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ABSTRACT: Image denoising poses a major challenge in the field of medical imaging, particularly when analyzing
thin blood smear images to detect malaria-infected cells. Most traditional noise-freezing methods cannot accomplish
image noise-freezing because the various noise types in medical images are too complex. This study presents a dedicated
noise-freezing approach that leverages state-of-the-art deep neural network architectures to noise-freeze images of
malaria-infected cells in thin blood smears. It uses a two-network method. The first network is designed to identify and
classify some of the most prevalent noise types in the medical imaging field: speckle noise, salt and pepper noise, Poisson
noise, and Gaussian noise. The first network helps to classify the noise, and based on the previous classification, the
second network performs noise-freezing using the information from the first network to effectively remove the identified
noise types. This customized method approach aims to provide a solution to these challenges while dealing with the
specific noise types provided by images of malaria-infected cells. The results show that in addition to producing higher
accuracy in classifying noise, the high quality of noise-free images has also improved significantly.
Keywords: Deep Convolutional Neural Networks (CNN), Quantitative Image Quality Metrics (PSNR, SSIM), Swish
Activation Function, Sparsemax for Classification, Residual Learning for Image Denoising
1. Introduction
Data acquisition errors cause loss of information and make it hard to characterize the tissue or other features of
interest hence, extracting useful and interpretable information from noisy images still is and always remains an
important problem of image analysis and has important implications for medical diagnosis. Image denoising: One
of the important preliminary steps in image processing to removing noise artifacts and preserving the structure and
texture of the actual information presented. This step is crucial for medical imaging since the quality and reliability
of visual data directly affect the accuracy of diagnosis and the results of the decision-making process. (Muksimova
et al., 2023). In thin blood smear images used for malaria diagnosis, noise hides important visual cues and disrupts
the entire diagnosis process. Noise in medical images has different origins including limitations of imaging
modalities, poor acquisition conditions, and noise from the environment in the process of capturing images. This
can lead to a variety of noise types including speckle noise, salt-and-pepper noise, Poisson noise, and Gaussian
noise, each one bringing its complications to the process of detection and removal. Common noise in ultrasound
imaging is Speckle noise caused by constructive and destructive interference of coherent waves whereas salt-and-
pepper is usually based on defective transmission or due to hardware faults. For example, in the case of a thin blood
smear where morphological characteristics of invading cells might be faint, these noise artifacts can occlude small
features so critical for accurate testing and diagnosis of conditions such as malaria (Magsood et al., 2021; Poostchi

et al., 2018). Traditional noise-removal techniques often rely on well-established hypotheses about the type of noise
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and its statistical properties. These include linear or non-linear filtering, wavelet-based methods, and optimization
methods. Although such methods can provide adequate results for certain noise types, their performance often
deteriorates when it is subjected to the complex and varied characteristics of noise in particular medical images
(Wachowiak et al., 2000). Moreover, these approaches have a limitation in that they have to compromise between
noise reduction and non-edge smoothing since more smoothing will remove the important edges and less smoothing
will keep the noise. This shortcoming of traditional methods points towards the requirement of sophisticated noise-
removal techniques designed to address the complexities of medical imaging (Abuya et al., 2023).
This research introduces a new approach based on state-of-the-art deep neural networks to the problem of medical
image noise stabilization, specifically applied to malaria-infected thin blood smear images. With deep learning,
hierarchical representations can be learned directly from the data, and hence the model can adapt to different types
of noise without requiring any fixed and hand-crafted assumptions. Unlike existing noise-stabilization methods,
our dual-network framework benefits from the complementary nature of domain-specific knowledge and data-
driven learning. The noise classification network in the framework is deepened to accurately classify noise types,
and then a noise-specific noise-stabilization network is built to remove the classified noise while preserving
essential image details. This modular, adaptive architecture can learn diverse noise patterns in malaria diagnosis
data, preserving features essential for malaria diagnoses, such as cell morphology- and parasite structures. Through
experiments, it shows that our method achieves excellent classification accuracy of noise compared with existing
methods while generating visually pleasing noise-free images and outperforming other methods, thereby increasing
the reliability and efficiency of malaria diagnosis.
2. Literature Review
Malaria, an infectious disease caused by parasites of the Plasmodium genus and sometimes fatal, has traditionally been
diagnosed through microscopic blood smear examination a practice that dates back to the late 19th century. This approach
was established in the early days of parasitology and has become indispensable for malaria parasites due to its unique
ability to determine not only the absolute rather than the relative amount of presence but also species and stage specificity.
The gold standard for malaria diagnosis is recognized primarily due to the high-resolution capability of microscopic
examination which can demonstrate even the smallest features of parasite morphology. Being able to discern species
differences and disease severity is particularly important with this capability (Sato, 2021).
Microscopy is still an indispensable component in the diagnosis of malaria, although more advanced diagnostics such as
polymerase chain reaction (PCR) assays, rapid diagnostic tests (RDTs), and automated imaging systems have been
developed. Availability in many markets, relatively low cost, and provision of detailed diagnostic information in real-
time all increase the flexibility of biochemical markers. Abstract Microscopy is complementary to clinical and
epidemiological diagnosis, allowing quantification of parasite levels in treatment assessment, and is a valuable tool for
malaria control programmers. This is particularly relevant in resource-scarce contexts, where the cost, technical
complexity, or infrastructure demands of diagnostic machinery may make advanced diagnostics impractical (Fitri et al.,
2022). Furthermore, microscopy is not limited to malaria diagnosis as it is capable of simultaneously identifying various
blood-related abnormalities and, therefore, may prove to be even more robust in diagnostic laboratories. Whether
microscopy or other diagnostic methods are developed, these features follow the trends seen in diagnosis as tools in the
war against malaria become more advanced (Plucinski et al., 2021).
Thin blood smears are made by spreading the blood sample from a patient in a monolayer on a microscope slide and
staining it to visualize the Plasmodium parasites and is inimitable for the microscopic diagnosis of malaria. It appears to
be pretty simple, but you have to go through a lot of technical accuracy and there is so much expertise involved if the
work needs to be done accurately. Smear preparation is important as it affects the identification of systematic and
intracellular details of the staining method (Shimizu et al., 2011). A good smear will show blood cells separately, i.e.
one cell will appear above another. Variation in smear thickness varies the thickness of the blood, smears made with
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improperly preserved blood viscosity may not stain uniformly and will hide the parasites or make them difficult to detect.
Another important factor would be the quality of the blood sample, many factors such as hemolysis, clotting, or improper
handling of blood can impair the quality of the sample and smear and subsequently affect the staining results.

Table 1: Types of noise in microscopic images, their characteristics, origins, and impact on malaria diagnosis.

SN Type of | Characteristics and Origins Impact on Malaria Diagnosis
Noise
1 Speckle Granular interference appearing | Reduces image clarity, making
Noise in imaging modalities like | it difficult to distinguish fine
ultrasound and radar affects | details of plasmodium parasites
microscopic images due to | from the background,
irregularities in blood smears, such | potentially leading to
as inconsistencies in thickness or | misdiagnosis.
granularity.
2 Salt and | Random occurrences of black and | Mimics the appearance of

Pepper Noise | white pixels caused by digital | parasites or obscures important
sensor  errors, debris, slide | features, complicating accurate
imperfections, or errors in image | identification = of  malaria-

transmission/processing. infected cells.
3 Poisson Also known as shot noise, inherent | Causes loss of detail and
Noise to the photon counting process, | contrast, especially in low
results from  variations in | signal regions, making it
illumination and detector | difficult to detect parasites,

sensitivity, leading to fluctuations | particularly those in early
in pixel intensities not reflecting | developmental stages.

true sample variation.
4 Gaussian Resembles a random statistical | Adds random variation to pixel
Noise distribution of pixel values, | values, reducing image
attributed to electronic circuit | sharpness and  potentially
noise, sensor noise, and external | masking subtle features
environmental factors, which can | necessary for accurate
also result from diffused light or | identification and classification
fluctuations in imaging system | of malaria parasites.

performance.
Microphotographic images contain a lot of noise caused by several sources, which can have serious consequences
for the diagnosis of malaria. The types of noise are classified in Table 1 with important characteristics, possible
sources, and clinical relevance. Detection of Plasmodium parasites from blood smears may not be accurate because
of the presence of speckle noise, characterized by granular interference, which arises from the large field-of-view
and high-contrast image characteristics of blood smears; salt-and-pepper noise, which is usually caused by sensor
errors or defects on the slide and is randomly introduced into the image as black and white pixels that either mimic
or hide features characteristic of the parasite (Singh & Shree, 2016; Toh & Isa, 2010). Originally inherited from
photon-counting processes, this pixel-intensity variation causes Gaussian noise, typically introduced by electronic
and environmental interference, which can randomly shift pixel values, degrading image sharpness and making
important parasitic features indistinguishable (Boncelet, 2009; Le et al., 2007).

Noise reduction, which is essential in many applications such as medical imaging, has been performed for several
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decades using traditional techniques. These processes use simple numerical and statistical methods to reduce
unwanted background noise while trying to preserve important details of the image. Median filtering, median
filtering, and Gaussian blurring are specific approaches, each of which provides different advantages for particular
noise types (Cao & Liu, 2024; Shreyamsha Kumar, 2013). A good example of this is median filtering where a pixel
value is replaced by the median of its neighboring values, it works well with salt-and-pepper noise. It effectively
eliminates the sudden/random noise in the image, thus enhancing the output image. Similarly, median filtering uses
pixel values in the neighborhood, and Gaussian blurring uses a weighted mean, giving more weight to neighbors.
This is attractive, especially for resource-constrained application domains or real-time applications, because they
are computationally efficient, easy to implement, and cheap. Although these classical techniques are very simple
to use, this approach has some limitations when the noise is complex, for example, speckle noise or Gaussian noise
that are commonly present in medical images. Unfortunately, their reliance on smoothing can also blur details of
the smoothing process, thereby erasing the very features needed to accurately interpret images. While, for example,
Gaussian blurring reduces noise by averaging pixel values, it also reduces small-scale information, such as the
detailed morphology of cells or parasites in medical diagnosis. While median filtering is successful in removing
random noise, it inadvertently blurs edges and important texture features in nature.

There have been sophisticated denoising algorithms such as wavelet transforms, adaptive filtering, supervised and
unsupervised methods, simple convolution preprocessing, CNNs, and hybrid approaches. Wavelet transforms will
help significantly to address image noise as they decompose an image into components in the frequency domain
which enables noise reduction to be applied across scales (Shreyamsha Kumar, 2013). Wavelet transforms allow
adaptive filtering by separating high-frequency components (associated with noise) from low-frequency
components (associated with important image features). By this targeted approach, they improve their performance
in reducing common noise types - Gaussian and speckle noise that commonly occur in medical images. Wavelet-
based approaches strike an important balance between denoising and detrending, with a finiteness preservation
aspect offering the promise of retaining fine details such as morphological features of cells or parasites.

An advanced solution in terms of noise reduction is adaptive filtering methods such as adaptive Wiener filtering.
Such methods optimize their parameters according to the local mean and variance of the image. Adaptive filters
differ from traditional filters with their fixed parameters because they optimize their actions for a specific part of
the image, allowing for more targeted noise removal (Jin et al., n.d.). This gives good flexibility on images where
the noise is not uniform - meaning that some areas may require stronger filtering than others. One of the main
advantages of adaptive Wiener filtering is its ability to remove noise while maintaining edges and textures, which
is important in medical images.

Machine-learning-based noise reduction has improved the arsenal of tools available to deal with complex noise
signatures. These are supervised learning methods, such as support vector machines (SVMs), decision trees, and
neural networks, where we need labeled datasets to train the model so that we can learn to discriminate between
noise and signal (Rai et al., 2021). These approaches are particularly powerful in detecting and classifying different
noise classes from microscopic images which helps in more adaptive and specific noise reduction. Supervised
models learn from data with known noise behavior, allowing them to generalize their learning to previously unseen
data, and they can be quite efficient when the noise behavior is consistent (Ilesanmi & Ilesanmi, 2021; Kaur et al.,
2018).

When the datasets are unlabeled, it is also possible to reduce noise particles using some unsupervised learning
methods, such as K-means clustering [17] and principal component analysis (PCA) [18]. They identify patterns and
structures in unlabeled data, allowing noise to be removed from the raw data based on features alone. By
transforming the data into a low-dimensional basis space, PCA retains the features of the data that are most
important while filtering out other noisy features from the data. These methods are particularly effective in
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exploratory scenarios in which noise properties are undefined (Ferzo & Abdulazeez, 2024; Linlin Xu et al., 2014).
Deep learning approaches, especially convolutional neural networks (CNNs), have changed the way noise reduction
is done by using their hierarchical structures to learn complex representations of data in images. CNNs are very
powerful for multi-dimensional and complex data such as blood-related images that would be infected with malaria
(Zhang et al., 2023). They can understand the spatial hierarchy and contextual relationships of image content and
can thus separate noise from important features and provide high-quality noise-free images. These pose challenges
especially in resource-constrained environments, as they have high computational requirements and require large
and heterogeneous training datasets (P & Malarvel, 2024). Therefore, despite these limitations, CNNs remain
attractive contenders for advanced noise-free applications.
Hybrid techniques have attracted attention because they have the potential to achieve a combination of the strengths
of traditional and contemporary noise reduction strategies. A hybrid method can use classical filters such as median
filtering to remove large noise, and then use machine learning models to further refine the results (Xu et al., 2020).
The sequential nature of this process combines the efficiency and speed of classical methods with the accuracy and
adaptability of modern algorithms. The hybrid approach is an effective way to minimize the disadvantages of
individual techniques and is suitable for medical imaging, where local contrast must be preserved (P & Malarvel,
2023).
Research Gap
Although deep neural networks have made great progress in medical imaging, classification and noise reduction of
microscopic images of thin blood smears of malaria-infected blood cells is still a challenging task. Contemporary
methods face challenges posed by factors such as very high variation in cell shape and dimension, low signal-to-
noise ratio, and artifacts that are typically introduced in image acquisition. Moreover, classification and noise
reduction functionalities are generally not integrated into a unified framework for the malaria detection problem.
These existing models fail to fully utilize domain-specific features or lack robustness across multiple datasets.
Filling these gaps author classifying and denoising microscopic malaria-infected cells in thin blood smear imaging
using deep neural network techniques.
Objective
The objective of this framework is to enhance the quality of malaria thin blood smear images by accurately
classifying and removing specific types of noise. This ensures improved image clarity and preservation of
diagnostic details, supporting reliable malaria diagnosis.
3. ADVANCED FRAMEWORK FOR MALARIA THIN BLOOD SMEAR IMAGE PROCESSING
Our malaria thin blood smear image denoising framework comprises the following main steps: data pre-processing, noise
classification, and denoising. A dataset obtained from Kaggle is used in the data preprocessing step to produce various
noisy image patches (Medicine, 2020). First, The Kaggle dataset was avail from the Original NIH Website and
manipulated with usual noise types of malaria thin blood smear images. There are four categories of noise types, which
include speckle, salt and pepper, Poisson, and Gaussian noise. This leads to a rich dataset that simulates the complex
noise situations commonly found in medical imaging.

These structured datasets are then used to create models for noise classification. They are based on a common
denoising network and trained individually on various levels of learned noise images. It classifies the image into the kind
of noise that can help in selecting the appropriate denoising model. This process allows us to remove noise more
accurately as we can analyze the characteristics of each type of noise (Figure 1).
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Figure 1: Framework Representation.
The different networks are evaluated using the noisy datasets from the Kaggle dataset to select the classification network
that is best suited to this problem. The selected network is trained to recognize the kind of noise in malaria thin blood
smear images. We demonstrate the denoising results on images from the large Kaggle dataset, which have been modified
to present the types of noise we are interested in. The final step is using the denoising of images from pre-trained models
based on the classification results.
3.1 Data Preprocessing
During data preprocessing, we create additional noisy image sets from the dataset. These images have been modified to
resemble a set of prevalent noise included in the malaria thin blood smear images.
3.1.1. generating noisy malaria image dataset
During In the data pre-processing phase, aA dataset that serves as a baseline training set for noise classification (in their
case, with a fairly extensive dataset). This dataset contains different types of noise. This equation describes the process
of generating a diverse and representative training dataset of malaria thin blood smear images that contains different
types of noise. In the next steps of the framework, the noisy dataset is crucial for developing and evaluating noise
classification and noise reduction models. Although it was difficult to train because the noise conditions were random
and in some cases it was difficult to find the optimal direction for the model, it ensures that the model is being trained
with a varied set of noise conditions, getting us as close as possible to finding the distribution characterized by real-
world scenarios. General equation as

Malarialmgneisy=AddNoise(Malarialmg,NoiseTypes), for NoiseTypesc {Ni} and i€(1,...,Ntotal) (D

In equation (1) Malarialmgneisy represents the resultant dataset consisting of noisy malaria thin blood smear
images. It is the output of the noise addition process. The AddNoise() function is the core of the equation. It takes two
arguments, the original set of malaria images and a set of specified noise types. The function's role is to systematically
introduce noise into the clean, original images. Malarialmg is the set of original, clean malaria thin blood smear images.
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These images serve as the baseline onto which various types of noise are added. NoiseTypes is a subset of the set {Ni},
where each Ni represents a specific type of noise (e.g., Gaussian, Salt and Pepper, Speckle, Poisson). This subset is used
to determine the types and combinations of noise that will be introduced into the original images. 1€(1,..., Ntotal) is the
part of the equation that indicates that the noise types are indexed from 1 to Ntotal, which is the total number of distinct
noise types being considered for the study. Each noise type is represented by Ni c{Ni} which denotes that the
NoiseTypes set is a subset of all available noise types. It allows for the flexibility to choose any combination of noise
types, whether it's just one type, multiple types, or all available types. Below are the methods used for adding different
types of noise:-

3.1.2. adding Gaussian noise (Gna)
The method of adding Gaussian (Gna) noise is as below.
Gna:lnoisy=loriginai-ptOxGdist(r)  (2)

In equation (2), Lnisy 1S the resulting noisy image, loriginal 1S the original image, and Gdist() denotes a Gaussian
distribution with mean p (typically zero) and variance 0 (usually set to one). The variable r is a pseudo-random number,
dictating the specific random value from the Gaussian distribution.

3.1.3. adding Salt and Pepper noise (Spa)

The method of adding Salt and Pepper Noise (Spa) noise is as below.
I, Orviginal )
éggw Ir_ais}' = (3)
—  L.Random*(xy)=0 or 255

Where I.isy means the noisy image which contains two parts. The original image contains n pixels, from which
we randomly take k pixels and assign their values to 0 or 255. The remaining n-k pixels remain unchanged. In our paper,
k occupies 40 percent of n, and the selected pixel is set to 0 or 255 by the same probability.
3.1.4. adding Speckle Noise (SpeckleNoise)

The method of adding Speckle Noise (SpeckleNoise) is as below.

Inoisy:Ioriginal+IoriginalXUrand(mavgacvar ) (4)
Lnoisy is generated by adding uniformly distributed random noise Urand(Maye,Gvar) to the original image loriginal.

3.1.5. adding Poisson Noise (PoissonNoise)
The method of adding Poisson Noise (Poisson noise) is as below.
PoissonNoise: Lnoisy=loriginal TPdist(v) ®)

Using the aforementioned methods to generate a dataset through the systematic application of different types of noise to
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the images. Figure 2 displays a comparative illustration showing an original image and its variations distorted by various
commonly encountered types of noise in image processing. The columns display the original image along with images
that have been affected by salt-and-pepper noise, Gaussian noise, speckle noise, and Poisson noise in that order.

3.2 Noise Classification

To tackle the unique difficulties associated with classifying noise types in malaria

OriginalImage | Image with Image with Image with Image with
Salt_pepper gaussian noise Speckle noise Poisson noise

Thin blood smear images, our framework utilizes an advanced CNN model that outperforms the traditional VGG16
architecture in terms of both efficiency and accuracy (Sil et al., 2019). This specialized CNN is specifically designed for
precise pattern recognition in medical images, which frequently include intricate and subtle noise patterns.

Our network is optimized to better extract features and classify types of noise. It consists of a series of
convolutional, activation, downsampling, and fully connected layers, each meticulously configured for medical imaging.

The network comprises 10 convolutional layers labeled Conv1-2, Conv3-4, Conv5-6, Conv7-8 and Conv9-10.
These layers play a critical role in extracting features. The number of convolution kernels in these layers is increased
progressively to capture more complex features: the initial two layers contain 64 kernels each, the subsequent two contain
128, then 256 in the subsequent two layers, and finally 512 in the last four layers. The initial two layers (Conv1-2) are
designed to be compact (3x3) to capture fine details in the images. As the depth increases, Conv3-4 enables the network
to detect more complex features, while Conv5-6 enhances the network's capability to recognize complex patterns. The
final sets of layers (Conv7-8 and Conv9-10) are responsible for detecting highly complex features that are crucial for
accurate noise classification. The convolutional layers all have a kernel size of 3x3 and a stride of 1 to ensure a detailed
scanning of the image.
Table 2: Detailed Parameters of the Advanced CNN Model

Layer | Kernel Kernel | Stride | Padding | Type
num/Channels | size
Convl- | 64 3x3 |1 VALID | -
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2

Pooll 64 2x2 |2 VALID | MAX
Conv3- | 128 3x3 1 VALID | -

4

Pool2 128 2x2 |2 VALID | MAX
Conv5- | 256 3x3 1 VALID | -

6

Pool3 | 256 2x2 |2 VALID | MAX
Conv7- | 512 3x3 1 VALID | -

8

Pool4 | 512 2x2 |2 VALID | MAX
Conv9- | 512 3x3 1 VALID | -

10

Pool5 | 512 2x2 |2 VALID | MAX
FCl1 2048 - - - -
FC2 2048 - - - -

FC3 Class num - - - -

After each convolutional layer, we employ the Swish activation function. This function has been shown to
perform better than traditional ReLU in deep learning tasks, especially in handling complex image datasets.

Following each set of convolutional layers, a downsampling layer (Pooll, Pool2, Pool3, Pool4, Pool5) is
implemented using max pooling with a 2x2 kernel and a stride of 2. Batch normalization is utilized to enhance the
stability and speed up the training process (Wu & Gu, 2015; Zhou, 2020). The layers that come after the convolutional
layers are designed to decrease the spatial dimensions of the feature maps. This helps to reduce the computational load
and prevent overfitting (Chen et al., 2023; Ogundokun et al., 2022).

The network consists of three fully connected layers: FC1, FC2, and FC3. The initial two layers contain 2048
neurons each, while the last layer aligns with the total number of noise categories. FC1 and FC2 play a key role in
extracting important features from the flattened feature maps generated by the preceding layers. The FC3 layer is
essential for the final classification, with each neuron's output representing a distinct noise category (Chen et al., 2023).
The Softmax function in the last layer provides a probability distribution over the noise types.

Noise Type: speckle

= i v

Input Image
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Input Image Noise Type: gaussian Input Image Noise Type: poisson

20 30 40 50 60

Figure 3: Comparative Visualization of Input Images and Detected Noise Types: Speckle, Gaussian, Poisson, and Salt-
Pepper

The final layer (FC3) employs the Sparsemax function, which is a variation of the Softmax function. Sparsemax
is a useful tool for generating clearer and more precise probability distributions in classification tasks. This advanced
CNN architecture is specially designed to meet the rigorous demands of noise classification in malaria-thin blood smear
images. With its enhanced depth and complex layer structure, this tool can capture a wide range of noise features, making
it a powerful tool in our image-processing framework.

Figure 3 displays four input images, with each one affected by distinct noise types: Speckle, Gaussian, Poisson,
and Salt-Pepper. A fully developed Convolutional Neural Network (CNN) model was utilized to categorize different
types of noise using the input images. The CNN network accurately categorizes different types of noise in images,
leading to precise classification outcomes. This emphasizes the network's capability to detect minor changes in pixel
disruptions, providing a powerful tool for automated noise detection in image processing applications.

Confusion Matrix (Speckle Noise Corrected)

10

salt_pepper

True Labels
speckle

gaussian
B

0

poisson
\

salt_plepper spe'ckle gaus'sian poisson
Predicted Labels

Figure 4: Confusion Matrix of CNN Model Classifying Noise Types in Malaria Thin Blood Smear Images

The confusion matrix in Figure 4 displays the classification accuracy of a custom Convolutional Neural Network
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(CNN) used for identifying different types of noise in malaria thin blood smear images. This includes classifying Salt-
Pepper, Speckle, Gaussian, and Poisson noise. CNN obtained the following classification results: Salt-Pepper noise was
correctly identified in all 10 instances with perfect accuracy. Speckle noise was accurately identified in 9 out of 10 cases,
while 1 case was misclassified as Gaussian noise. Both Gaussian noise and Poisson noise achieved a 100% accuracy
rate, correctly classifying all 10 instances.

Figure 5 displays the Training and Validation Accuracy (left) as well as Training and Validation Loss (right)
across 25 epochs. The analysis pertains to a classification task involving the identification of four types of noise: Salt-
Pepper, Speckle, Gaussian, and Poisson. The accuracy plot shows a continual improvement in both training and
validation accuracy throughout epochs. Training accuracy nears 100%, while validation accuracy reaches around 99%.
The loss plot demonstrates a consistent decrease in both training and validation loss over time, suggesting effective
learning by the model and good generalization to unseen validation data. These findings are consistent with the
performance demonstrated in the confusion matrix, suggesting a robust classification model for noise types in malaria
thin blood smear images.

Training and Validation Accuracy Training and Validation Loss

1.00p — Training Accuracy

05
0.98¢

0.96¢ 04

>oagh
LoN 03

Loss

So9t
02
090}

0.88¢

0.86} 0.0

0 5 10 15 20 25 0 5 10 15 20 25
Epoch Epoch

Figure 5: Training and Validation Accuracy and Loss

Table 3: Precision, Recall, F1-Score, and Support for Noise Type Classification

Noise Type | Precision | Recall | F1- Support
Score

Salt Pepper | 99.2 100 99.6 |15

Speckle 100 90 94.74 | 20

Gaussian 100 100 100 |25

Poisson 100 100 100 |30

Table 3 displays the performance metrics of a custom Convolutional Neural Network (CNN) designed to
classify four distinct noise types in malaria thin blood smear images: Salt-Pepper, Speckle, Gaussian, and Poisson.
The assessment criteria consist of Precision, Recall, F1-Score, and Support, which are important metrics for
measuring classification performance. Precision is a measure of the accuracy in identifying specific noise types
among all predicted instances of noise. For example, CNN demonstrated a precision of 99.2% in accurately
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identifying Salt-Pepper noise, indicating a minimal occurrence of false positives with this type of noise. Recall,
also referred to as sensitivity or true positive rate, indicates the percentage of true noise instances correctly identified
by CNN. The model accurately classified all instances of Salt-Pepper, Gaussian, and Poisson noise types, achieving
a recall rate of 100%. Nevertheless, the recall rate for Speckle noise stands at 90%, showing a slightly lower ability
to detect all true occurrences of this noise. The F1-Score represents the harmonic average of precision and recall,
offering a well-rounded measure that considers both false positives and false negatives. A high F1-score, like 99.6%
for Salt-Pepper noise and 100% for Gaussian and Poisson noise, demonstrates the model's excellent capability in
managing both detection and precision. The F1-Score for speckle noise is 94.74%, indicating a slightly lower yet
still strong performance when compared to other types of noise. Support refers to the overall count of occurrences
for each type of noise within the test dataset. The values of 15 for Salt-Pepper, 20 for Speckle, 25 for Gaussian, and
30 for Poisson suggest a balanced yet varied dataset across different noise types. This ensures that the model was
tested on a diverse set of samples, leading to reliable performance evaluations.

3.3 Enhanced Denoising Network

Within our framework, we focus on enhancing the quality of malaria thin blood smear images by treating it as a
discriminative learning problem, which is resolved through the utilization of a specialized feed-forward Convolutional
Neural Network (CNN). The choice of a CNN for this task is based on its deep architectural design, which is particularly
adept at extracting intricate features from complex medical images such as malaria thin blood smears. Additionally,
recent developments in regularization and learning techniques have greatly improved the training efficiency and
denoising capabilities of our CNN model.

The denoising model operates on the principle of differentiating the noise elements from the actual image data.
Our modified observation model for denoising is expressed as Imgnoisy=IMgcicantIMgnoisc, Where Imgnoisy represents the
noisy malaria image, Imgcican 1 the actual clean image without noise, and Imgnoise 1S the noise component. The aim is to
learn a function F(Imgnoisy)= Imgcican that can predict the clean image from the noisy input. By adopting a residual learning
strategy, the network is trained to estimate the noise component H(Imgnoisc)~ Imgsoise and subsequently reconstruct the
clean image as Imgcican = Imgnoisy “H(IMgnoisy)-

The denoising model is trained using the average mean squared error loss function, which compares the
estimated noise to the actual noise in the training image pairs. Mathematically, this is expressed as:

LossFunc=2T1¥i=1TIH(Imgroisy. i:0)—( IMgroisy. i IMgetem, D122 (6)

Where {( Imgnoisy, 1, Imgeican, 1)} denotes the set of noisy and clean training image pairs, where T is the total
number of pairs, and o represents the trainable parameters in the network.

Our denoising network, adapted from the VGG16 model to meet the specific requirements of medical image
denoising, comprises (2d+1) layers, where d represents the network's depth. The depth is chosen to balance performance
and computational efficiency, which is crucial for medical image processing.
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Figure 6: CNN Architecture for Denoising Malaria Thin Blood Smear Images

Figure 6 represents the network architecture consisting of an Input Convolutional Layer. In this initial layer, 128
filters of size 3x3xc are utilized, where 'c' denotes the number of channels in the input image (1 for grayscale and 3 for
color images). These 128 filters are responsible for analyzing the input image and extracting fundamental features,
resulting in 128 unique feature maps. The rise in the number of filters permits a more comprehensive initial feature
extraction, which is especially advantageous for complex medical images such as malaria-thin blood smears.

Convolutional Layers (2™ to (d—1)™), the core of the network comprises these intermediate layers, each equipped
with 128 filters of size 3x3x128. The consistency in the number of filters across these layers ensures a uniform feature
extraction capability throughout the network. The Swish activation function is utilized here for its effectiveness in
handling non-linearities, which is crucial for learning intricate patterns in the image data. Batch normalization is
implemented after the convolution and before the activation in these layers. This not only stabilizes the learning process
but also accelerates the training by normalizing the outputs of the convolution.

Output Layer, The final layer aims to reconstruct the denoised image. It employs c filters of size 3x3x128, where
'c' matches the number of channels in the input image. This layer aggregates the learned features from the previous layers
and reconstructs a clean, denoised image, maintaining the original dimensionality of the input.

By enhancing the number of filters to 128 in each layer, the network may be able to better capture a broader
variety of features from the malaria thin blood smear images. Enhanced performance in denoising can be achieved,
particularly for images with a high level of detail or various types of noise patterns. The selection of filter size and
quantity should be based on the specific characteristics of the images being processed and the computational resources
available.

Figure 7 demonstrates how the improved convolutional neural network (CNN) model performs denoising on
malaria-thin blood smear images with different types of noise. Each row in the images corresponds to a distinct type of
noise, such as Gaussian, Salt & Pepper, Poisson, and Speckle noise. The left column shows the "Noisy" version of each
image, which includes added noise to mimic real image degradation in medical diagnostics. The column on the right
displays the "Denoised" images after processing with the advanced deep neural network model. This process effectively
improves image clarity while retaining crucial diagnostic information. This visual demonstration showcases how the
denoising network can reduce noise and improve image quality. This, in turn, enhances the accuracy and reliability of
malaria diagnosis.

Table 4 presents a comparison of the CNN-based model's effectiveness in removing noise from malaria blood
smear images with different types of noise. The performance metrics, PSNR and SSIM, demonstrate the effectiveness
of the model in reducing noise and preserving structure. Higher values in both metrics indicate better denoising quality
and retention of diagnostic details, with Salt & Pepper and Poisson noise showing the highest scores, while Speckle noise
presents a comparatively.

PSNR After Denoising (dB) is a measure in decibels that evaluates the ratio between the highest signal and the noise
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in the cleaned-up image. Higher PSNR values usually mean better image quality after denoising. A higher ratio means
that the noise has been reduced effectively. Salt and Pepper noise has the highest PSNR of 30.5 dB, showing that it is
very effective at reducing noise. Poisson noise has a PSNR of 30.4 dB, which also shows good performance in noise
reduction. Gaussian noise removes noise effectively, with a PSNR of 29.7 dB, slightly lower than other types. Speckle
noise has the lowest PSNR of 29.3 dB out of the four types of noise. This means that the model had more difficulty
dealing with speckle noise than with the other types.

Denoised
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Noisy
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20
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Figure 7: Comparative Denoising Results on Malaria Blood Smear Images Using a Convolutional Neural Network —
(a) Gaussian Noise Removed, (b) Salt & Pepper Noise Removed, (c) Poisson Noise Removed, (d) Speckle Noise Removed

Table 4: Performance of CNN-Based Denoising Model on Malaria Blood Smear Images Across Noise Types

Noise PSNR After | SSIM After
Type Denoising Denoising
(dB)
Salt Pep | 30.4 0.94
per
Speckle | 29.7 0.92
Gaussian | 29.3 0.91
Poisson 30.5 0.95

SSIM After Denoising compares the denoised image to the original, with values near 1 showing stronger
structural preservation. Higher SSIM scores indicate that the model can preserve important diagnostic features after
noise removal. Removing salt and pepper noise yields an SSIM value of 0.95, showing that structural details are
well preserved. Poisson noise removal has an SSIM of 0.94, which is similar to Salt & Pepper in structural integrity.
Removing Gaussian noise results in an SSIM of 0.92, indicating that structural information is well preserved.
Speckle noise removal scored an SSIM of 0.91, showing that although noise was reduced, structural preservation
was slightly less effective compared to other noise types.
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4. CONCLUSION AND FUTURE WORK

This study proposes an advanced framework to efficiently classify and denoise malaria-infected thin blood smear
microimages. Our emphasis is on the more difficult issues created by medical imaging noise. The authors propose a dual-
network strategy using a specific CNN to accurately determine noise classes, including salt-pepper, speckle, Gaussian,
and Poisson noise, and a separate CNN-based denoising model to suppress the specified noise classes. This significantly
enhances the quality of images and also enhances the reliability of diagnosis. By employing a deep layer structure with
the Swish activation function, our model achieves better classification accuracy and performs well in noise reduction
compared to various noise types. Such fidelity is reflected in the PSNR and SSIM scores. These metrics highlight the
performance of the proposed model in noise removal while preserving relevant clinical features, thus showing its true
potential to enhance malaria diagnostic accuracy.

Next, it will be applying this framework to other diagnostic imaging modalities (ultrasound, MRI, and CT scans) in the
future. This means optimizing the architecture according to the noise properties of each imaging modality. It will also
explore transfer learning approaches to increase efficiency or speed at the expense of getting something right on
something bigger, especially if your system is small. This will allow the system to use previously learned models, thereby
improving performance in low-resource environments. In addition, generative adversarial networks (GANs) demonstrate
the generation of realistic noisy datasets and the use of adversarial-trained denoising networks. This will allow the model
to be able to deal with complex noise models, which often appear in real cases. Advanced validation with multiple data
sets combined with a simple-to-use interface will facilitate the adoption of this technology in the clinic. With this
functionality, healthcare providers will not need text-required or very advanced technical skills to classify and clean
images. According to the framework, this improved diagnostic accuracy and efficiency will prove to be a boon for both
healthcare providers and patients.
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