (SVM), 
Bayesian network (BN), and artificial neural network (ANN). Using the proposed and existing methodologies, 
performance measures such as accuracy, precision, sensitivity, and f1-score RMSE were analyzed. Table 3 depicts the 
performance analysis of the proposed and existing methods.  
Table 3: Performance analysis of proposed and existing methods 

 Performance Analysis 
Methods Accuracy (%) Precision 

(%) 
Sensitivity 
(%) 

F1-score (%) RMSE (%) 

ANN 49 57 46 52 0.49 
BN 53 48 51 56 0.61 
SVM 65 66 68 70 0.33 
RF 82 83 78 85 0.30 
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GADTM 
[Proposed] 

98 99 95 97 0.29 

 
The accuracy of a statement can be determined by dividing the number of words by the corresponding number of accurate 
classifications. The system's accuracy depends on the classifier's ability to categorize students' results correctly. In 
mathematics, precision means, 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(୘୔ ା ୘୒)

(୘୔ ା ୘୒ ା ୊୔ ା ୊୒)
                                                                                                 (17) 

 
Figure 4: Comparison of the accuracy 
Figure 4 displays the results of the comparison of accuracy. Compared to established approaches RF, SVM, BN, and 
ANN, the suggested method GADTM has higher significance accuracy. 

 
Figure 5: Comparison of the precision 
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Figure 5 displays a comparison of the precision. Precision can also be assessed using a positive predictive value (PPV) 
statistic. Precision is determined by the number of accurate class predictions made from a specific sample. It compares 
the actual results to the predictions, in other words. To determine how precise an observation is, apply the formula below: 

 Precision = 
୘୰୳ୣ ୮୭ୱ୧୲୧୴ୣ

    ୘୭୲ୟ୪ ୮୰ୣୢ୧ୡ୲ୣୢ ୮୭ୱ୧୲୧୴ୣ
                                                                                              (18)  

  
Compared to other approaches like RF, SVM, BN, and ANN, the suggested method GADTM demonstrates that estimates 
from children for ASD data have higher precision. 
The sensitivity of a classifier is defined as its ability to detect genuine successes. The degree to which the system can 
accurately identify instances of skin diseases is directly proportional to the system's sensitivity. The corresponding 
mathematical expression for this is as follows: 

Sensitivity =
்௉

்௉ାி
                                                                                                                     (19) 

 
Figure 6: Comparison of the sensitivity 
The sensitivity comparison is shown in Figure 6. The suggested GADTM is more sensitive than previously used methods 
such as RF, SVM, BN, and ANN. 
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Figure 7: Comparison of the F1-score 
Figure 7 displays a comparison of the F1 score. The F1 score also takes accuracy and recall into account. The frequency 
mean is a statistical measure representing the middle point between two sets of images. Due to the delay in applying 
conventional statistical distributions, modern methods of averaging numbers are sometimes better suited for use with 
ratios. The proposed approach of GADTM has a higher F1 score than preexisting methods like RF, SVM, BN, and ANN. 
The most significant network measurement point mismatch between a dataset's state vectors and coordinate values from 
a highly independent source is used to determine the root-mean-square error (RMSE). There is a significant association 
between the disparity in expected and actual patients for each connection and the objective measure of accessibility, even 
though the totals are calculated differently. 

RMSE = ට∑
௖௢௨௡௧೗ି௠௢ௗ ೗]మ

ே

ு[
௟              (20) 

 
Figure 8: RMSE of the proposed and existing method 
The RMSE contrast is shown in Figure 8.  The RMSE, which is the average difference between a variable's actual and 
projected values, is used to assess the effectiveness of prediction modeling of LOS in general surgery patients. Modern 
techniques like RF, SVM, BN, and ANN have lower root mean square errors than the suggested method GADTM. 
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5. Discussion  
To better manage high-risk patients, tools that can predict LOS in ASD will become increasingly important. There is a 
dearth of writing on this subject, despite its clinical and economic significance [20]. Patients with degenerative lumbar 
pathologies (levels 1–3) who are undergoing elective surgery have a new tool for LOS prediction and their development 
of the Carolina-Semmes Grading Scale. On the scale, having a score of 70 or above on the Oswestry Disability Index, 
having diabetes, being eligible for Medicare or Medicaid, being unable to walk without assistance, or being fused all 
indicate advanced age [21].  
Other authors have tried to isolate specific causes of prolonged spine surgery recovery times. Central sensitization 
syndrome is characterized by an aberrant and strong intensification of pain mechanisms, a tool for quantifying central 
sensitization syndrome symptoms, and was associated with longer LOS after accounting for other factors [22]. Anemia 
before and after surgery, as well as the degree to which it changed after surgery, was found to affect how long a patient 
stayed in the hospital and how much money they spent. Age, unemployment, the existence of three co-morbid disorders, 
and the presence of complications were found to affect LOS for patients undergoing revision lumbar spine surgery. For 
spinal procedures involving one to three levels, the only characteristics associated with LOS were age and ASA class, 
suggesting that these may be surrogates for sickness severity or markers of patients with better-developed social support 
networks. Researchers found that individuals with heart ailments had shorter LOS than those without the issue because 
of a more thorough preoperative work-up and stricter medical treatment. However, no comorbiditieswere predictive of 
LOS. This evidence demonstrates that determining a patient's risk level before surgery can help with resource allocation 
and improve health outcomes [23]. 
The factors affecting LOS in sizable populations have been studied using national statistics. Researchers [24] were able 
to identify almost 1800 patients who underwent elective posterior lumbar fusion between 2005 and 2010 using the 
American College of Surgeons National Surgical Quality Improvement Program database. The research indicated that 
ASA class, age, intraoperative blood transfusions, multiple procedures, and severe obesity (BMI 40) were all predictors 
of extended LOS.Interest has been piqued in a minimally invasive therapeutic approach known as transforaminal lumbar 
interbody fusions. There were significant differences between patients who stayed less than 24 hours and those who 
stayed more than 24 hours in terms of anticipated blood loss, crystalloids administered, surgical length, end-case 
temperature, hemoglobin, and opioid use before surgery. One of the few studies [25] to include immediate postoperative 
factors in LOS raises the possibility that dynamic or point-of-care technologies may be used to treat patients while they 
are being treated in hospitals. Hospitalization times could be shortened if these factors were to be discovered sooner. 
As a result, within 2 days post-ASD surgery, the provided model had a 75% chance of correctly predicting LOS. Many 
of the factors that affect the length of time a surgery takes have already been found in other research; they include the 
health of the patient and the degree of difficulty of the procedure. This model, built with state-of-the-art predictive 
analytic methods, is the first of its kind for people with ASD. The model's precision may have been compromised by 
information that was either not captured in this massive database or was too imprecise to measure;variables like social 
support networks, surgeon preferences, and hospital bed availability all play a role. In any case, By educating physicians, 
third-party payers, and even patients, our predictive algorithm can identify high-risk patients and aid in point-of-care 
decision-making before and immediately following surgery. 

6. Conclusion 
The purpose of this research was to propose a method for determining LOS following ASD surgery. Over 40 factors 
were examined and confirmed in a dataset consisting of 653 patients that was gathered using a retrospective analysis of 
a multicenter prospective dataset from the International Spine Study Group. Within 2 days, the model was 75% accurate 
in predicting LOS. To the best of our knowledge, no equivalent model has been designed for people with ASD. This tool 
will advance when more complex datasets with granular variables become accessible.Parameters including accuracy, 
precision, sensitivity, F1-score, and RMSE were examined in this research. The suggested GADTM produces output 
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with 98% accuracy, 99% precision, 94% sensitivity, 0.29% RMSE, and 97% F1 score.Although some intangibles affect 
LOS, such as the number of available rehabilitation beds or the emotional and financial support of loved ones, it is 
inevitable that the healthcare business will adopt the use of predictive tools for outcomes, complications, and LOS. 
Patient risk assessment and medical/surgical preparation will likely involve institutional interdisciplinary committees in 
the future. The group analyzed its data over three years and compared it to U.S. national averages obtained from the 
Agency for Healthcare Research and Quality. By designing efficient discharge plans, educating patients, and 
collaborating with rehabilitation facilities, this committee was able to reduce LOS statistically as compared to national 
norms. 
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