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ABSTRACT: Image denoising poses a major challenge in the field of medical imaging, particularly when analyzing 
thin blood smear images to detect malaria-infected cells. Most traditional noise-freezing methods cannot accomplish 
image noise-freezing because the various noise types in medical images are too complex. This study presents a dedicated 
noise-freezing approach that leverages state-of-the-art deep neural network architectures to noise-freeze images of 
malaria-infected cells in thin blood smears. It uses a two-network method. The first network is designed to identify and 
classify some of the most prevalent noise types in the medical imaging field: speckle noise, salt and pepper noise, Poisson 
noise, and Gaussian noise. The first network helps to classify the noise, and based on the previous classification, the 
second network performs noise-freezing using the information from the first network to effectively remove the identified 
noise types. This customized method approach aims to provide a solution to these challenges while dealing with the 
specific noise types provided by images of malaria-infected cells. The results show that in addition to producing higher 
accuracy in classifying noise, the high quality of noise-free images has also improved significantly. 
Keywords: Deep Convolutional Neural Networks (CNN), Quantitative Image Quality Metrics (PSNR, SSIM), Swish 

Activation Function, Sparsemax for Classification, Residual Learning for Image Denoising 

1. Introduction  
Data acquisition errors cause loss of information and make it hard to characterize the tissue or other features of 
interest hence, extracting useful and interpretable information from noisy images still is and always remains an 
important problem of image analysis and has important implications for medical diagnosis. Image denoising: One 
of the important preliminary steps in image processing to removing noise artifacts and preserving the structure and 
texture of the actual information presented. This step is crucial for medical imaging since the quality and reliability 
of visual data directly affect the accuracy of diagnosis and the results of the decision-making process. (Muksimova 
et al., 2023). In thin blood smear images used for malaria diagnosis, noise hides important visual cues and disrupts 
the entire diagnosis process. Noise in medical images has different origins including limitations of imaging 
modalities, poor acquisition conditions, and noise from the environment in the process of capturing images. This 
can lead to a variety of noise types including speckle noise, salt-and-pepper noise, Poisson noise, and Gaussian 
noise, each one bringing its complications to the process of detection and removal. Common noise in ultrasound 
imaging is Speckle noise caused by constructive and destructive interference of coherent waves whereas salt-and-
pepper is usually based on defective transmission or due to hardware faults. For example, in the case of a thin blood 
smear where morphological characteristics of invading cells might be faint, these noise artifacts can occlude small 
features so critical for accurate testing and diagnosis of conditions such as malaria (Maqsood et al., 2021; Poostchi 
et al., 2018). Traditional noise-removal techniques often rely on well-established hypotheses about the type of noise 
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and its statistical properties. These include linear or non-linear filtering, wavelet-based methods, and optimization 
methods. Although such methods can provide adequate results for certain noise types, their performance often 
deteriorates when it is subjected to the complex and varied characteristics of noise in particular medical images 
(Wachowiak et al., 2000). Moreover, these approaches have a limitation in that they have to compromise between 
noise reduction and non-edge smoothing since more smoothing will remove the important edges and less smoothing 
will keep the noise. This shortcoming of traditional methods points towards the requirement of sophisticated noise-
removal techniques designed to address the complexities of medical imaging (Abuya et al., 2023). 
This research introduces a new approach based on state-of-the-art deep neural networks to the problem of medical 
image noise stabilization, specifically applied to malaria-infected thin blood smear images. With deep learning, 
hierarchical representations can be learned directly from the data, and hence the model can adapt to different types 
of noise without requiring any fixed and hand-crafted assumptions. Unlike existing noise-stabilization methods, 
our dual-network framework benefits from the complementary nature of domain-specific knowledge and data-
driven learning. The noise classification network in the framework is deepened to accurately classify noise types, 
and then a noise-specific noise-stabilization network is built to remove the classified noise while preserving 
essential image details. This modular, adaptive architecture can learn diverse noise patterns in malaria diagnosis 
data, preserving features essential for malaria diagnoses, such as cell morphology- and parasite structures. Through 
experiments, it shows that our method achieves excellent classification accuracy of noise compared with existing 
methods while generating visually pleasing noise-free images and outperforming other methods, thereby increasing 
the reliability and efficiency of malaria diagnosis. 

2. Literature Review 
Malaria, an infectious disease caused by parasites of the Plasmodium genus and sometimes fatal, has traditionally been 
diagnosed through microscopic blood smear examination a practice that dates back to the late 19th century. This approach 
was established in the early days of parasitology and has become indispensable for malaria parasites due to its unique 
ability to determine not only the absolute rather than the relative amount of presence but also species and stage specificity. 
The gold standard for malaria diagnosis is recognized primarily due to the high-resolution capability of microscopic 
examination which can demonstrate even the smallest features of parasite morphology. Being able to discern species 
differences and disease severity is particularly important with this capability (Sato, 2021).  
Microscopy is still an indispensable component in the diagnosis of malaria, although more advanced diagnostics such as 
polymerase chain reaction (PCR) assays, rapid diagnostic tests (RDTs), and automated imaging systems have been 
developed. Availability in many markets, relatively low cost, and provision of detailed diagnostic information in real-
time all increase the flexibility of biochemical markers. Abstract Microscopy is complementary to clinical and 
epidemiological diagnosis, allowing quantification of parasite levels in treatment assessment, and is a valuable tool for 
malaria control programmers. This is particularly relevant in resource-scarce contexts, where the cost, technical 
complexity, or infrastructure demands of diagnostic machinery may make advanced diagnostics impractical (Fitri et al., 
2022). Furthermore, microscopy is not limited to malaria diagnosis as it is capable of simultaneously identifying various 
blood-related abnormalities and, therefore, may prove to be even more robust in diagnostic laboratories. Whether 
microscopy or other diagnostic methods are developed, these features follow the trends seen in diagnosis as tools in the 
war against malaria become more advanced (Plucinski et al., 2021).  
Thin blood smears are made by spreading the blood sample from a patient in a monolayer on a microscope slide and 
staining it to visualize the Plasmodium parasites and is inimitable for the microscopic diagnosis of malaria. It appears to 
be pretty simple, but you have to go through a lot of technical accuracy and there is so much expertise involved if the 
work needs to be done accurately. Smear preparation is important as it affects the identification of systematic and 
intracellular details of the staining method (Shimizu et al., 2011). A good smear will show blood cells separately, i.e. 
one cell will appear above another. Variation in smear thickness varies the thickness of the blood, smears made with 
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improperly preserved blood viscosity may not stain uniformly and will hide the parasites or make them difficult to detect. 
Another important factor would be the quality of the blood sample, many factors such as hemolysis, clotting, or improper 
handling of blood can impair the quality of the sample and smear and subsequently affect the staining results. 
Table 1: Types of noise in microscopic images, their characteristics, origins, and impact on malaria diagnosis. 

SN Type of 
Noise 

Characteristics and Origins 
 

Impact on Malaria Diagnosis 

1 Speckle 
Noise 
 

 Granular interference appearing 
in imaging modalities like 
ultrasound and radar affects 
microscopic images due to 
irregularities in blood smears, such 
as inconsistencies in thickness or 
granularity. 

Reduces image clarity, making 
it difficult to distinguish fine 
details of plasmodium parasites 
from the background, 
potentially leading to 
misdiagnosis. 

2 Salt and 
Pepper Noise 
 

Random occurrences of black and 
white pixels caused by digital 
sensor errors, debris, slide 
imperfections, or errors in image 
transmission/processing. 

Mimics the appearance of 
parasites or obscures important 
features, complicating accurate 
identification of malaria-
infected cells. 

3 Poisson 
Noise 
 

Also known as shot noise, inherent 
to the photon counting process, 
results from variations in 
illumination and detector 
sensitivity, leading to fluctuations 
in pixel intensities not reflecting 
true sample variation. 

Causes loss of detail and 
contrast, especially in low 
signal regions, making it 
difficult to detect parasites, 
particularly those in early 
developmental stages. 

       4 Gaussian 
Noise 
 

Resembles a random statistical 
distribution of pixel values, 
attributed to electronic circuit 
noise, sensor noise, and external 
environmental factors, which can 
also result from diffused light or 
fluctuations in imaging system 
performance. 

Adds random variation to pixel 
values, reducing image 
sharpness and potentially 
masking subtle features 
necessary for accurate 
identification and classification 
of malaria parasites. 

Microphotographic images contain a lot of noise caused by several sources, which can have serious consequences 
for the diagnosis of malaria. The types of noise are classified in Table 1 with important characteristics, possible 
sources, and clinical relevance. Detection of Plasmodium parasites from blood smears may not be accurate because 
of the presence of speckle noise, characterized by granular interference, which arises from the large field-of-view 
and high-contrast image characteristics of blood smears; salt-and-pepper noise, which is usually caused by sensor 
errors or defects on the slide and is randomly introduced into the image as black and white pixels that either mimic 
or hide features characteristic of the parasite (Singh & Shree, 2016; Toh & Isa, 2010). Originally inherited from 
photon-counting processes, this pixel-intensity variation causes Gaussian noise, typically introduced by electronic 
and environmental interference, which can randomly shift pixel values, degrading image sharpness and making 
important parasitic features indistinguishable (Boncelet, 2009; Le et al., 2007). 
Noise reduction, which is essential in many applications such as medical imaging, has been performed for several 
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decades using traditional techniques. These processes use simple numerical and statistical methods to reduce 
unwanted background noise while trying to preserve important details of the image. Median filtering, median 
filtering, and Gaussian blurring are specific approaches, each of which provides different advantages for particular 
noise types (Cao & Liu, 2024; Shreyamsha Kumar, 2013). A good example of this is median filtering where a pixel 
value is replaced by the median of its neighboring values, it works well with salt-and-pepper noise. It effectively 
eliminates the sudden/random noise in the image, thus enhancing the output image. Similarly, median filtering uses 
pixel values in the neighborhood, and Gaussian blurring uses a weighted mean, giving more weight to neighbors. 
This is attractive, especially for resource-constrained application domains or real-time applications, because they 
are computationally efficient, easy to implement, and cheap. Although these classical techniques are very simple 
to use, this approach has some limitations when the noise is complex, for example, speckle noise or Gaussian noise 
that are commonly present in medical images. Unfortunately, their reliance on smoothing can also blur details of 
the smoothing process, thereby erasing the very features needed to accurately interpret images. While, for example, 
Gaussian blurring reduces noise by averaging pixel values, it also reduces small-scale information, such as the 
detailed morphology of cells or parasites in medical diagnosis. While median filtering is successful in removing 
random noise, it inadvertently blurs edges and important texture features in nature. 
There have been sophisticated denoising algorithms such as wavelet transforms, adaptive filtering, supervised and 
unsupervised methods, simple convolution preprocessing, CNNs, and hybrid approaches. Wavelet transforms will 
help significantly to address image noise as they decompose an image into components in the frequency domain 
which enables noise reduction to be applied across scales (Shreyamsha Kumar, 2013). Wavelet transforms allow 
adaptive filtering by separating high-frequency components (associated with noise) from low-frequency 
components (associated with important image features). By this targeted approach, they improve their performance 
in reducing common noise types - Gaussian and speckle noise that commonly occur in medical images. Wavelet-
based approaches strike an important balance between denoising and detrending, with a finiteness preservation 
aspect offering the promise of retaining fine details such as morphological features of cells or parasites. 
An advanced solution in terms of noise reduction is adaptive filtering methods such as adaptive Wiener filtering. 
Such methods optimize their parameters according to the local mean and variance of the image. Adaptive filters 
differ from traditional filters with their fixed parameters because they optimize their actions for a specific part of 
the image, allowing for more targeted noise removal (Jin et al., n.d.). This gives good flexibility on images where 
the noise is not uniform - meaning that some areas may require stronger filtering than others. One of the main 
advantages of adaptive Wiener filtering is its ability to remove noise while maintaining edges and textures, which 
is important in medical images. 
Machine-learning-based noise reduction has improved the arsenal of tools available to deal with complex noise 
signatures. These are supervised learning methods, such as support vector machines (SVMs), decision trees, and 
neural networks, where we need labeled datasets to train the model so that we can learn to discriminate between 
noise and signal (Rai et al., 2021). These approaches are particularly powerful in detecting and classifying different 
noise classes from microscopic images which helps in more adaptive and specific noise reduction. Supervised 
models learn from data with known noise behavior, allowing them to generalize their learning to previously unseen 
data, and they can be quite efficient when the noise behavior is consistent (Ilesanmi & Ilesanmi, 2021; Kaur et al., 
2018). 
When the datasets are unlabeled, it is also possible to reduce noise particles using some unsupervised learning 
methods, such as K-means clustering [17] and principal component analysis (PCA) [18]. They identify patterns and 
structures in unlabeled data, allowing noise to be removed from the raw data based on features alone. By 
transforming the data into a low-dimensional basis space, PCA retains the features of the data that are most 
important while filtering out other noisy features from the data. These methods are particularly effective in 
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exploratory scenarios in which noise properties are undefined (Ferzo & Abdulazeez, 2024; Linlin Xu et al., 2014). 
Deep learning approaches, especially convolutional neural networks (CNNs), have changed the way noise reduction 
is done by using their hierarchical structures to learn complex representations of data in images. CNNs are very 
powerful for multi-dimensional and complex data such as blood-related images that would be infected with malaria 
(Zhang et al., 2023). They can understand the spatial hierarchy and contextual relationships of image content and 
can thus separate noise from important features and provide high-quality noise-free images. These pose challenges 
especially in resource-constrained environments, as they have high computational requirements and require large 
and heterogeneous training datasets (P & Malarvel, 2024). Therefore, despite these limitations, CNNs remain 
attractive contenders for advanced noise-free applications. 
Hybrid techniques have attracted attention because they have the potential to achieve a combination of the strengths 
of traditional and contemporary noise reduction strategies. A hybrid method can use classical filters such as median 
filtering to remove large noise, and then use machine learning models to further refine the results (Xu et al., 2020). 
The sequential nature of this process combines the efficiency and speed of classical methods with the accuracy and 
adaptability of modern algorithms. The hybrid approach is an effective way to minimize the disadvantages of 
individual techniques and is suitable for medical imaging, where local contrast must be preserved (P & Malarvel, 
2023). 
Research Gap 
Although deep neural networks have made great progress in medical imaging, classification and noise reduction of 
microscopic images of thin blood smears of malaria-infected blood cells is still a challenging task. Contemporary 
methods face challenges posed by factors such as very high variation in cell shape and dimension, low signal-to-
noise ratio, and artifacts that are typically introduced in image acquisition. Moreover, classification and noise 
reduction functionalities are generally not integrated into a unified framework for the malaria detection problem. 
These existing models fail to fully utilize domain-specific features or lack robustness across multiple datasets. 
Filling these gaps author classifying and denoising microscopic malaria-infected cells in thin blood smear imaging 
using deep neural network techniques. 
Objective 
The objective of this framework is to enhance the quality of malaria thin blood smear images by accurately 
classifying and removing specific types of noise. This ensures improved image clarity and preservation of 
diagnostic details, supporting reliable malaria diagnosis. 

3. ADVANCED FRAMEWORK FOR MALARIA THIN BLOOD SMEAR IMAGE PROCESSING 
Our malaria thin blood smear image denoising framework comprises the following main steps: data pre-processing, noise 
classification, and denoising. A dataset obtained from Kaggle is used in the data preprocessing step to produce various 
noisy image patches (Medicine, 2020). First, The Kaggle dataset was avail from the Original NIH Website and 
manipulated with usual noise types of malaria thin blood smear images. There are four categories of noise types, which 
include speckle, salt and pepper, Poisson, and Gaussian noise. This leads to a rich dataset that simulates the complex 
noise situations commonly found in medical imaging. 

These structured datasets are then used to create models for noise classification. They are based on a common 
denoising network and trained individually on various levels of learned noise images. It classifies the image into the kind 
of noise that can help in selecting the appropriate denoising model. This process allows us to remove noise more 
accurately as we can analyze the characteristics of each type of noise (Figure 1).  
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Figure 1: Framework Representation. 

The different networks are evaluated using the noisy datasets from the Kaggle dataset to select the classification network 
that is best suited to this problem. The selected network is trained to recognize the kind of noise in malaria thin blood 
smear images. We demonstrate the denoising results on images from the large Kaggle dataset, which have been modified 
to present the types of noise we are interested in. The final step is using the denoising of images from pre-trained models 
based on the classification results. 
3.1 Data Preprocessing 
During data preprocessing, we create additional noisy image sets from the dataset. These images have been modified to 
resemble a set of prevalent noise included in the malaria thin blood smear images. 
3.1.1. generating noisy malaria image dataset 
During In the data pre-processing phase, aA dataset that serves as a baseline training set for noise classification (in their 
case, with a fairly extensive dataset). This dataset contains different types of noise. This equation describes the process 
of generating a diverse and representative training dataset of malaria thin blood smear images that contains different 
types of noise. In the next steps of the framework, the noisy dataset is crucial for developing and evaluating noise 
classification and noise reduction models. Although it was difficult to train because the noise conditions were random 
and in some cases it was difficult to find the optimal direction for the model, it ensures that the model is being trained 
with a varied set of noise conditions, getting us as close as possible to finding the distribution characterized by real-
world scenarios. General equation as  
 
MalariaImgnoisy=AddNoise(MalariaImg,NoiseTypes), for NoiseTypes⊂{Ni} and i∈(1,...,Ntotal)                  (1) 
 

In equation (1) MalariaImgnoisy represents the resultant dataset consisting of noisy malaria thin blood smear 
images. It is the output of the noise addition process. The AddNoise() function is the core of the equation. It takes two 
arguments,  the original set of malaria images and a set of specified noise types. The function's role is to systematically 
introduce noise into the clean, original images. MalariaImg is the set of original, clean malaria thin blood smear images. 
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These images serve as the baseline onto which various types of noise are added. NoiseTypes is a subset of the set {Ni}, 
where each Ni represents a specific type of noise (e.g., Gaussian, Salt and Pepper, Speckle, Poisson). This subset is used 
to determine the types and combinations of noise that will be introduced into the original images. i∈(1,..., Ntotal) is the 
part of the equation that indicates that the noise types are indexed from 1 to Ntotal, which is the total number of distinct 
noise types being considered for the study. Each noise type is represented by Ni ⊂{Ni} which denotes that the 
NoiseTypes set is a subset of all available noise types. It allows for the flexibility to choose any combination of noise 
types, whether it's just one type, multiple types, or all available types. Below are the methods used for adding different 
types of noise:-  
 
3.1.2. adding Gaussian noise (Gna) 
  
The method of adding Gaussian (Gna) noise is as below. 
 
Gna:Inoisy=Ioriginal+μ+θ×Gdist(r)     (2)                                                                                                                                                                            
 

In equation (2), Inoisy is the resulting noisy image, Ioriginal is the original image, and Gdist() denotes a Gaussian 
distribution with mean μ (typically zero) and variance θ (usually set to one). The variable r is a pseudo-random number, 
dictating the specific random value from the Gaussian distribution.  
 
3.1.3. adding Salt and Pepper noise (Spa) 
 
The method of adding Salt and Pepper Noise (Spa) noise is as below. 

    
 Where Inoisy means the noisy image which contains two parts. The original image contains n pixels, from which 
we randomly take k pixels and assign their values to 0 or 255. The remaining n-k pixels remain unchanged. In our paper, 
k occupies 40 percent of n, and the selected pixel is set to 0 or 255 by the same probability.  
 
3.1.4. adding Speckle Noise (SpeckleNoise) 
 
The method of adding Speckle Noise (SpeckleNoise) is as below. 
 
Inoisy=Ioriginal+Ioriginal×Urand(mavg,σvar )                    (4) 
Inoisy is generated by adding uniformly distributed random noise Urand(mavg,σvar) to the original image Ioriginal.  
 
3.1.5. adding Poisson Noise (PoissonNoise) 
 
The method of adding Poisson Noise (Poisson noise) is as below. 
 
PoissonNoise: Inoisy=Ioriginal +Pdist(v)                  (5) 
 
Using the aforementioned methods to generate a dataset through the systematic application of different types of noise to 
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the images. Figure 2 displays a comparative illustration showing an original image and its variations distorted by various 
commonly encountered types of noise in image processing. The columns display the original image along with images 
that have been affected by salt-and-pepper noise, Gaussian noise, speckle noise, and Poisson noise in that order. 

 
3.2 Noise Classification 
 
To tackle the unique difficulties associated with classifying noise types in malaria   

 
Figure 2: Original Images and Corresponding Images with Applied Noise Disturbances 

 
Thin blood smear images, our framework utilizes an advanced CNN model that outperforms the traditional VGG16 
architecture in terms of both efficiency and accuracy (Sil et al., 2019). This specialized CNN is specifically designed for 
precise pattern recognition in medical images, which frequently include intricate and subtle noise patterns. 

Our network is optimized to better extract features and classify types of noise. It consists of a series of 
convolutional, activation, downsampling, and fully connected layers, each meticulously configured for medical imaging. 

The network comprises 10 convolutional layers labeled Conv1-2, Conv3-4, Conv5-6, Conv7-8 and Conv9-10. 
These layers play a critical role in extracting features. The number of convolution kernels in these layers is increased 
progressively to capture more complex features: the initial two layers contain 64 kernels each, the subsequent two contain 
128, then 256 in the subsequent two layers, and finally 512 in the last four layers. The initial two layers (Conv1-2) are 
designed to be compact (3x3) to capture fine details in the images. As the depth increases, Conv3-4 enables the network 
to detect more complex features, while Conv5-6 enhances the network's capability to recognize complex patterns. The 
final sets of layers (Conv7-8 and Conv9-10) are responsible for detecting highly complex features that are crucial for 
accurate noise classification. The convolutional layers all have a kernel size of 3x3 and a stride of 1 to ensure a detailed 
scanning of the image. 
Table 2: Detailed Parameters of the Advanced CNN Model 

Layer Kernel 
num/Channels 

Kernel 
size 

Stride Padding Type 

Conv1- 64 3 × 3 1 VALID - 
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2 
Pool1 64 2 × 2 2 VALID MAX 
Conv3-
4 

128 3 × 3 1 VALID - 

Pool2 128 2 × 2 2 VALID MAX 
Conv5-
6 

256 3 × 3 1 VALID - 

Pool3 256 2 × 2 2 VALID MAX 
Conv7-
8 

512 3 × 3 1 VALID - 

Pool4 512 2 × 2 2 VALID MAX 
Conv9-
10 

512 3 × 3 1 VALID - 

Pool5 512 2 × 2 2 VALID MAX 
FC1 2048 - - - - 
FC2 2048 - - - - 
FC3 Class num - - - - 

 
After each convolutional layer, we employ the Swish activation function. This function has been shown to 

perform better than traditional ReLU in deep learning tasks, especially in handling complex image datasets.  
 Following each set of convolutional layers, a downsampling layer (Pool1, Pool2, Pool3, Pool4, Pool5) is 
implemented using max pooling with a 2x2 kernel and a stride of 2. Batch normalization is utilized to enhance the 
stability and speed up the training process (Wu & Gu, 2015; Zhou, 2020). The layers that come after the convolutional 
layers are designed to decrease the spatial dimensions of the feature maps. This helps to reduce the computational load 
and prevent overfitting (Chen et al., 2023; Ogundokun et al., 2022). 
 The network consists of three fully connected layers: FC1, FC2, and FC3. The initial two layers contain 2048 
neurons each, while the last layer aligns with the total number of noise categories. FC1 and FC2 play a key role in 
extracting important features from the flattened feature maps generated by the preceding layers. The FC3 layer is 
essential for the final classification, with each neuron's output representing a distinct noise category (Chen et al., 2023). 
The Softmax function in the last layer provides a probability distribution over the noise types. 
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Figure 3: Comparative Visualization of Input Images and Detected Noise Types: Speckle, Gaussian, Poisson, and Salt-
Pepper 
 
 The final layer (FC3) employs the Sparsemax function, which is a variation of the Softmax function. Sparsemax 
is a useful tool for generating clearer and more precise probability distributions in classification tasks. This advanced 
CNN architecture is specially designed to meet the rigorous demands of noise classification in malaria-thin blood smear 
images. With its enhanced depth and complex layer structure, this tool can capture a wide range of noise features, making 
it a powerful tool in our image-processing framework.     

Figure 3 displays four input images, with each one affected by distinct noise types: Speckle, Gaussian, Poisson, 
and Salt-Pepper. A fully developed Convolutional Neural Network (CNN) model was utilized to categorize different 
types of noise using the input images. The CNN network accurately categorizes different types of noise in images, 
leading to precise classification outcomes. This emphasizes the network's capability to detect minor changes in pixel 
disruptions, providing a powerful tool for automated noise detection in image processing applications. 

  
Figure 4: Confusion Matrix of CNN Model Classifying Noise Types in Malaria Thin Blood Smear Images 
 

The confusion matrix in Figure 4 displays the classification accuracy of a custom Convolutional Neural Network 
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(CNN) used for identifying different types of noise in malaria thin blood smear images. This includes classifying Salt-
Pepper, Speckle, Gaussian, and Poisson noise. CNN obtained the following classification results: Salt-Pepper noise was 
correctly identified in all 10 instances with perfect accuracy. Speckle noise was accurately identified in 9 out of 10 cases, 
while 1 case was misclassified as Gaussian noise. Both Gaussian noise and Poisson noise achieved a 100% accuracy 
rate, correctly classifying all 10 instances. 

Figure 5 displays the Training and Validation Accuracy (left) as well as Training and Validation Loss (right) 
across 25 epochs. The analysis pertains to a classification task involving the identification of four types of noise: Salt-
Pepper, Speckle, Gaussian, and Poisson. The accuracy plot shows a continual improvement in both training and 
validation accuracy throughout epochs. Training accuracy nears 100%, while validation accuracy reaches around 99%. 
The loss plot demonstrates a consistent decrease in both training and validation loss over time, suggesting effective 
learning by the model and good generalization to unseen validation data. These findings are consistent with the 
performance demonstrated in the confusion matrix, suggesting a robust classification model for noise types in malaria 
thin blood smear images.   

 
Figure 5: Training and Validation Accuracy and Loss 
 
Table 3: Precision, Recall, F1-Score, and Support for Noise Type Classification 

Noise Type 
 

Precision 
 

Recall 
 

F1-
Score 

Support 
 

Salt_Pepper 
 

99.2 
 

100 
 

99.6 15 

Speckle 
 

100 
 

90 
 

94.74 
 

20 
 

Gaussian 
 

100 
 

100 
 

100 
 

25 

Poisson 
 

100 
 

100 
 

100 
 

30 

 
Table 3 displays the performance metrics of a custom Convolutional Neural Network (CNN) designed to 

classify four distinct noise types in malaria thin blood smear images: Salt-Pepper, Speckle, Gaussian, and Poisson. 
The assessment criteria consist of Precision, Recall, F1-Score, and Support, which are important metrics for 
measuring classification performance. Precision is a measure of the accuracy in identifying specific noise types 
among all predicted instances of noise. For example, CNN demonstrated a precision of 99.2% in accurately 
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identifying Salt-Pepper noise, indicating a minimal occurrence of false positives with this type of noise. Recall, 
also referred to as sensitivity or true positive rate, indicates the percentage of true noise instances correctly identified 
by CNN. The model accurately classified all instances of Salt-Pepper, Gaussian, and Poisson noise types, achieving 
a recall rate of 100%. Nevertheless, the recall rate for Speckle noise stands at 90%, showing a slightly lower ability 
to detect all true occurrences of this noise. The F1-Score represents the harmonic average of precision and recall, 
offering a well-rounded measure that considers both false positives and false negatives. A high F1-score, like 99.6% 
for Salt-Pepper noise and 100% for Gaussian and Poisson noise, demonstrates the model's excellent capability in 
managing both detection and precision. The F1-Score for speckle noise is 94.74%, indicating a slightly lower yet 
still strong performance when compared to other types of noise. Support refers to the overall count of occurrences 
for each type of noise within the test dataset. The values of 15 for Salt-Pepper, 20 for Speckle, 25 for Gaussian, and 
30 for Poisson suggest a balanced yet varied dataset across different noise types. This ensures that the model was 
tested on a diverse set of samples, leading to reliable performance evaluations.  
 

3.3 Enhanced Denoising Network 
 
Within our framework, we focus on enhancing the quality of malaria thin blood smear images by treating it as a 
discriminative learning problem, which is resolved through the utilization of a specialized feed-forward Convolutional 
Neural Network (CNN). The choice of a CNN for this task is based on its deep architectural design, which is particularly 
adept at extracting intricate features from complex medical images such as malaria thin blood smears. Additionally, 
recent developments in regularization and learning techniques have greatly improved the training efficiency and 
denoising capabilities of our CNN model. 
 The denoising model operates on the principle of differentiating the noise elements from the actual image data. 
Our modified observation model for denoising is expressed as Imgnoisy=Imgclean+Imgnoise, where Imgnoisy represents the 
noisy malaria image, Imgclean is the actual clean image without noise, and Imgnoise is the noise component. The aim is to 
learn a function F(Imgnoisy)= Imgclean that can predict the clean image from the noisy input. By adopting a residual learning 
strategy, the network is trained to estimate the noise component H(Imgnoise)≈ Imgnoise and subsequently reconstruct the 
clean image as Imgclean = Imgnoisy −H(Imgnoisy). 

The denoising model is trained using the average mean squared error loss function, which compares the 
estimated noise to the actual noise in the training image pairs. Mathematically, this is expressed as: 

 
 Where {( Imgnoisy, i, Imgclean, i)} denotes the set of noisy and clean training image pairs, where T is the total 
number of pairs, and ω represents the trainable parameters in the network. 

Our denoising network, adapted from the VGG16 model to meet the specific requirements of medical image 
denoising, comprises (2d+1) layers, where d represents the network's depth. The depth is chosen to balance performance 
and computational efficiency, which is crucial for medical image processing. 
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Figure 6: CNN Architecture for Denoising Malaria Thin Blood Smear Images 
 

Figure 6 represents the network architecture consisting of an Input Convolutional Layer. In this initial layer, 128 
filters of size 3×3×c are utilized, where 'c' denotes the number of channels in the input image (1 for grayscale and 3 for 
color images). These 128 filters are responsible for analyzing the input image and extracting fundamental features, 
resulting in 128 unique feature maps. The rise in the number of filters permits a more comprehensive initial feature 
extraction, which is especially advantageous for complex medical images such as malaria-thin blood smears. 

Convolutional Layers (2nd to (d−1)th), the core of the network comprises these intermediate layers, each equipped 
with 128 filters of size 3×3×128. The consistency in the number of filters across these layers ensures a uniform feature 
extraction capability throughout the network. The Swish activation function is utilized here for its effectiveness in 
handling non-linearities, which is crucial for learning intricate patterns in the image data. Batch normalization is 
implemented after the convolution and before the activation in these layers. This not only stabilizes the learning process 
but also accelerates the training by normalizing the outputs of the convolution.  

Output Layer, The final layer aims to reconstruct the denoised image. It employs c filters of size 3×3×128, where 
'c' matches the number of channels in the input image. This layer aggregates the learned features from the previous layers 
and reconstructs a clean, denoised image, maintaining the original dimensionality of the input. 

By enhancing the number of filters to 128 in each layer, the network may be able to better capture a broader 
variety of features from the malaria thin blood smear images. Enhanced performance in denoising can be achieved, 
particularly for images with a high level of detail or various types of noise patterns. The selection of filter size and 
quantity should be based on the specific characteristics of the images being processed and the computational resources 
available. 

Figure 7 demonstrates how the improved convolutional neural network (CNN) model performs denoising on 
malaria-thin blood smear images with different types of noise. Each row in the images corresponds to a distinct type of 
noise, such as Gaussian, Salt & Pepper, Poisson, and Speckle noise. The left column shows the "Noisy" version of each 
image, which includes added noise to mimic real image degradation in medical diagnostics. The column on the right 
displays the "Denoised" images after processing with the advanced deep neural network model. This process effectively 
improves image clarity while retaining crucial diagnostic information. This visual demonstration showcases how the 
denoising network can reduce noise and improve image quality. This, in turn, enhances the accuracy and reliability of 
malaria diagnosis. 

Table 4 presents a comparison of the CNN-based model's effectiveness in removing noise from malaria blood 
smear images with different types of noise. The performance metrics, PSNR and SSIM, demonstrate the effectiveness 
of the model in reducing noise and preserving structure. Higher values in both metrics indicate better denoising quality 
and retention of diagnostic details, with Salt & Pepper and Poisson noise showing the highest scores, while Speckle noise 
presents a comparatively. 

PSNR After Denoising (dB) is a measure in decibels that evaluates the ratio between the highest signal and the noise 
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in the cleaned-up image. Higher PSNR values usually mean better image quality after denoising. A higher ratio means 
that the noise has been reduced effectively. Salt and Pepper noise has the highest PSNR of 30.5 dB, showing that it is 
very effective at reducing noise. Poisson noise has a PSNR of 30.4 dB, which also shows good performance in noise 
reduction. Gaussian noise removes noise effectively, with a PSNR of 29.7 dB, slightly lower than other types. Speckle 
noise has the lowest PSNR of 29.3 dB out of the four types of noise. This means that the model had more difficulty 
dealing with speckle noise than with the other types. 

 

 
Figure 7: Comparative Denoising Results on Malaria Blood Smear Images Using a Convolutional Neural Network – 
(a) Gaussian Noise Removed, (b) Salt & Pepper Noise Removed, (c) Poisson Noise Removed, (d) Speckle Noise Removed 
 
Table 4: Performance of CNN-Based Denoising Model on Malaria Blood Smear Images Across Noise Types 

Noise 
Type 
 

PSNR After 
Denoising 
(dB) 
 

SSIM After 
Denoising 

Salt_Pep
per 

30.4 
 

0.94 
 

Speckle 
 

29.7 
 

0.92 
 

Gaussian 
 

29.3 
 

0.91 
 

Poisson 
 

30.5 
 

0.95 
 

SSIM After Denoising compares the denoised image to the original, with values near 1 showing stronger 
structural preservation. Higher SSIM scores indicate that the model can preserve important diagnostic features after 
noise removal. Removing salt and pepper noise yields an SSIM value of 0.95, showing that structural details are 
well preserved. Poisson noise removal has an SSIM of 0.94, which is similar to Salt & Pepper in structural integrity. 
Removing Gaussian noise results in an SSIM of 0.92, indicating that structural information is well preserved. 
Speckle noise removal scored an SSIM of 0.91, showing that although noise was reduced, structural preservation 
was slightly less effective compared to other noise types. 
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4. CONCLUSION AND FUTURE WORK 
This study proposes an advanced framework to efficiently classify and denoise malaria-infected thin blood smear 
microimages. Our emphasis is on the more difficult issues created by medical imaging noise. The authors propose a dual-
network strategy using a specific CNN to accurately determine noise classes, including salt-pepper, speckle, Gaussian, 
and Poisson noise, and a separate CNN-based denoising model to suppress the specified noise classes. This significantly 
enhances the quality of images and also enhances the reliability of diagnosis. By employing a deep layer structure with 
the Swish activation function, our model achieves better classification accuracy and performs well in noise reduction 
compared to various noise types. Such fidelity is reflected in the PSNR and SSIM scores. These metrics highlight the 
performance of the proposed model in noise removal while preserving relevant clinical features, thus showing its true 
potential to enhance malaria diagnostic accuracy. 
Next, it will be applying this framework to other diagnostic imaging modalities (ultrasound, MRI, and CT scans) in the 
future. This means optimizing the architecture according to the noise properties of each imaging modality. It will also 
explore transfer learning approaches to increase efficiency or speed at the expense of getting something right on 
something bigger, especially if your system is small. This will allow the system to use previously learned models, thereby 
improving performance in low-resource environments. In addition, generative adversarial networks (GANs) demonstrate 
the generation of realistic noisy datasets and the use of adversarial-trained denoising networks. This will allow the model 
to be able to deal with complex noise models, which often appear in real cases. Advanced validation with multiple data 
sets combined with a simple-to-use interface will facilitate the adoption of this technology in the clinic. With this 
functionality, healthcare providers will not need text-required or very advanced technical skills to classify and clean 
images. According to the framework, this improved diagnostic accuracy and efficiency will prove to be a boon for both 
healthcare providers and patients. 
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