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Abstract Protein kinase CK2 is a crucial target for drug discovery due to its involvement in
various cellular processes and diseases, including cancer. In this study, molecular docking and
molecular dynamics (MD) simulations were employed to explore the binding interactions and
stability of selected ligands with Zea mays CK2alpha (PDB ID: 4RLK). A library of 5000
compounds was screened using AutoDock Vina, followed by a refined docking analysis of the
top 50 compounds with AutoDock. The molecular dynamics simulations, performed for 100
ns using the OPLS-2005 force field in Desmond, provided insights into the conformational
stability of the protein-ligand complexes. Root Mean Square Deviation (RMSD), Root Mean
Square Fluctuation (RMSF), and hydrogen bonding analyses revealed the structural stability
and dynamic behavior of the ligands within the active site. The results highlight key
interactions, including hydrogen bonding, =n-stacking, and hydrophobic interactions,
contributing to ligand binding and stability. These findings provide valuable insights into
potential CK2alpha inhibitors and their role in drug design.
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Introduction

Cancer remains one of the most formidable global health challenges, responsible for millions
of deaths each year. Despite significant advancements in treatment modalities, including
surgery, radiation therapy, and chemotherapy, the search for effective and targeted anticancer
drugs continues to be a major focus in medical research [1-3]. Among various molecular
targets, protein kinases play a crucial role in cancer pathogenesis, making them a prime focus
for drug discovery efforts [4-7]. Aberrant kinase activity is implicated in uncontrolled cell
proliferation, survival, metastasis, and resistance to therapy [8-9]. Consequently, protein
kinase inhibitors (PKIs) have emerged as a promising class of anticancer agents [10-11].
However, the development of these inhibitors through traditional drug discovery methods is
often time-consuming, costly, and labor-intensive. Computational strategies, particularly
virtual screening, have revolutionized the drug discovery paradigm by expediting the
identification of potential PKIs with high efficacy and selectivity [12-13].

Protein kinases constitute a large family of enzymes that regulate various cellular processes by
transferring phosphate groups to target proteins. This phosphorylation modulates protein
function, impacting signaling pathways involved in cell cycle regulation, apoptosis,
differentiation, and metabolism. Dysregulated kinase activity due to mutations or
overexpression contributes to oncogenesis and cancer progression. Several kinases, including
tyrosine kinases (TKs), serine/threonine kinases (STKs), and dual-specificity kinases, have
been identified as critical mediators in malignancies [14-16].
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Over the past two decades, numerous kinase inhibitors have been developed, with many
gaining FDA approval for clinical use. Notable examples include imatinib (BCR-ABL
inhibitor for chronic myeloid leukemia), erlotinib (EGFR inhibitor for lung cancer), and
sorafenib (multi-kinase inhibitor for hepatocellular carcinoma). Despite these successes,
kinase-targeted therapies face several challenges, including drug resistance, off-target effects,
and limited efficacy in heterogeneous tumors. Therefore, novel PKIs with improved selectivity
and potency are urgently needed. Computational strategies, particularly virtual screening, offer
a promising approach to accelerate the identification and optimization of new kinase inhibitors
[17-19].

Virtual screening has emerged as a pivotal strategy in the discovery of protein kinase inhibitors,
offering an efficient and cost-effective alternative to traditional drug discovery methods. By
leveraging computational techniques such as molecular docking, MD simulations, QSAR
modeling, and pharmacophore modeling, researchers can accelerate the identification and
optimization of novel anticancer agents [20-21]. While challenges remain, continuous
advancements in Al-driven drug discovery and integrative computational-experimental
approaches will pave the way for more effective and selective kinase inhibitors. As research in
this field progresses, virtual screening will continue to play a vital role in developing targeted
therapies for cancer treatment, ultimately improving patient outcomes and addressing the
global burden of cancer.

Experimental Work

Hardware and Software details

The entire computational investigation was performed on Windows 10 (64-bit) operating
systems with 8 GB RAM and 2.11GHz Intel® Core™ i5-10210U processor except for
molecular dynamics simulations. Molecular dynamics simulations were performed on Ubuntu
14.04.5 version in the Linux environment with 4 GB RAM by Desmond. Binary distribution
of PyRx python prescription 0.8 the Scripps research institute for Windows available free from
https://pyrx.sourceforge.io/downloads. Maestro visulizer and Discovery studio academic
versions were used for visuliztion of Interactions.

Virtual Screening of the ChemDiv Database

Procurement of Virtual Compounds

The chemical structures of 5000 ligands were downloaded from Chemdiv databse in SDF
format [22].

Molecular Docking Study

The crystal structure of Zea mays CK2alpha in complex with the ATP-competitive inhibitor 4-
[(E)-(fluoren-9-ylidenehydrazinylidene)-methyl] benzoate (PDB ID: 4RLK) was selected as
the protein model for this study, with a resolution of 1.24 A [23-24]. The chemical structures
of the ligands were obtained from the ChemDiv database in SDF format, followed by geometry
optimization and energy minimization using the MM?2 force field. The crystal structure of Z.
mays CK2alpha (PDB ID: 4RLK) was retrieved from the Protein Data Bank
(https://www.rcsb.org/). Prior to docking, all water molecules and existing ligands were
removed from the protein file, and the refined structure was imported into AutoDock for
molecular docking studies. Molecular docking was carried out using AutoDock 4.2, following
standard docking protocols with default parameters and an empirical free energy function.
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Polar hydrogens were added to the protein, while all water molecules were excluded. The
ligands were treated as flexible molecules, allowing rotation of all rotatable bonds to achieve
the optimal binding conformation within the active site of CK2alpha. For validation, the native
ligand, chlorobiocin, was redocked into the binding site. The grid box was centered at x =
21.3159, y =7.8669, z = 20.1202, with dimensions of 25 x 25 x 25 and an exhaustiveness of
8. Grid maps were generated using Autogrid4, and ligand conformations were explored using
the Lamarckian genetic algorithm combined with an adaptive local search method in
AutoDock. Docking simulations were performed with 200 runs, and conformations were
clustered based on an RMSD tolerance of 2.0 A. The best-ranked conformation, determined
by binding free energy, was selected for further analysis. Visualization of molecular
interactions was conducted using Maestro Visualizer and Discovery Studio. After an initial
docking of 5000 compounds using AutoDock Vina, the top 50 compounds were selected for
further docking refinement in AutoDock. The grid box was repositioned at x = 21.879, y =
7.606, z=19.725, with dimensions of 40 x 40 x 40 and a default spacing of 0.375 [25-27].

Molecular Dynamics Simulation

Molecular dynamics (MD) simulations were conducted using Desmond 2021-04 on an Acer
workstation running Ubuntu 22.04. The ligands 128, 129, 1192, and 1226 complexes with
4RLK were simulated using the OPLS-2005 force field for topology generation. The system
preparation involved solvation in an orthorhombic simulation box using the simple point-
charge (SPC) explicit water model. To maintain physiological conditions, the system was
neutralized with Na'/CI™ counter ions and a 0.15 M salt concentration. The receptor-ligand
complex was designated with the OPLS-2005 force field, and the SPC explicit solvent model
was applied. Prior to simulation, Desmond minimization was performed for 20 ps, followed
by system relaxation using default protocols. The MD simulations were carried out for 100 ns
under controlled conditions, maintaining a temperature of 300 K and pressure of 1.0325 bar
[28-30

Results and Discussion

Molecular Docking

The molecular docking results reveal significant interactions between the tested compounds
and the protein kinase active site. Compounds 128, 129, 1192, and 1226 exhibited strong
binding affinities, with binding energy values ranging from -10.37 to -10.67 kcal/mol
(Autodock) and docking scores from -12.4 to -12.6 (Autodock Vina). These values suggest
high stability of the ligand-protein complexes (Table 1).

The hydrophobic interactions primarily involved residues such as ARG47, HIS160, GLY46,
VAL95, ASP175, TRP176, PHE113, LYS68, and MET163. Compound 1192 displayed
additional hydrogen bonding with ARG43, VALI116, and ASP120, which may contribute to
its slightly improved binding stability compared to the others (Figure 1). The presence of key
interactions with highly conserved residues within the kinase domain suggests that these
compounds could serve as potent inhibitors.

Table 1: Molecular docking results of top docked complex
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Compound Code Binding Binding Energy (Autodock)
Affinity
(Autodock Vina)
128 -12.6 -10.55
129 -12.4 -10.67
1192 -12.5 -10.37
1226 124 -10.49
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Figure 1: Binding interaction of top 4 docked complexes
Molecular Dynamics Simulations
Molecular dynamics (MD) simulations provided crucial insights into the stability and dynamic
behavior of the 4RLK protein-ligand complexes. RMSD analysis revealed that while all
protein-ligand systems experienced fluctuations, they largely maintained structural integrity,
indicating stable interactions.
128 Complex: The protein exhibited moderate fluctuations (1.2-2.5 A), with a slight increase
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around 40 ns, suggesting structural adjustments. The ligand remained stable initially but
showed increased flexibility after 40 ns, stabilizing within 1.8-2.5 A.
129 Complex: Significant fluctuations (2.0-2.8 A) were observed as the system equilibrated.
After 80 ns, the RMSD stabilized, but ligand movement suggested possible partial dissociation.
1192 Complex: The protein exhibited higher fluctuations (2.8-3.4 A), indicating moderate
conformational changes. The ligand remained within the binding site but with higher RMSD
values (4-6 A), suggesting considerable movement.
1226 Complex: The protein RMSD stabilized between 1.8-2.4 A after initial equilibration,
indicating structural stability. However, the ligand showed greater flexibility (2.4—4.8 A),
exploring a larger conformational space within the binding pocket (Figure 2).
Overall, these findings suggest that while all ligands maintained interactions with the binding
site, their stability varied, with some exhibiting greater mobility.

Protein-Ligand RMSD

Protein RMSD (A)

Time (nseac)

128 129
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1192 = i it Prot | 1226

Figure 2: RMSD of protein (4RLK) and ligands (128, 129, 1192 and 1226)
The Root Mean Square Fluctuation (RMSF) analysis provides insights into the flexibility of
the protein-ligand complexes, where higher RMSF values indicate more flexible regions and
lower values suggest greater structural stability.

128 Complex: The RMSF plots of the protein (side chains) and ligand exhibited minor
fluctuations, ranging from 0.76 to 2.5 A, indicating localized flexibility.

129 Complex: The RMSF values fluctuated between 0.8 and 2.0 A, suggesting relatively stable
binding with moderate flexibility.

1192 Complex: The RMSF analysis showed fluctuations between 0.8 and 2.4 A, reflecting a
balanced structural adaptation.

1226 Complex: Fluctuations ranged from 0.7 to 2.4 A, demonstrating minor variations while
maintaining overall stability (Figure 3 and 4).

These results highlight the structural stability of the complexes, with variations in flexibility
depending on the ligand binding dynamics.
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Figure 3: RMSF of side chain (4RLK) with ligands (128, 129, 1192 and 1226)
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Figure 4: RMSF of ligands (128, ‘]29, 1192 and 1226)

Protein-Ligand Interaction Analysis

128 Complex: Throughout the 100 ns trajectory, key interactions stabilizing the ligand within
the binding site were identified. Pi-cation interactions (red dashed lines) were observed
between the ligand and Arg43 and His160, playing a crucial role in ligand stabilization.
Additionally, hydrogen bonds with Asn118 and Aspl120 significantly contributed to ligand
binding. Hydrophobic interactions involving Ile66, Val45, Phell3, and Metl163 (labeled in
green) further enhanced ligand stability within the binding pocket.

129 Complex: In this complex, His160 formed a pi-pi stacking interaction, which contributed
to ligand stabilization. Ser51 and Asnl61 established hydrogen bonds, enhancing ligand
specificity and binding affinity. Hydrophobic residues such as Ile174 and Val53 facilitated
ligand binding via van der Waals forces, stabilizing the nonpolar regions of the ligand within
the binding site.

1192 Complex: Hydrophobic interactions played a critical role in ligand stabilization,
particularly with Ile174, Phell3, Ile66, and Valll6, forming a hydrophobic pocket that
accommodated the ligand’s nonpolar regions. Arg43 and His160, along with nearby water
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molecules, contributed to hydrogen bonding, helping to maintain specific ligand orientations.
Additionally, pi-stacking interactions provided further stability and selectivity for ligands
containing aromatic rings.

1226 Complex: Key residues contributing to ligand stabilization included Valll6, Metl163,
Val53, Phell3, Ile66, and Ile174, forming a hydrophobic pocket that accommodated the
ligand’s nonpolar regions. Notably, Tyr115 formed a hydrogen bond with the ligand’s nitrogen
(HN), with a high frequency of 95%, indicating a strong and persistent interaction.
Additionally, Arg43 contributed to complex stability and specificity, particularly for ligands
with aromatic rings (Figure 5).

These interactions highlight the diverse binding mechanisms across different complexes,
emphasizing the role of hydrophobic contacts, hydrogen bonds, and pi-stacking interactions in

ligand stabilization and specificity.
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Figure 5: Binding interactions of ligands with pdb 4RLK

Summary and Conclusion

This study explored the binding interactions and stability of various ligand-protein complexes
using molecular docking and molecular dynamics (MD) simulations. The computational
analysis focused on four ligand-protein complexes to evaluate their structural stability, binding
affinity, and key molecular interactions within the binding pocket.

Molecular docking results revealed strong binding affinities across all complexes, with
significant contributions from hydrophobic interactions, hydrogen bonding, and pi-stacking
interactions. The MD simulations, conducted over a 100 ns trajectory, provided deeper insights
into the dynamic behavior of these complexes. Root Mean Square Deviation (RMSD) and Root
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Mean Square Fluctuation (RMSF) analyses indicated that while all complexes achieved
equilibrium, some exhibited greater flexibility in ligand positioning within the binding site.
The 128 and 129 complexes demonstrated relatively stable ligand binding, with moderate
fluctuations in RMSD and strong interactions with key residues such as His160, Arg43, and
Asnl18. The 1192 complex showed higher ligand movement, with hydrophobic pockets
contributing significantly to stabilization. The presence of Arg43 and His160 in hydrogen
bonding further enhanced ligand retention. The 1226 complex exhibited a well-defined binding
pocket, where Tyr115 formed a highly persistent hydrogen bond (95%), ensuring strong ligand
stabilization.

Overall, these results support the hypothesis that computational screening can effectively
identify promising PKIs. Further validation through in vitro assays is required to confirm their
biological activity and selectivity.
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