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*Abstract: In recent years, artificial intelligence has been developing rapidly in terms of software 
algorithms such as machine learning, deep learning, reinforcement learning, and hardware 
implementations like IoT, embedded systems, and sensor network systems. Arrhythmia is a 
medical condition that occurs when the normal pumping mechanism of the human heart becomes 
irregular. Detecting arrhythmia types is one of the essential steps in diagnosing the condition, and 
it can help cardiologists make decisions. This paper summarizes the latest developments in 
artificial intelligence for electrocardiogram-based arrhythmia type classification problems. This 
review aims to keep track of new medical and computer science accomplishments in recent years. 
This study will also help understand the workspace available in cardiology with artificial 
intelligence and inspire naive researchers using the recent research findings. Furthermore, this 
paper presents a systematic review of artificial intelligence, data mining, machine learning, and 
deep learning with feature extraction methods for building the AI model for cardiological data. 

*Keywords: Arrhythmia, artificial intelligence, feature extraction 
 

1. *Introduction 

Cardiology is a branch of medical science that deals with disorders of the heart and some parts 
of the circulatory system. Cardiologists diagnose and treat conditions such as congenital heart 
defects, coronary artery disease, electrophysiology, heart failure, and valvular heart disease. In 
most cases, cardiologists use an electrocardiogram (ECG) as a diagnostic tool. An ECG captures 
the physiological activities of the heart over a period. ECG charts help cardiologists understand 
the behavior of patients' hearts. Cardiologists easily find abnormalities of the heart such as atrial 
fibrillation (AF), premature atrial contraction (PAC), premature ventricle contraction (PVC), 
myocardial infarction (MI), and congestive heart failure (CHF). Generally, the heart signals are 
referred to by P, Q, R, S, and T waves [1]. A P wave occurs during atrial depolarization, a QRS 
complex wave during ventricular depolarization, and a T wave occurs during ventricular 
repolarization. One cardiac cycle starts from the P wave to the T wave, as shown in Figure 1. 
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1.1 Atrial fibrillation (AF):  

Humans' dangerous situations are blood clots, strokes, heart failure, and other heart-related 
complications. This happens due to an irregular heartbeat (arrhythmia) called A-Fib, or Atrial 
Fibrillation. The human heart comprises four chambers (two atrial chambers and two ventricle 
chambers), two upper chambers called atria, and two lower chambers called ventricles. Within the 
upper right chamber of the human heart (right atrium) is a group of cells called the sinus node. 
This is the human heart's natural pacemaker. Each heartbeat starts with the signal produced by the 
heart's sinus node. The signal travels through the two upper heart chambers and through a 
connecting pathway between the upper and lower chambers called the atrioventricular (AV) node. 
Because of the signal movements, the heart squeezes (contracts), sending blood to your heart and 
body [1]. Usually, the human heart contracts and relaxes to a regular beat. In atrial fibrillation, the 
atrial part of the heart (upper chambers of the heart) beats irregularly instead of effectively moving 
blood into the ventricles. A stroke results if a clot breaks off, enters the bloodstream, and lodges 
in an artery leading to the brain. This heart arrhythmia affects approximately 15–20 percent of 
stroke patients. Even though untreated atrial fibrillation doubles the risk of heart-related deaths 
and is associated with a 5-fold increased risk of stroke, many patients are unaware that A-Fib is a 
serious condition [2]. 

1.2 Premature atrial contraction (PAC):  

Premature atrial contractions (PACs) are contractions of the atria that are triggered by the atrial 
myocardium but have not originated from the sinoatrial node (SA node). PACs are commonly 
referred to as atrial premature complexes (APCs), premature supraventricular complexes (PSVs), 
premature supraventricular beats, and premature atrial beats. This phenomenon can be caused by 
an assortment of medical diseases, structural abnormalities, pharmaceuticals, and non-regulated 
compounds. [3]. 

1.3 Myocardial infarction (MI):  

A heart attack is medically called a myocardial infarction (MI). The heart's blood flow decreases 
or stops at a part of the heart that causes this myocardial infarction. The most common symptom 
is chest pain or discomfort, which may travel into the shoulder, arm, back, neck, or jaw. Myocardial 
infarctions are one of the leading causes of death in the developed world, with a prevalence 
approaching three million people worldwide and more than one million deaths in the United States 
annually. This activity reviews the presentation, evaluation, and management of patients with 
myocardial infarctions and highlights the role of the interprofessional team in caring for these 
patients. [4]. 

1.4 Congestive heart failure (CHF):  

Congestive heart failure (CHF) is a chronic, progressive condition affecting the heart muscle's 
pumping power. While often referred to simply as heart failure, CHF specifically refers to the stage 
in which fluid builds up within the heart and causes it to pump inefficiently. CHF develops when 
the ventricles can't pump enough blood volume to the body. Eventually, blood and other fluids can 
back up inside human parts: the lungs, abdomen, liver, and lower body. CHF can be life-
threatening. In today's era, the rising volume of patients is driven by these heart problems. 
Traditional health care models and software are insufficient to deal with affected people with 
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timely and high-quality outcomes. Therefore, healthcare experts, medical scientists, and 
researchers focus on a new, intelligent patient and data-oriented approach. Artificial intelligence, 
machine learning, deep learning, natural language processing, reinforcement learning, IoT, and 
robotic medical systems are promising areas in medical fields. They thus could help diagnose heart 
failure patients efficiently [5]. The next part of cardiology is monitoring and measuring the heart's 
health. The two major measuring tools are echocardiography and electrocardiography (ECG). An 
echocardiogram is a live imaging test that doctors use to monitor heart activity. The principle of 
echocardiography is echoing. (For example, when we seek into a well, the echo returns a fraction 
of a second later because our sound wave reflects off a surface.) the same principle is applied to 
cardiac ultrasound. Echo generates cardio images using high-pitched sound waves. 
Echocardiograms can help physicians view live feeds of a beating heart to get important functional 
data about heart health [6]. An ECG is a medical device. Doctors usually use ECG to understand 
the electrical activity of a patient's heart. An electrocardiogram charts the electrical rhythm of a 
patient's heart in the form of waves. Waves that are inconsistent, irregular, or non-standard can be 
a sign of heart disease. The purpose of an electrocardiogram is to help the doctor understand the 
heart's health and check for abnormalities [7]. Heart Echo and ECG provide different kinds of heart 
measurement results to doctors. Even though two devices give suitable measurement parameters, 
doctors still need time to select the treatment method. In recent days, deep learning and AI-based 
algorithms have the highly accurate capability of interpreting the echo and ECG results, classifying 
heart problems, and deciding on further treatments [8]. In the upcoming sections of this paper, we 
will discuss how artificial intelligence helps cardiologists from the perspective of measuring 
devices like echo and ECG, heart problems like A-fib, CHF, MCI, and others. 

2. ECG INTERPRETATION:  

Arrhythmias are frequently detected through electrocardiogram monitoring. Because of aging 
populations, the availability of simple-to-use wearable devices and the quantity of ECG recordings 
are growing [9]. The initial step in ECG analysis is capturing the QRS complex wave pattern from 
the ECG data. The various QRS complex wave shapes cause the majority of arrhythmias. In other 
words, arrhythmias are described using the QRS waveform structure. QRS detection techniques 
are divided into four groups: There are four approaches: (i) syntactic approaches, (ii) non-syntactic 
approaches, (iii) hybrid approaches, and (iv) transformational approaches [10]. QRS detection 
methods based on pattern recognition are used in the syntactic approach. Non-syntactic techniques 
use digital filters to eliminate extraneous components from ECG data and output just the QRS 
waves. Non-syntactic techniques are commonly employed. The hybrid technique combines 
syntactic and non-syntactic approaches to detect the QRS complex. These are not often used. The 
transformative techniques used include Fourier Transform, Cosine Transform, Pole–Zero 
Transform, Differentiator Transform, Hilbert Transform, and Wavelet Transform to detect the 
QRS complex patterns [11]. 

3. NEURAL NETWORK 

With the advent of big data, tremendous opportunities have emerged to develop AI systems that 
are more efficient, supporting not just clinicians but also countries in providing better healthcare 
to their residents [12]. Deep learning relies heavily on artificial neural networks (ANNs). They are 
adaptable, robust, and scalable, making them suitable for large-scale, high-complexity machine 
learning applications like classifying billions of photos, enabling voice recognition, identifying 
arrhythmias, and segmenting tumors. Surprisingly, ANNs have been around for a long time; 
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Warren McCulloch, a neurophysiologist, and Walter Pitts, a mathematician, initially presented 
them in 1943 in their seminal work. [13].McCulloch and Pitts offered a simple computational 
model of how biological neurons in animal brains may work together to accomplish complicated 
computations using propositional logic. The first artificial neural network architecture was created 
in this way. A neural network is a highly complicated structure composed of interconnected 
neurons that offers exciting alternative solutions for complex problem solving and other 
applications. In today's computer science field, researchers from various disciplines are developing 
artificial neural networks to solve problems like pattern recognition, prediction, optimization, 
associative memory, and control [14]. We will start with the biological neuron before moving on 
to the artificial neurons. 

The biological neuron in Figure 2 is made up of a cell body that contains the nucleus and most of 
the cell's complicated components, as well as multiple branching extensions called dendrites and 
one very long extension called the axon. The axon's length can range from a few millimeters to 
tens of thousands of millimeters, longer than the cell body. The axon divides into multiple branches 
termed telocentric towards its extremities. At the tips of these branches are microscopic structures 
known as synaptic terminals (or) synapses, which are linked to the dendrites (or) directly to the 
cell bodies of other neurons. These synapses allow biological neurons to receive brief electrical 
impulses called "messages" (signals) from other neurons. When a neuron briefly gets adequate 
messages (signals) from other neurons, it fires its own signals. Individual biological neurons 
appear simple, but they are arranged in a massive network of billions of neurons, with each neuron 
often linked to thousands of other neurons. A vast network of relatively primary neurons may 
conduct highly complicated calculations, just like a sophisticated anthill can grow from the joint 
efforts of simple ants. In 1957, Frank Rosenblatt invented the Perceptron model shown in Figure 
3. one of the simplest ANN architectures. It is built on an artificial neuron that was a little unusual. 
Numbers are used as inputs and outputs. Each input connection has a weight associated with it. 
The perceptron calculates the weighted sum of its input using the formula

, then applies a step function to them and outputs the result

. 

As we will see in this chapter, many additional architectures have been developed since then. There 
are several reasons to believe that this AI wave will be different and will have a far greater 
influence on our lives: (i)there is a greater volume of data available, (ii)higher processing power, 
and (iii)incredible AI-based technologies consistently make headline news [15]. 

3.1. CNN  

Deep learning has several advantages over traditional machine learning techniques, including the 
ability to find meaningful characteristics in high-dimensional data independently of a simple 
neural network. CNN has evolved as a popular approach for classifying objects based on their 
environment. It has a tremendous capacity to absorb contextual information and, as a result, has 
solved the challenges of pixel-by-pixel categorization. It greatly reduces the number of parameters 
necessary [16]. A convolutional neural network is made up of three layers: convolution layers, 
pooling layers, and fully connected layers, and it learns spatial hierarchies of data automatically 
and adaptively using a backpropagation method. The first two layers, convolution, and pooling 
extract feature, while the third, a fully connected layer, transfers the collected features into a final 
output, such as classification. A convolution layer is an integral part of CNN, comprising a stack 
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of mathematical operations like convolution and a specific linear operation. As previous layers 
feed their outcomes to the next layer, the extracted characteristics can grow in-depth in a 
hierarchical manner, which is shown in figure 4. The iterative process of achieving a good result 
is called training. Model training reduces the difference between output and labels through 
optimization algorithms such as gradient descent and backpropagation [17]. The ability to extract 
features varies depending on the CNN structure. The classification performance of the CNN 
classifier will improve as the convolutional layer is deepened. However, when the convolutional 
layer extends to a given depth, the classifier's performance deteriorates, and the training time 
increases. [18]. 

3.2. RNN 

Recurrent neural networks are intended to comprehend temporal or sequential data. These 
networks use other data points in a sequence to create better predictions. They do this by accepting 
input and exploiting the activations of previous or later nodes in the sequence to impact the output. 
Because ECG data are essentially sequential time series data, RNN structures are well suited to 
learning hidden patterns from ECG signals. CNN is a feed-forward artificial neural network that 
employs multilayer perceptron with little pre-processing. RNNs, unlike feed-forward neural 
networks, can handle arbitrary sequences of inputs using their internal memory. Recurrent neural 
networks were created because of their highly dynamic activity, whereas multilayer feed-forward 
networks have static mappings. RNNs have been employed in a variety of applications, including 
associative memory, optimization, and generalization. [19]. Another important RNN architecture 
is the long short-term memory (LSTM) network, a form of RNN commonly employed for time 
series analysis. It can successfully remember previous knowledge and realize long-term text 
reliance learning. It has been used in various applications, including natural language processing 
and speech recognition. LSTM is also utilized to identify ECG arrhythmias. Recent research shows 
LSTMs are highly capable of classifying ECG signals, producing 99.74% average accuracy for 
ECG classification problems [20].figure 5 depicts the general RNN architecture for the 
classification problems. 

3.3. GAN  

A Generative Adversarial Network (GAN) comprises two neural networks, one generator and one 
discriminator, and each network competes with the other. The generator network learns to map a 
noise vector to the data distribution it wishes to create. The generator's purpose is to generate data 
samples comparable to the samples in the original dataset. The discriminator network, on the other 
hand, gets data samples from either created (fake) or genuine (real) samples and is responsible for 
identifying whether the received samples are real or false [21]. GAN-based ECG Classification 
models are best suited for real-time ECG monitoring, where they can perform reliably and 
effectively. Generally, GAN models support the dual learning task of synthesizing adversarial 
ECG signals while classifying the signal category [22].  

4. ECG DATA SOURCES  

The collection of ECG data frequently necessitates using costly hardware, a medical specialist's 
assistance, and the target patients' consent. As a result, to improve ECG-centric research for 
numerous applications, one of which is AF, researchers have created public databases such as 
physionet. The availability of such information brings up many options for experimenting with 
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various feature extraction and ML approaches in building machine learning-driven solutions [23]. 
ECG annotations are frequently expensive to gather, limiting the size of many ECG data sets and 
preventing the collection of a vast ECG database that reflects the heterogeneity of ECG data. The 
optimal solution to the arrhythmia classification problem is to investigate unsupervised and self-
supervised (i.e., labels are created automatically) algorithms for larger datasets[24]. Table 1 
provides the major Physionet ECG databases with specifications. 

Thanks again to Physionet for donating the ECG digital data registries. Physionet challenges are 
another reason why ECG-based arrhythmia classification is more acceptable. Many well-known 
healthcare companies are launching conceptual framework gathering events on AI-based cardiac 
issues using the physionet challenges platform. Table 2 lists the most popular Physionet cardiac 
challenges from 2010 to 2021. 

The number of users and researchers participating in physionet challenges has grown in recent 
years. Figure 6 depicts the performance of the physionet tasks during the last few years. In Table 
2, from 2010 to 2014, the information about the arrhythmia classification challenges is taken from 
the components of a new research resource for a complex physiologic signals database [28]. 

5. ARTIFICIAL INTELLIGENCE APPROACH TO CLASSIFY THE ECG SIGNALS: 

Artificial intelligence (AI) is a broad field of computer science that focuses on creating intelligent 
computers that can accomplish activities that normally require human intelligence. Although ECG 
has long provided useful insights into cardiac and non-cardiac health and illness, interpreting it 
requires significant human ability. The use of AI in the ECG is an important phenomenon. 
Advanced AI technologies, like Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), Long Short Term Memory (LSTM) Architecture, and Generalized Adversarial 
networks (GAN), have enabled quick, human-like ECG interpretation. In contrast, multilayer AI 
networks can identify signals and patterns that are essentially incomprehensible to human 
interpreters, making the ECG a strong, non-invasive diagnostic. The AI models for detecting 
arrhythmias like left ventricular dysfunction, atrial fibrillation, and hypertrophic cardiomyopathy, 
as well as determining a person's age, sex, and race, among other phenotypes, have been developed 
using large sets of digital ECGs linked to rich clinical data. With the fast development in the 
availability of mobile and wearable ECG devices, AI-based ECG phenotyping's clinical and 
population-level implications are still being discovered. [37]. Using 91,232 single-lead ECGs from 
53,549 individuals who used a single-lead ambulatory ECG monitoring equipment, a deep neural 
network (DNN) was able to classify 12 rhythm classes (atrial fibrillation and flutter, AVB 
(atrioventricular block), Bigeminy, EAR (ectopic atrial rhythm), IVR (idioventricular rhythm), 
Junctional rhythm, noise, sinus rhythm, SVT (supraventricular tachycardia), Trigeminy, 
Ventricular tachycardia, Wenckebach). For every 256 input samples, the network receives raw 
ECG data (sampled at 200 Hz or 200 samples per second) and produces a prediction of one of 12 
potential rhythm classes. By effectively training or emphasizing the most critical problems, this 
strategy might lower the rate of misdiagnosed automated ECG readings and enhance the efficiency 
of expert human ECG interpretation [38]. In 2018, Pawel Plawiak and UR Acharya [39] 
demonstrated that a complex machine learning architecture could achieve 99.37 percent accuracy 
for a 17-class electrocardiogram classification problem. They created a 48 + 4 + 1 Genetic 
Algorithmic architecture that uses the MIT Arrhythmia database to classify 17 ECG classes 
("Normal sinus rhythm, Atrial premature beat, Atrial flutter, Atrial fibrillation, Supraventricular 
tachycardia, Pre-excitation (WPW), Premature ventricular contraction, Ventricular bigeminy, 
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Ventricular trigeminy, Ventricular tachycardia, Idioventricular rhythm, Ventricular flutter, 
Fusion of ventricular and normal beat, Left bundle branch block beat, Right bundle branch block 
beat, Second-degree heart block, Pacemaker rhythm.") from 29 patients' records. The architecture 
is made up of three layers: the first layer has 48 models (12 SVM (Support Vector Machine) + 12 
KNN (K-Nearest Neighbour) + 12 PNN (Probabilistic Neural Network + 12 RBFNN), and the 
second layer contains four SVM models. The final layer contains one SVM model with robust 
ensembling features. This model can be used in cloud computing or mobile devices to quickly 
assess cardiac health with the highest specificity score (99.6 percent). Bahareh Pourbabaee, 
Mehrsan Javan Roshtkhar, and Khashayar Khorasani [40] experimented with five deep learning 
architectures to detect arrhythmias in an ECG signal. They employ two segments: the first extracts 
the essential features from the input ECG signals, and the second classifies the arrhythmia using 
filtered signals. They make use of the PAF Prediction Challenge Database v1.0.0 [41]. Table 3 
displays their experimental details along with their f1 score. The feature extraction tasks are 
dominated by the KNN and Gaussian SVM models. Compared to handcrafted features, 
experimental results confirm the effectiveness of the learned features for patient screening. F1 
Score is calculated using the formula F1 Score=2*(Precision*Recall) Precision+ Recall. 

3.2. Figures, Tables and Schemes 

 

Figure 1. One cardiac cycle Waves 

 

Figure 2. Biological Neuron 
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Figure 3. Perceptron Model 

 

Figure 4. General CNN Architecture for Arrhythmia Classification 

 

Figure 5. General RNN Architecture 
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Figure 6. Performance of Physionet cardiac challenges 

Table 1. ECG Data Registries for Arrhythmia Classifications 

S.No Physionet Challenges Specifications 
ECG Record 
details 

1 

MIT-BIH: The 
Massachusetts 
Institute of 
Technology – Beth 
Israel Hospital 
Arrhythmia Database 
[25]. 

The MIT-BIH Arrhythmia Database 
comprises 48 half-hour snippets of two-
channel ambulatory ECG recordings 
acquired from the BIH Arrhythmia 
Laboratory's 47 patients. 

48 records of 30 
min each 

2 
EDB: The European 
Society of Cardiology 
ST-T Database [26]. 

The European ST-T Database evaluates 
algorithms for analyzing ST and T-wave 
variations. 

90 records of 2 
hours each 

3 
NST: The Noise Stress 
Test Database [27]. 

This collection contains 12 half-hour ECG 
recordings and three half-hour noisy 
recordings typical of ambulatory ECG 
recordings. The noise recordings were made 
with physically active volunteers and 
conventional ECG recorders, leads, and 
electrodes; the electrodes were positioned on 
the individuals' limbs in areas where the 
ECGs could not be seen. 

12 records of 
ECG of 30 min 
each, plus three 
records with 
noise excess 

4 
Intracardiac Atrial 
Fibrillation Database 
[28]. 

This collection contains endocardial 
recordings from the right atria of eight atrial 
fibrillation patients. The database has four 
records for each of the eight patients (one for 
each placement). Each record's name 

8 Records of 
ECG Sampled 
at 1Khz 
frequency 
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identifies the patient (iaf1, iaf2,... iaf8) and 
the catheter placement (svc, ivc, tva, afw). 
Each record has eight signals (intracardiac: 
CS12-CS90, or ECG: I, II, V1, aVF). Each 
signal is sampled at 1 kHz with a 14-bit 
resolution, and the amplitudes are 
uncalibrated. 

5 
Long Term AF 
Database [29]. 

This database contains 84 long-term ECG 
recordings from patients with paroxysmal or 
persistent atrial fibrillation (AF). Each 
record comprises two ECG signals collected 
concurrently at 128 Hz with 12-bit resolution 
across a 20 mV range; record lengths vary 
but are generally 24 to 25 hours. 

84 long-term 
Records up to 
24 to 25 hours 

Table 2. Physionet challenges and year wise research outcomes 

Year Physionet Challenge Name 
Number of 
Resultant 
Publications 

Source Code 
Availability 

2021 
Will Two Do? Varying Dimensions in 
Electrocardiography: The PhysioNet/Computing 
in Cardiology Challenge 2021 [30]. 

60 
Still not 
Accessible 

2020 
Classification of 12-lead ECGs: The 
PhysioNet/Computing in Cardiology Challenge 
2020 [31]. 

62 
Still not 
Accessible 

2019 
Early Prediction of Sepsis from Clinical Data: The 
PhysioNet/Computing in Cardiology Challenge 
2019 [32]. 

55 90 

2018 
You Snooze You Win: The PhysioNet/Computing 
in Cardiology Challenge 2018 [33]. 

32 18 

2017 
AF Classification from a Short Single Lead ECG 
Recording: The PhysioNet/Computing in 
Cardiology Challenge 2017 [34]. 

44 68 

2016 
Classification of Heart Sound Recordings: The 
PhysioNet/Computing in Cardiology Challenge 
2016 [35]. 

13 47 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 
2025; Vol 14: Issue 1 

www.healthinformaticsjournal.com 

Open Access 

237 

 

 

2015 
Reducing False Arrhythmia Alarms in the ICU: 
The PhysioNet/Computing in Cardiology 
Challenge 2015 [36]. 

20 27 

2014 
Robust Detection of Heart Beats in Multimodal 
Data: The PhysioNet/Computing in Cardiology 
Challenge 2014. 

15 34 

2013 
Non-invasive Fetal ECG: The 
PhysioNet/Computing in Cardiology Challenge 
2013. 

29 24 

2012 
Predicting Mortality of ICU Patients: The 
PhysioNet/Computing in Cardiology Challenge 
2012. 

17 15 

2011 
Improving the Quality of ECGs Collected using 
Mobile Phones: The PhysioNet/Computing in 
Cardiology Challenge 2011. 

17 6 

2010 
Mind the Gap: The PhysioNet/Computing in 
Cardiology Challenge 2010. 

12 4 

Table 3. Performance Indices for the Combination of Feature Extraction and Classification 
Architecture 

Experiment 
Number 

Feature 
Extraction 
Method 

Classification 
Method 

Precision Recall 
F1 
Score 

1 CNN CNN 93.60 76.47 84.17 

2 KNN CNN 90.79 90.20 90.49 

3 Linear SVM CNN 87.58 87.58 87.58 

4 Gaussian SVM CNN 92.96 86.27 89.49 

5 
Multi-Layer 
Perceptron 

CNN 90.65 82.35 86.30 
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6. CONCLUSION 

In this study, we have discussed the different types of heart arrhythmias, the importance of 
detecting the arrhythmia, and the challenges available in the ECG monitoring and arrhythmia 
detection process. We also reviewed the various artificial intelligence methodologies already used 
for the arrhythmia classification problem. The AI methods involve feature extraction and 
classification steps for this classification problem. This study aimed to investigate efficient feature 
extraction and neural network methods for the arrhythmia classification problem. It is also 
concluded that using a proper combination of feature extraction and classification network can 
improve the performance of the arrhythmia classifier. 

Funding: This research received no external funding 
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