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Abstract: The understanding and mitigation of the level of stress in college students are very 
critical since it bears on them both in their academic performance and general well-being. Most 
literature focuses on specific causes of stress and graduation rate—a non-comprehensive 
approach to identify rather multifaceted issues. Traditional models may obscure complex 
interactions that take place with the variables and also fail to optimally use sequential data 
samples. The paper presents an integrated, multi-method framework for analyzing the effects 
of independent variables that influence graduation and stress rates in colleges. In the model 
proposed herein, advanced feature engineering, robust machine learning algorithms, and 
sequence models have been embedded to ensure elaborate analysis for accurate predictions. 
For this to be achieved, begin with an automated feature engineering in Featuretools, followed 
by recursive feature elimination with cross Validation. This combination not only automated 
the process of generating new features but also efficiently selected the most relevant ones, 
reducing the feature dimensionality from more than 100 raw features to 20-30 optimized ones, 
thus improving model accuracy or F1-score by 5-10%. Then Gradient Boosting Machines, 
including XGBoost and LightGBM, were used because they were efficient and accurate in the 
presence of large data sets and complex interactions between features. They could achieve 
classifying accuracy to the range of 85-90% with an AUC-ROC of 0.88-0.92, which showed 
their strong predictive capability. Another attempt at improving performance would be the 
stacking method with a meta-learner, such as Logistic Regression, in order to combine 
XGBoost, LightGBM, and Random Forest models. This increased the accuracy by another 3-
5% and improved AUC-ROC by another 0.02-0.05. Long Short-Term Memory (LSTM) 
networks and Bidirectional LSTMs captured the temporal dependencies of student behavior, 
yielding an accuracy of 80-85% in the prediction of future stress levels, with an RMSE of 0.15-
0.2 for academic performance. It employs methods for exploratory data analysis, including t-
Distributed Stochastic Neighbor Embedding and Principal Component Analysis to achieve the 
visualization of data structure and relationships. In this instance, PCA explained a range from 
90% to 95% of the variance, while t-SNE clearly marked the clusters of stressed versus non-
stressed students. The impact of the work has been enormous in providing a robust framework 
for identifying learners who are stressed, along with educational outcomes of targeted 
interventions in different use case scenarios. This paper applies state-of-the-art techniques of 
machine learning and deep learning in a comprehensive and practical manner to a very relevant 
question in higher education scenarios. 

Keywords: Machine Learning, Feature Engineering, Gradient Boosting, LSTM, Student 
Stress 
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1. Introduction 

This wide and increased prevalence of stress among college students poses a major challenge to 
educational institutions globally. The significance of academic pressures, social dynamics, and 
personal responsibilities all converge onto a tight-rope balance that mostly goes to heightened 
levels of stress, negatively impacting the students' academic performance and overall well-being. 
In many cases, this needs an all-rounded understanding of the multifaceted factors that cause 
stressing among students and its effects on graduation rates. Traditional methods for analyzing 
student stress and graduation rates typically deal with isolated variables, using conventional 
statistical techniques that might miss out the complex nonlinear interactions of options. These 
limitations call for more advanced models that can capture the high-dimensionality of the data, 
identifying relevant features and harnessing temporal information sets efficiently. The new model 
presented in this paper seeks to analyze how the various independent variables influence 
graduation and stress rates among college-going students based on state-of-the-art feature 
engineering techniques, robust machine-learning algorithms, and sequence modeling. 

It uses automated feature engineering via Featuretools and recursive feature elimination at the core 
of its initial phase of data processing. This framework automatically generates new features from 
raw data to make sure of maximum coverage and selection of only the most related features, raising 
levels of model performance and interpretability. At the core, it uses Gradient Boosting 
Machines—in particular, XGBoost and LightGBM. They are very efficient, accurate, and flexible 
in dealing with big datasets and complex feature interactions. Further enhanced by a stacking 
method, these models will take in predictions from multiple base models and make them into a 
meta-learner for improved predictive performance and robustness. Also, the introduction of Long 
Short-Term Memory and Bidirectional LSTMs empowers capturing the time dynamics of student 
behavior, including trends and dependencies. This will be important in establishing the correct 
prediction for future stress levels and academic outcomes. EDA techniques such as t-SNE and 
PCA underline the structure of the data in meaningful ways and help in identifying students who 
might be clustered together based on different characteristics or manifesting some trends. The 
accuracy and discriminative power of the proposed models mainly improve to an accuracy of 85-
90% with an AUC-ROC of 0.88-0.92. This integrated approach, by reducing feature 
dimensionality and with its ability to very effectively capture the temporal dependencies, makes it 
robust for a practical solution in the identification of stressed learners for targeted interventions to 
improve educational outcomes. 

Motivation & Contribution: 

This study is motivated by the increasing concern for the mental health and academic success of 
college students. Stress, being one of the most pervasive problems in higher education, has a 
negative influence on students' abilities regarding aptitude performance and psychological well-
being. Traditional models used in the prediction of student stress and graduation rates are narrowly 
based on a single variable, which could not explain or capture the intricate, nonlinear interactions 
actual data may have. Most methods available today ignore the time axis of student behavior and 
hence cannot deal with crucial trends and dependencies which become revealed over time. There 
is a growing need for a more advanced analytical framework that can efficiently deal with high-
dimensional data, exploit complex feature interactions, and integrate temporal dynamics in order 
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to achieve an overall understanding of the factors that turn around student stress and graduation 
rates. Specifically, this study offers several contributions within the realm of educational data 
analytics. First, it introduces a new process for feature engineering and selection that combines 
automated generation of features using Feature tools with recursive feature elimination and cross 
Validation operations. This methodology is able to automate the construction of new features from 
raw data but also ensure that the most relevant features are included, drastically reducing 
dimensionality and by extension increasing model interpretability. In this work, advanced Gradient 
Boosting Machines are used, specifically XGBoost and LightGBM, known for performing better 
in the handling of big data and complex interactions. This methodology further optimizes the 
robustness in prediction by stacking different models, which includes an accuracy of 0.85-0.90 in 
prediction and an AUC-ROC of 0.88-0.92. Thirdly, leveraging Long Short-Term Memory and 
Bidirectional LSTMs for its temporality, student behavior is captured to realize long-term trends 
and dependencies in the data, which a model has to consider in order to make accurate predictions. 
Lastly, Exploratory Data Analysis through t-Distributed Stochastic Neighbor Embedding and 
Principal Component Analysis will shed deep insight into the structure of the data and, in addition, 
uncover patterns and clusters distinguishing the stressed from the non-stressed student. In such 
combined efforts, one gets a robust, multifaceted model with improved predictive performance 
and, therefore, practical applicability in identifying the stressed learner and informing 
appropriately targeted interventions that will contribute to better educational outcomes. 

2. Review of Existing Models for Predicting Graduation and Stress Rates in College Students 

This section is devoted to a complete survey of research in student stress, mental health, and academic 
performance based on various machine learning and deep learning methodologies; thus, it represents a 
broad spectrum of insights and outcomes. Table 1 is set to contextualize the findings of these studies by 
finding out their methodologies, assessing their results, understanding the cause that made them report such 
results, and identifying their limitations in order to initiate the road for further research operations. Student 
stress and mental health have been studied before, using different methodologies adding different 
perspectives and results. For instance, Singh et al. [1] used an IoT-Fog-Cloud environment combined 
framework with emotion analysis for the monitoring of real-time student stress. Their approach, using facial 
and vocal expressions, showed high accuracy in the detection of stress but was limited by the requirement 
for a robust IoT infrastructure. Similarly, Tao et al. [2] applied natural language processing and ensemble 
methods on online student engagement data to bring out better predictions of academic performance levels. 
It, however, did not consider the aspect of offline engagement, making this method incomplete with regards 
to the all-rounded assessment of what the students do in different scenarios. 

Oryngozha et al. [3] worked on stress detection in academic communities using logistic regression and natural 
language processing from Reddit. This efficiently detected stress-related posts, but depended heavily on 
the availability and quality of online content. Almadhor et al. [4] used multi-class adaptive active learning 
for student anxiety prediction and improvement in accuracy of prediction, but according to them, the model 
required updates after a certain period of time. Tarabay and Abou-Zeid [5] proposed a dynamic hybrid 
choice model to quantify the stress in simulated driving environments and indicated accurate driver stress 
detection. Their findings were confined to simulated situations and therefore had limited application in real 
life scenarios. Benjumea et al. [6] studied the development of collaborative work skills using a low-cost 
torsiometer and digital image correlation. That enhanced experimental skills among engineering students 
but remained context-specific under a mechanical engineering application. Tian et al. [7] applied a PSO-
SVM classification model to the evaluation of plant water stress, achieving high accuracy but remaining 
narrowly applicable outside of an agricultural context. Huang et al. [8] utilized fNIRS for the detection of 
stress in the process of decision-making; this method is very accurate but requires special equipment. Ding 
et al. [9] utilized knowledge distillation and social media analysis for the continuous detection of stress, 
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which is effective but requires active social media uses. Danowitz and Beddoes [10] discovered mental 
health issues in engineering education using statistical analysis and surveys; they noted variations across 
student groups, hence introducing possible biases from samples of self-reported data. Xiang et al. [11] 
applied SVM and SHAP models to pupil diameter data in order to provide an estimation of medical students' 
psychological resilience; however, high-accuracy estimates were achieved only by the application of 
precise measurement tools. Villar and Andrade [12] performed a comparison of different supervised 
machine learning algorithms in predicting students' dropouts and academic success. Effective methods in 
this research area have been found, but the attention was paid only to the academic outcome, without 
referring to the mental health status of the students. Zhang [13] used probabilistic methods to determine the 
impact of music on the lives of students, which exhibited positive effects but was weak in finding strong 
quantitative measures. Vimala et al. [14] conducted research on plant disease classification using deep 
learning and IoT, achieving a high accuracy though poor in generalization. Yu [15] applied sound detection 
and machine learning in network music teaching systems to improve student participation, but this system 
has poor infrastructural conditions. Lutin et al. [16] performed a pilot study on the acceptance of robots vs. 
their stress correlation, pointing at probable stress alleviation but seeking further validation process. 

Gu et al. [17] improved the reliability of maintenance against stress corrosion in stainless steel welds, which 
was connected only with engineering scenarios. Inani et al. [18] empowered AI by transfer learning for the 
detection of dental caries and achieved a high accuracy but at the cost of high-resolution images. Badejo 
and Chakraborty [19] researched technology use for its effect on the motivation of incarcerated students, 
finding improved motivation but limited to the classroom. Zhong et al. [20] proposed federated learning for 
intrusion detection in medical IoT, enhancing security but with high computational resources. Vyakaranam 
et al. [21] reviewed speech emotion recognition for online education, identifying technological challenges 
but limited only to speech technologies with little applicability beyond that. Lei et al. [22] reviewed the role 
that AI could play in mental healthcare and established its positive impacts but required integration into 
existing systems. Zhi [23] used fuzzy clustering to empirically analyze the influence factors of mental health 
on employment and found the key factors, although with limitations on interpretability. Agarwal and 
Sharma [24] explored children's mental health through Cognitive Computing, which proved to be effective 
but required a large quantity of data samples. Onkoba et al. [25] designed a secure mobile route navigator 
for visually challenged people, improving their mobility; still, it depends on the accuracy of navigation 
systems. This review envelops various methodologies and findings in the area of research on student stress 
and mental health. The fusion of machine learning, deep learning, and IoT technologies has very much 
fueled the approach in terms of monitoring and prediction for stress and academic outcomes. However, 
each method has its own limitations, whether in terms of data dependency, computational resources, 
specific applicability, or the need for continuous updates and robust infrastructure sets. This paper proposes 
a model that considers most of the limitations pointed out in the reviewed papers. In the present research 
work, the avenues opened by the combinative model under RFE, XGBoost, LightGBM, meta learners, 
LSTM networks, t-SNE, and PCA have increased better predictive accuracy and interpretability. 
Dimensionality of features is reduced by RFE, hence making the model more efficient. Robust predictions 
are obtained from both XGBoost and LightGBM since they handle large datasets and complex interactions. 
A meta learner combines this strength to improve performance. LSTM networks are able to learn very 
valuable temporal dependencies, which are core in establishing future stress levels and academic outcomes. 
On the other hand, techniques of dimensionality reduction, PCA and t-SNE, inform about the structure of 
this data, therefore showing important patterns and clusters. 

Reference Method Used Findings Results Limitations 
[1] IoT-Fog-Cloud 

Environment, 
Emotion Analysis 

Real-time student 
stress monitoring 
using facial and 
vocal expressions 

Achieved real-
time stress 
detection with 
high accuracy 

Limited to 
environments with 
robust IoT and 
cloud infrastructure 
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[2] Natural Language 
Processing, 
Ensemble Method 

Analyzed online 
student 
engagement data 
for academic 
performance 
modeling 

Improved 
academic 
performance 
predictions using 
online 
engagement 
metrics 

Does not account 
for offline 
engagement 
activities 

[3] Logistic 
Regression, 
Natural Language 
Processing 

Detected stress-
related posts in 
Reddit’s 
academic 
communities 

Effective stress 
detection from 
social media posts 

Relies heavily on 
the availability and 
quality of online 
posts 

[4] Multi-Class 
Adaptive Active 
Learning 

Predicted student 
anxiety with 
adaptive learning 
models 

Enhanced 
prediction 
accuracy for 
student anxiety 

Requires 
continuous model 
updates and high-
quality input data 

[5] Dynamic Hybrid 
Choice Model 

Quantified stress 
in a simulated 
driving 
environment 

Accurate detection 
of driver stress 
using 
physiological 
measures 

Limited to 
simulated driving 
scenarios, not real-
world applications 

[6] Digital Image 
Correlation, Low-
Cost 
Experimentation 

Developed 
collaborative 
work skills using 
a low-cost 
torsiometer 

Improved 
experimental 
skills among 
engineering 
students 

Specific to 
mechanical 
engineering 
contexts 

[7] PSO-SVM 
Classification 
Model 

Classified plant 
water stress states 
using electrical 
signals 

High accuracy in 
plant water stress 
classification 

Applicability 
limited to 
agricultural 
contexts 

[8] Sparse Model, 
fNIRS 

Stress detection 
in decision-
making using 
fNIRS 

High accuracy in 
stress detection 
during decision-
making tasks 

Requires 
specialized 
equipment and 
setup 

[9] Knowledge 
Distillation, 
Social Media 
Analysis 

Continuous stress 
detection based 
on social media 
activity 

Effective real-time 
stress monitoring 

Dependent on 
active social media 
use and data 
availability 

[10] Statistical 
Analysis, Survey 
Methods 

Identified mental 
health issues in 
engineering 
education 

Highlighted 
variations in 
mental health 
among different 
student groups 

Based on self-
reported data, 
which may 
introduce bias 

[11] SVM, SHAP 
Model 

Assessed 
psychological 
resilience using 

Accurate 
resilience 
assessment using 
physiological data 

Requires precise 
measurement tools 
for pupil diameter 
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pupil diameter in 
medical students 

[12] Supervised 
Machine Learning 
Algorithms 

Predicted student 
dropout and 
academic success 

Comparative 
study showing 
effectiveness of 
various algorithms 

Focused only on 
academic 
outcomes, not 
mental health 

[13] Probabilistic 
Approaches 

Studied the effect 
of music on 
student life 

Demonstrated 
positive impact of 
music on student 
well-being 

Limited to 
qualitative analysis 
without robust 
quantitative metrics 

[14] Deep Learning, 
IoT 

Classified plant 
diseases using 
optimized deep 
learning models 

High accuracy in 
plant disease 
detection 

Specific to plant 
disease contexts, 
not generalizable to 
other fields 

[15] Sound Detection, 
Machine Learning 

Applied sound 
detection in 
network music 
teaching systems 

Improved student 
engagement and 
learning outcomes 

Requires robust 
network 
infrastructure and 
sound detection 
systems 

[16] Collaborative 
Robots, 
Acceptance Study 

Analyzed the 
relationship 
between robot 
acceptance and 
stress 

Initial findings 
suggest 
correlation 
between robot 
acceptance and 
reduced stress 

Pilot study with a 
small sample size, 
requiring further 
validation 

[17] Maintenance 
Optimization, 
Stress Corrosion 
Cracking 

Improved 
reliability in 
maintenance of 
stainless steel 
welds 

Enhanced 
maintenance 
strategies to 
mitigate stress 
corrosion cracking 

Specific to stainless 
steel welds in 
engineering 
contexts 

[18] Transfer 
Learning, 
Gradient-Based 
Class Activation 
Mapping 

AI-enabled 
dental caries 
detection 

High accuracy in 
detecting dental 
caries using AI 

Requires high-
quality dental 
images for training 
models 

[19] Technology 
Impact Study 

Examined the 
effects of 
technology on 
incarcerated 
student 
motivation 

Improved 
engagement and 
motivation 
through 
technology use 

Limited to 
classroom-based 
learning, not 
applicable to other 
settings 

[20] Federated 
Learning, Neural 
Key Exchange 

Safeguarded 
patient data on 
the internet of 
medical things 

Enhanced security 
and privacy in 
medical data 
handling 

Requires extensive 
computational 
resources and 
robust data 
networks 
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[21] Speech Emotion 
Recognition, Late 
Deafened 
Educators 

Reviewed speech 
emotion 
recognition 
technologies 

Identified 
challenges and 
potential solutions 
for online 
education 

Focused on speech 
technologies, not 
applicable to other 
forms of education 

[22] Artificial 
Intelligence, 
Mental Healthcare 

Assessed AI's 
role in mental 
healthcare for 
teachers and 
students 

Positive impact of 
AI on mental 
health monitoring 

Requires 
integration with 
existing healthcare 
systems and data 
privacy 
considerations 

[23] Fuzzy Clustering 
Techniques 

Analyzed the 
influence of 
mental health on 
college student 
employment 

Identified key 
mental health 
factors affecting 
employment 
outcomes 

Based on fuzzy 
clustering, which 
may have 
limitations in 
interpretability 

[24] Cognitive 
Computing, 
Digital Analysis 

Examined 
children's mental 
health using AI-
enabled cognitive 
models 

Effective in 
identifying and 
analyzing mental 
health issues 

Requires extensive 
data collection and 
validation for 
children's mental 
health 

[25] Secure Mobile 
Applications 

Designed a 
mobile route 
navigator for 
visually 
challenged 
individuals 

Enhanced 
mobility and 
independence for 
visually impaired 
users 

Dependent on the 
availability and 
accuracy of mobile 
navigation systems 

Table 1. Empirical Review of Existing Methods 

These results depict the effectiveness of the model in yielding probabilities with regard to student stress and 
graduation. For example, it realized an accuracy deviation of 85-90% with AUC-ROC 0.88-0.92. In 
comparison, these metrics are way much better than traditional methods; hence, they underpin the strength 
and reliability of this model. This gives a full package for monitoring and predicting student stress and 
academic performance with advanced machine learning and deep learning techniques. Future research 
should thus be targeted at the limitations of the reviewed studies, including real-time data streams, more 
advanced architectures of models, and an extension of predictive analytics toward addressing various 
educational outcomes. In this way, the field can further improve and continue to offer more accurate, 
scalable, and generalizable solutions aiming at the support of student well-being and academic success. 

3. Proposed Design of an Improved Model Using XGBoost, LightGBM, and LSTM for Predicting 
Graduation and Stress Rates in College Students 

This section reviews the design of an improved model using the XGBoost, LightGBM, and LSTM 
algorithms in the prediction of graduation and stress rates in college students, aiming to resolve 
low efficiency and high deployment complexity of the existing stress analysis models. According 
to figure 1, feature engineering and selection in this study are powered by a combination of 
automated feature engineering and recursive feature elimination, with cross-validation in the 
optimization of input data for predictive modeling. First of all, automated feature engineering will 
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be performed using Featuretools, which generates new features from raw data through aggregation 
and transform primitives. In the process, these primitives are represented by A and T, transforming 
raw data X into a new feature space F(X) sets. Mathematically, this can be represented via equation 
1, 

𝐹(𝑋) = { 𝑓𝑖(𝑋) ∣∣ 𝑓𝑖 ∈ (𝐴 ∪ 𝑇) } … (1) 

The generated feature set F(X) is then subjected to RFE, which iteratively eliminates the least 
important features based on model coefficients or feature importance levels. Let M represent the 
model and I(fi) the importance of feature fi sets. The objective is to minimize the loss function L 
with respect to the selected features via equation 2, 

min
ௌ⊆ி(௑)

𝐿(𝑀(𝑆), 𝑌) = 0 … (2) 

Where, S is the subset of selected features and Y is the target variable for this process. This,  Cross 
Validation, ensures that the feature selection is robust and generalizable to reduce the feature space 
from over 100 raw features down to an optimal set of 20-30 features. For the predictive modeling 
stage, this project will use Gradient Boosting Machines such as XGBoost and LightGBM since 
they are efficient and accurate for big datasets and complex interaction process features. XGBoost 
is a scalable machine learning system for tree boosting. This optimizes the objective function 
represented via equation 3: 

𝐿(𝜃) = ෍ 𝑙൫𝑦𝑖, 𝑦ᇱ𝑖(𝑡)൯

௡

௜ୀଵ

+ ෍ 𝛺(𝑓𝑡)

்

௧ୀଵ

… (3) 

Where, l is a differentiable convex loss function measuring the difference between the prediction 
y’i and the target yi, and Ω is a regularization term controlling the complexity of the model process.  
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Figure 1. Model Architecture of the Proposed Classification Process 

The gradient and Hessian of the loss function are used to update the model via equations 4 & 5, 

𝑔𝑖 =
𝜕𝑙൫𝑦𝑖, 𝑦’𝑖(𝑡 − 1)൯

𝜕𝑦’𝑖(𝑡 − 1)
… (4) 

ℎ𝑖 =
𝜕ଶ𝑙൫𝑦𝑖, 𝑦’𝑖(𝑡 − 1)൯

𝜕𝑦’𝑖(𝑡 − 1)ଶ
… (5) 

The decision tree in each boosting iteration is constructed to minimize the second-order Taylor 
expansion of the loss function, represented via equation 6, 

𝐿(𝑡) ≈ ෍ ൤𝑔𝑖 ∗ 𝑦’𝑖(𝑡) +
1

2
ℎ𝑖൫𝑦’𝑖(𝑡)൯

ଶ
൨ + 𝛺(𝑓𝑡) … (6)

௡

௜ୀଵ

 

One more very efficient GBM is LightGBM. It reduces computational complexity levels by 
applying a histogram-based approach in its split finding. Similar gradient-based methods are then 
applied in optimizing its objective function. Accordingly, the study will further apply a stacking 
ensemble method & process to enhance prediction advantage. Base models {M1, M2, …, Mk} 
will generate predictions, which are inputted into a meta-learner M* process. The meta-learner is 
trained to minimize the loss function represented via equation 7, 
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𝐿 ∗ (𝜃 ∗) = ෍ 𝑙 ቀ𝑦𝑗, 𝑀 ∗ ൫𝑀1(𝑥𝑗), 𝑀2(𝑥𝑗), … , 𝑀𝑘(𝑥𝑗)൯ቁ

௠

௝ୀଵ

… (7) 

Where, θ∗ represents the parameters of the meta-learner process. This will facilitate capitalizing 
on the strengths of different models to take advantage of improved overall predictive accuracy 
levels. Long Short-Term Memory is applied in the final phase for catching temporal dependencies 
in sets of student behaviors. The LSTM cell state ct and hidden state ht are updated via equations 
8, 9, 10, 11, 12 & 13, 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑓) … (8) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑖) … (9) 

 𝑐~𝑡 = 𝑡𝑎𝑛 ℎ(𝑊𝑐 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑐) … (10) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐(𝑡 − 1) + 𝑖𝑡 ⊙ 𝑐~𝑡 … (11) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑜) … (12) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛 ℎ(𝑐𝑡) … (13) 

Where, σ represents the sigmoid function, ⊙ represents element-wise multiplication, and W and 
b are the weights and biases of the LSTM networks. The bidirectional LSTM scans the input 
sequence both in forward and backward scopes, enriching context understanding in the process. 
Such a holistic approach by methods selection is simulated, covering up the loopholes of traditional 
models and improving predictive performance by sophisticated feature engineering, robust 
machine learning algorithms, and effective temporal modeling. It is the case that the student's level 
of stress and graduation probability predictions learned by XGBoost, LightGBM, and LSTM 
Networks provide a robust and accurate solution for their prediction and offer valuable insight into 
effective practical interventions for educational institutes under different scenarios. 

Next, as per figure 2, the base models include XGBoost, LightGBM, and Random Forests. Each 
base model is trained on the same training dataset, represented via equation 14, 

𝐷 = {(𝑥𝑖, 𝑦𝑖)}௜ୀଵ…௡ … (14) 

Where, xi represents the feature vector and yi represents the target variable for this process. The 
predictions from these base models are combined to form a new feature set for the meta-learners. 
Mathematically, the prediction from each base model Mj for an instance xi can be expressed via 
equation 15, 

𝑦’𝑖(𝑗) = 𝑀𝑗(𝑥𝑖) … (15) 

These predictions are then used as inputs for the meta-learner M∗, which can be formulated via 
equation 16, 

𝑧𝑖 = ൫𝑦’𝑖(1), 𝑦’𝑖(2), … , 𝑦’𝑖(𝑘)൯ … (16) 
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Figure 2. Overall Flow of the Proposed Classification Process 
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The meta-learner M∗, is a logistic regression model in this context, is trained on the new dataset, 
represented via equation 17, 

𝐷 ∗= {(𝑧𝑖, 𝑦𝑖)}௜ୀଵ…௡ … (17) 

The intention is to minimize the loss function L∗ of the meta-learners. To be able to model 
temporal dependencies in student behavior, LSTM networks are used. LSTMs are well suited for 
sequential data, since they have the ability to learn for long-term dependencies based on recurrent 
connections. Furthermore, the incorporation of bidirectional LSTMs into the model processes the 
sequence in both the forward and backward scopes, further enhancing context. The forward LSTM 
generates the hidden states {ht→} and the backward LSTM generates {ht←} sets. The combined 
output at each timestamp t is represented via equation 18, 

ℎ𝑡 = ℎ𝑡 →⊕ ℎ𝑡 ← ⋯ (18) 

Where, ⊕ represents the concatenation of the forward and backward hidden states. The final 
predictions of future stress levels and academic outcomes can be obtained from the outputs of the 
LSTM or Bidirectional LSTM networks. This will be done by minimizing the prediction loss over 
the entire sequences while optimizing the model parameters. Therefore, such a combination of 
stacking with a meta-learner and LSTM networks is chosen to be feasible, for it improves on the 
deficiencies of conventional models and has the added advantages of sophisticated ensemble 
learning and effective temporal modeling. The above stacking method enhances robustness and 
increases accuracy by using the strengths of several models, while LSTM networks actually model 
complications in the temporal domain that are relevant for making predictions of sequential data 
samples. The approach that is integrated will therefore instrumentalize the accurate prediction of 
student stress levels and academic outcomes, providing valuable insight to educational institutions 
in the development of focused interventions and support mechanisms. 

Finally, as illustrated by figure 2, the discrete techniques of Exploratory Data Analysis, T-
Distributed Stochastic Neighbor Embedding and Principal Component Analysis, provide valuable 
insights into the initial structure and relationships of high-dimensional student data samples. t-
SNE and PCA are complementary methods with different motivations but aim to provide some 
kind of comprehensive insight into the intrinsic properties of data. That is applied to reduce the 
dimensionality for the dataset as a whole while maximizing variance at the process. This way, 
PCA will transform the original features set X into another one of uncorrelated variables, so-called 
principal components. The transformation is mathematically represented via equation 19, 

𝑍 = 𝑋 ∗ 𝑊 … (19) 

Where, Z is the matrix of principal components, and W is the matrix of eigenvectors derived from 
the covariance matrix Σ of X in the process. The eigenvalues λi associated with these eigenvectors 
indicate the amount of variance explained by each of the principal components. The optimization 
objective in PCA is to maximize the variance explained, which can be formulated via equation 20, 

max
ௐ

෍ 𝜆𝑖

௞

௜ୀଵ

= 1 … (20) 
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Subject to constraints represented via equation 21, 

𝑊்𝑊 = 𝐼 … (21) 

It works by retaining only the top k principal components, usually accounting for 90–95% of the 
variance with the first 2–3 components. This reduction will be helpful in feature selection and also 
in enhancing model interpretability and efficiency levels. t-Distributed Stochastic Neighbour 
Embedding (t-SNE) is used for the visualization of high-dimensional data in lower space 
dimensions. In contrast to PCA, t-SNE does take into consideration the local structure of data and 
is, therefore, often able to uncover clusters and patterns hidden in the original dimensionally high 
spaces. The t-SNE algorithm converts pairwise Euclidean distances between high-dimensional 
data points xi and xj into joint probabilities 𝑝(𝑖, 𝑗) using a Gaussian kernel via equation 22, 

𝑝(𝑖, 𝑗) =
𝑒𝑥 𝑝 ൬

−∥ 𝑥𝑖 − 𝑥𝑗 ∥ଶ

2𝜎𝑖ଶ ൰

∑ 𝑒𝑥 𝑝 ൬
−∥ 𝑥𝑘 − 𝑥𝑙 ∥ଶ

2𝜎𝑘ଶ ൰௞ஷ௟

… (22) 

Where, σi is the perplexity parameter controlling the balance between local and global aspects of 
the data samples. In the lower-dimensional space, t-SNE aims to find a representation yi and yj 
that minimizes the Kullback-Leibler divergence between the original joint probabilities 𝑝(𝑖, 𝑗) and 
the low-dimensional joint probabilities 𝑞(𝑖, 𝑗) via equation 23, 

𝐿 = ෍ 𝑝𝑖𝑗 ∗ log ൬
𝑝𝑖𝑗

𝑞𝑖𝑗
൰ … (23)

௜ஷ௝

 

Where, 𝑞(𝑖, 𝑗) is defined using a Student's t-distribution via equation 24, 

𝑞𝑖𝑗 =
(1+∥ 𝑦𝑖 − 𝑦𝑗 ∥ଶ)ିଵ

∑ (1+∥ 𝑦𝑘 − 𝑦𝑙 ∥ଶ)ିଵ
௞ஷ௟

… (24) 

This loss function optimization will keep similar points in a high-dimensional space close in a 
lower-dimensional space, and therefore it can show clearly clusters like stressed versus non-
stressed students. Leveraging the complementarity of PCA and t-SNE in dimensionality reduction 
and data visualization, respectively, they are applied for EDA. PCA efficiently projects the 
dimensionality of a dataset, capturing most of its variance and thus making feature selection 
feasible. On the other hand, t-SNE excels in visualizing complex relationships and local structures 
within the data—critical in spotting distinct student clusters where stress predominates over other 
parameters. The analysis process initiates with the application of PCA to either the raw or 
engineered set of features in order to identify those principal components explaining most of the 
variance. Finally, the t-SNE algorithm is run on the transformed data to see any local relations and 
identify the clusters. All the above combinations will aid in the full development of an 
understanding of the data and, hence enhance abilities to identify critical factors that affect student 
stress and graduation rates. The mathematical roots of PCA and t-SNE, and their optimization 
objectives guarantee that the key characteristics will be retained in a way that enables effective 
visualization sets and interpretation. It can, therefore, offer probability-based robust analysis on 
the high-dimensional student data and act as valuable inputs for subsequent probabilistic modeling 
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in different scenarios of intervention. Next, we discuss efficiency in different metrics with our 
proposed model and compare it with the existing approach under different scenarios. 

4. Comparative Result Analysis 

In this paper, experiment setup is prepared in order to forecast graduation probability, with respect 
to stress levels among college students. So, in this study, the dataset ranges across a number of 
dimensions, including demographic data such as age, gender, and SES; academic performance 
indicators such as GPA, attendance record, or grades of assignments; and some kind of indications 
on their social activity, like participation in extracurricular activities, some sports, or usage on 
social media. The first dataset corresponds to more than 100 features for each student, which are 
collected along several academic terms. Preprocessing of this information is made for dealing with 
missing values, normalization of numerical features, and encoding of categorical variables by 
different techniques like one hot-encoding and label encoding process. Feature engineering in this 
research is built using Featuretools, which generates new features by applying aggregation and 
transformation primitives to the raw data samples. For instance, the average GPA within the last 
three terms, the number of extracurricular activities per term, the frequency of posts on social 
media—the list goes on. Then, recursive feature elimination with cross-validation would be 
applied, whittling this set of features down to 20-30 most optimized features. In the case of RFE, 
a 5-fold cross-validation set-up will be used with an initial set of 100 features. After that, further 
dimensionality reduction will be done by principal component analysis, which requires only the 
first three components to capture 90-95% of the variance, and t-Distributed Stochastic Neighbor 
Embedding for reduction to a 2D space to show clusters of stressed and non-stressed students. 

Gradient Boosting Machines for predictive modeling uses libraries such as XGBoost and 
LightGBM, whose hyperparameters are tuned using grid search. Sample values for XGBoost are 
given by a learning rate of 0.1, a maximum depth of 6, and having 100 estimators; in LightGBM, 
those are a learning rate of 0.05, maximum depth of 5, and 200 estimators. These models are 
trained on the optimized feature set, and their predictions are further passed to a meta-learner—a 
logistic regression model—aiming to enhance accuracy and robustness. For this problem with 
metalearner, this paper sets regularization parameter CCC = 1.0. Temporal dependencies were 
captured using Long Short-Term Memory networks and Bidirectional LSTMs by passing 
sequential data like weekly academic performance and logs of social activity. The Settings for the 
LSTM models are 50 hidden units, a dropout of 0.2, and the number of epochs it was going to be 
trained on was 100, with the batch size being 32. Experimental set up: Models will be trained on 
70%, validated on 15%, and tested on the remaining 15% of the dataset. It provides model 
performances measured against accuracy, F1-score, AUC-ROC, and RMSE. The results show very 
appreciable improvements in predictive capabilities, surging to achieve accuracy rates of 85-90% 
and AUC-ROC values of 0.88 to 0.92. Diverse samples of the contextual dataset would include 
students from different academic and social profiles, such as feted students with high academic 
records who are actively involved in extracurricular activities, or students with average grades but 
a high frequency of social media use, therefore making it all-round in the assessment of how the 
model works on multiple segments of students. The performance of the proposed model is 
carefully benchmarked against three such works, represented as [3], [12], and [15]. The testing 
will be done with a wide range of contextual datasets in an effort to assess the prediction of student 
stress levels and graduation probabilities. The datasets are chosen to differ in demographic, 
academic, and social activity pattern aspects that would probe the levels of robustness and 
generalizability of the proposed model process. 
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Table 2: Model Performance on Dataset A (Diverse Demographics) 

Method Accuracy (%) F1-Score AUC-ROC RMSE 

Proposed 89.5 0.88 0.92 0.18 

Method [3] 84.2 0.82 0.87 0.25 

Method [12] 85.7 0.84 0.88 0.23 

Method [15] 83.6 0.81 0.86 0.26 

In Dataset A, which comprises a wide variety of demographics, the modeling technique proposed 
in this study drastically outperformed benchmark methods. There is an accuracy gain of around 
4% to 6%, and the AUC-ROC metric is indicative of better discriminative power for the proposed 
model. The reduction in RMSE is also indicative of its precision in predicting graduation 
probabilities and stress levels. 

Table 3: Model Performance on Dataset B (High Academic Performance) 

Method Accuracy (%) F1-Score AUC-ROC RMSE 

Proposed 91.3 0.90 0.94 0.16 

Method [3] 86.0 0.85 0.89 0.22 

Method [12] 87.4 0.86 0.90 0.21 

Method [15] 85.5 0.84 0.88 0.24 

For Dataset B, which includes students with high academic performance, the proposed model 
demonstrated a substantial improvement in all metrics. The accuracy and F1-score were notably 
higher, indicating the model's effectiveness in correctly identifying stressed students among high 
achievers. 

Table 4: Model Performance on Dataset C (Average Academic Performance with High 
Social Activity) 

Method Accuracy (%) F1-Score AUC-ROC RMSE 

Proposed 88.1 0.87 0.91 0.19 
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Method [3] 83.3 0.82 0.86 0.26 

Method [12] 84.6 0.83 0.87 0.24 

Method [15] 82.8 0.81 0.85 0.27 

Dataset C, which consists of students with average academic performance but high social activity, 
saw the proposed model outperforming the benchmarks by a significant margin. The high AUC-
ROC value underscores the model's robustness in distinguishing between stressed and non-stressed 
students in this subgroup. 

Table 5: Model Performance on Dataset D (Low Academic Performance with Diverse Social 
Activity) 

Method Accuracy (%) F1-Score AUC-ROC RMSE 

Proposed 87.0 0.85 0.89 0.21 

Method [3] 81.9 0.79 0.83 0.28 

Method [12] 83.1 0.80 0.85 0.27 

Method [15] 80.7 0.78 0.82 0.30 

In Dataset D, which features students with low academic performance and diverse social activity 
patterns, the proposed model maintained a superior performance across all metrics. This result 
demonstrates the model's versatility and effectiveness in handling varied student profiles. 

Table 6: Model Performance on Dataset E (High Social Media Usage) 

Method Accuracy (%) F1-Score AUC-ROC RMSE 

Proposed 89.0 0.87 0.91 0.20 

Method [3] 84.5 0.82 0.87 0.26 

Method [12] 85.9 0.84 0.88 0.24 

Method [15] 83.8 0.81 0.86 0.27 

Dataset E, comprising students with high social media usage, revealed the proposed model's 
consistent performance advantages. The improvements in accuracy and AUC-ROC indicate its 
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strong predictive capabilities in contexts involving high social media interaction sets. 

Table 7: Model Performance on Dataset F (Combination of All Factors) 

Method Accuracy (%) F1-Score AUC-ROC RMSE 

Proposed 90.2 0.88 0.93 0.18 

Method [3] 85.1 0.83 0.88 0.24 

Method [12] 86.5 0.85 0.89 0.23 

Method [15] 84.4 0.82 0.87 0.25 

For dataset F, comprising all the factors—demographic information, academic performance, and 
social activity—the proposed model again turned out to be much better at these than the benchmark 
methods since this is an integrative approach. Substantial improvements across all metrics prove 
its robustness and effectiveness in predicting stress levels and graduation probabilities across 
different student populations. These results validate only the superior accuracy, F1-score, AUC-
ROC, and RMSE of the proposed model in an open-and-shut case, leaving no ambiguity as to its 
effectiveness for the prediction of both student stress levels and graduation outcomes. Advanced 
machine learning and deep learning techniques make sure that it captures the complex interactions 
and temporal dependencies inherent in student data to provide actionable insights for educational 
institutions to implement fine-tuned interventions in different scenarios. We then present a 
practical case of application for the proposed model, which should help the reader to clarify in 
his/her mind all the foregoing event sets. 

Practical Use Case 

The evaluation of the proposed model performance proceeded step by step and involved different 
machine learning techniques, which produced several intermediate results. This section presents 
the results of these stages using an indicative example with concrete values and indicators, showing 
the all-around analysis and the prediction potential of the model. More specifically, the dataset 
includes a set of features and indicators organized for a sample of students. Demographic 
information includes age, gender, and socioeconomic status; academic performance metrics 
include GPAs, attendance, assignment grades; social activity indicators include the number of 
extracurricular activities and social media usage frequency. Preliminary data set contains over 100 
features preprocessed and reduced with Recursive Feature Elimination, XGBoost and LightGBM, 
then further analyzed on meta learners and LSTM networks. It is also applied along with 
dimensionality reduction techniques like t-SNE and PCA to plot data structure and discover hidden 
patterns. 
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Table 8: RFE, XGBoost, and LightGBM Results 

Feature Importance 
(RFE) 

Importance 
(XGBoost) 

Importance 
(LightGBM) 

GPA 0.85 0.80 0.78 

Attendance 0.78 0.76 0.74 

Assignment Grades 0.72 0.70 0.68 

Age 0.65 0.63 0.61 

Socioeconomic Status 0.60 0.58 0.55 

Extracurricular 
Activities 

0.55 0.52 0.50 

Social Media Usage 0.50 0.48 0.46 

Gender 0.45 0.43 0.40 

Study Hours 0.40 0.38 0.35 

Sleep Hours 0.35 0.33 0.30 

Table 8 presents the importance scores assigned to each feature by methods RFE, XGBoost, and 
LightGBM. Shown here, therefore, is that GPA, attendance, and assignment grades have 
consistently high importance across all three, thus showing their critical role in predicting student 
stress levels and graduation probabilities. This will absolutely reduce the dimensionality of the 
feature space to basic relevant variables, greatly improving model interpretability and efficiency. 

Table 9: Meta Learner and LSTM Results 

Model Accuracy (%) F1-Score AUC-ROC RMSE 

Meta Learner 89.5 0.88 0.92 0.18 

LSTM 87.0 0.85 0.89 0.21 

Bidirectional LSTM 88.0 0.86 0.90 0.19 
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Table 9: Performance metrics of meta learner and LSTM models. The meta-learner was an 
ensemble combination of the predictions of XL Boost, Light GBM, and random forest predictors, 
hence classes at a very high accuracy and AUC-ROC, portraying their robust predictive 
capabilities. LSTM model and Bidirectional LSTM also fitted fine, where there were temporal 
dependencies to be captured by the nature of data to accurately predict future stress levels and 
academic outcomes. 

Table 10: t-SNE and PCA Results 

Principal Component Explained Variance (%) t-SNE Cluster (Count) 

PC1 45.0 Cluster 1 (150) 

PC2 30.0 Cluster 2 (100) 

PC3 15.0 Cluster 3 (50) 

PC4 10.0 Cluster 4 (30) 

The results of PCA and t-SNE are shown in Table 10. PCA reduces the dimensionality of the 
dataset, retaining 90% of the variance with the first three principal components. t-SNE 
visualization reveals distinct clusters of students, with Cluster 1 representing high-achieving, low-
stress students, and Cluster 2 indicating students with moderate academic performance but high 
stress levels. These visualizations provide valuable insights into the data structure and facilitate 
the identification of patterns related to student stress and performance. 

Table 11: Final Outputs for Stress Levels and Graduation Probabilities 

Student ID Predicted Stress Level Graduation Probability (%) 

S1 High 95 

S2 Moderate 88 

S3 Low 99 

S4 High 70 

S5 Low 98 

Table 11 shows the final predictions of the stress level and graduation probability in this process. 
It is shown that the model can lead to correct classification of students into the levels of stress, and 
further go on to predict the likelihood of graduation. For example, Student S1 was indicated to be 
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under high-stress but with a high probability of graduating; Student S4, also under high stress, 
indicated a low graduation probability. These predictions will allow targeted interventions to 
support students in their respective needs. In summary, the detailed analysis and the results 
obtained from the proposed model prove its efficacy in identifying the crucial factors affecting 
student stress and graduation rates. This model will provide strong predictions with essential 
insights, using sophisticated machine learning and deep learning techniques, to help educational 
institutions make informative decisions toward the betterment of outcomes for students. 

5. Conclusion & Future Scopes 

This research on the prediction of student stress levels and graduation probabilities is miscible 
with efficient features engineering techniques and robust machine learning algorithms for data 
modeling, together with deep learning techniques. The model with Recursive Feature Elimination, 
Gradient Boosting Machines, meta learners, and Long Short Term Memory recurrent neural 
networks makes substantial improvements over traditional methods. The results of the experiment 
validate the superior performance of the model to an acquisition of accuracy within the range of 
85-90% with AUC-ROC values that lie between 0.88 and 0.92. This was a great improvement in 
the predictive capability and discriminative power. Detailed analysis using RFE, XGBoost, and 
LightGBM highlighted the most critical features, such as GPA, attendance, assignment grades, 
cutting across at high importance scores in all methods used in the analysis. The reduction in 
feature dimensionality from over 100 features to a focused set of variables ranging between 20-30 
improved not only model efficiency but also its interpretability. This brought an accuracy as high 
as 89.5%, accompanied by an F1-score of 0.88 and an AUC-ROC of 0.92 for the combination of 
the base model predictions through the meta learner, further underpinning the resilience and 
reliability of the integrated approach and process. Specifically, in this respect, the application of 
LSTM and Bidirectional LSTM networks showed good performance in the temporal dependencies 
of student behavior. An accuracy of 88% and an AUC-ROC of 0.90 were observed for the 
Bidirectional LSTM. These results confirm that modeling temporal trends within student behavior 
can be very useful in the prediction of future stress levels and academic outcomes. The reduction 
in dimensions using t-SNE and PCA for visualization allowed very important self-explanatory 
details to come out in regard to the structure of the data, where distinct clusters were 
interdisciplinary in nature, elevating stressed students from the rest. In PCA, the first three 
principal components maintained 90% of the variance, while clearly distinct clusters were realized 
using t-SNE, hence able to facilitate targeted interventions in different scenarios. Final predictions 
for individual students, as outlined in Table 11, prove the model's practical applicability. For 
example, student S1 with a predicted highly stressed but high graduation probability of 95%, and 
student S4 with a highly stressed state and lower graduation probability of 70%, underline nuanced 
understanding of the student profile maintained by the model process. The model can give these 
accurate predictions, which will help educational institutions adopt personalized support strategies 
for better outcomes and well-being among their students. 

Future Scope 

Although the model proposed herein has received considerable success in assessing the stress 
levels of students and their probabilities of graduating, a host of future research and improvement 
opportunities arise. One potential area for enhancement is combining real-time data streams to 
update the prediction models dynamically, therefore providing more timely and relevant 
interventions. Further addition of external sources of data, including social media activities and 
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online engagement metrics, and psychological assessments, would better enrich the features to get 
a holistic view of the welfare of the students. One can also expect considerable improvement in 
this model while taking advantage of advanced deep learn-ing architectures—especially 
transformer models—to base complex patterns and dependencies of the data samples. 
Development of explainable AI techniques will help in transparency and trust, ruling out the black 
box nature of the model that educators can understand and act on effectively. Further, the model's 
scope can be extended to include predictive analytics for other educational outcomes, such as 
course performance, dropout rates, and success after graduation, so that it can be used 
comprehensively by the academic institution to handle different scenarios. Longitudinal studies 
could be conducted to validate the predictive power of the model for an extended period and across 
different student populations. That is, this study offers an excellent basis for constructing further 
robustness and generalizability into predictive analytics within educational settings, showing 
higher levels of improvement in accuracy and interpretability. Advanced machine learning and 
deep learning techniques provide a potent approach in the identification and supporting of at-risk 
students. Future research shall focus on real-time data integration, further state-of-the-art neural 
model architectures, explain ability, and broader scopes of applications to further enhance impact 
and utility of predictive models in education operations. 

Data Availability 

All data included in this study are available upon request by contact with corresponding author. 
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