2024; Vol 13: Issue 2

Open Access

Mechanistic Insights into the Antibacterial Action of Metallic Nanoparticles Functionalized with Ofloxacin Against Corynebacterium diphtheriae

Bharti¹, Dr. Parveen Parihar²

¹Research Scholar; Department of Science & Technology Jayoti Vidyapeeth Women's University, Jaipur, Rajasthan

Cite this paper as: Bharti, Dr. Parveen Parihar (2024) Mechanistic Insights into the Antibacterial Action of Metallic Nanoparticles Functionalized with Ofloxacin Against Corynebacterium diphtheriae. *Frontiers in Health Informatics*, 13 (2), 995-999

Abstract

The emergence of multidrug-resistant *Corynebacterium diphtheriae* necessitates innovative antibiotic delivery systems. We present a comparative mechanistic study of silver (Ag), zinc oxide (ZnO), and copper oxide (CuO) nanoparticles surface-functionalized with Ofloxacin (OFX). Physicochemical analyses (DLS, zeta potential, TEM, FTIR) confirmed uniform OFX loading (Ag–OFX 83±2%, ZnO–OFX 78±3%, CuO–OFX 67±2%) and stable colloids (55–82 nm, -30 to -20 mV). Antibacterial assays (MIC, MBC, ZOI; CLSI) and time-kill kinetics demonstrated superior bactericidal potency of Ag–OFX (MIC $0.8\pm0.1~\mu g/mL$; 4-log CFU reduction at 6 h) versus ZnO–OFX (MIC $2.2\pm0.2~\mu g/mL$) and CuO–OFX (MIC $3.5\pm0.4~\mu g/mL$) (ANOVA, p<0.01). Mechanistic studies revealed four synergistic pathways: enhanced uptake (confocal and flow cytometry), reactive oxygen species (ROS) generation (DCFH-DA assay), membrane poration (propidium iodide uptake; SEM), and DNA gyrase inhibition by metal ions. Statistical analysis (ANOVA with Tukey's test) validated significance (p<0.05). Ag–OFX hybrids exhibited the highest ROS (4.2-fold increase) and membrane disruption (60% PI-positive cells). Colloidal stability tests over 30 days (4 °C) showed negligible changes (size Δ <10%). These insights inform the rational design of next-generation nanotherapeutics targeting diphtheria.

Keywords: Metallic Nanoparticles; Ofloxacin Functionalization; *Corynebacterium diphtheriae*; Antibacterial Mechanism; Reactive Oxygen Species; Membrane Disruption; Nanocarriers; MIC; MBC; ZOI; Cytotoxicity; Statistical Analysis

2. Introduction

Diphtheria continues to threaten regions with incomplete vaccination, aggravated by antibiotic-resistant *C. diphtheriae* strains (WHO, 2023). Ofloxacin (OFX), a fluoroquinolone, is potent but limited by low cellular uptake and efflux-mediated resistance (Gupta & Patel, 2021). Metallic nanoparticles (NPs) — silver (Ag), zinc oxide (ZnO), copper oxide (CuO) — offer antimicrobial activity via metal-ion release and ROS induction. OFX-functionalized NPs (Ag–OFX, ZnO–OFX, CuO–OFX) may synergize antibiotic action and nanoparticle effects. This study hypothesizes that Ag–OFX yields superior antibacterial efficacy via four concurrent mechanisms: nanoparticle-mediated uptake, ROS generation, membrane disruption, and DNA gyrase interference.

3. Materials and Methods

3.1 Materials

Ofloxacin (Sigma-Aldrich), silver nitrate, zinc acetate, copper sulfate, sodium borohydride, PVP, FITC, DCFH-DA, propidium iodide, PBS, solvents of analytical grade.

3.2 Nanoparticle Synthesis & OFX Functionalization

²Supervisor Department of Science & Technology Jayoti Vidyapeeth Women's University, Jaipur, Rajasthan

ISSN-Online: 2676-7104

2024; Vol 13: Issue 2 Open Access

- **Ag–OFX:** Chemical reduction of AgNO₃ by NaBH₄ in PVP; sonication with OFX; centrifugation to remove free drug.
- **ZnO-OFX:** Sol-gel from zinc acetate; calcination at 400 °C; OFX loading via ultrasonication.
- CuO-OFX: Thermal decomposition of copper salts under N₂; OFX adsorption.
- Loading Efficiency: UV–Vis at 295 nm; % loading = (initial unbound)/initial ×100.

3.3 Characterization

- Size & Zeta: DLS (Malvern Zetasizer); stability tested at 0, 15, 30 days (4 °C).
- Morphology: TEM (JEOL, 200 kV).
- Crystallinity: XRD $(2\theta \ 10-80^\circ)$.
- Surface Chemistry: FTIR (4000–400 cm⁻¹).

3.4 Antibacterial Assays

- MIC & MBC: Broth microdilution (CLSI guidelines); triplicates; ANOVA.
- **ZOI:** Agar well diffusion on Mueller–Hinton agar; measurements after 24 h.
- Time-Kill Kinetics: CFU counts at 0, 1, 3, 6, 24 h (2×MIC).

3.5 Mechanistic Studies

- Uptake: FITC-NPs; confocal microscopy (Zeiss LSM 880); flow cytometry (BD FACSCanto II).
- **ROS:** DCFH-DA assay; positive control H₂O₂.
- Membrane Integrity: PI uptake; flow cytometry; SEM of treated cells.

3.6 Statistical Analysis

Data expressed as mean \pm SD; one-way ANOVA with Tukey's post hoc (p<0.05) using GraphPad Prism.

4. Results

4.1 Physicochemical Properties

Table 1. Particle Size, Zeta Potential, and Drug Loading

NP Type	Size (nm)	Zeta (mV)	Loading (%)
Ag-OFX	55 ± 4	-29.5 ± 1.2	83 ± 2
ZnO-OFX	82 ± 6	-22.3 ± 1.5	78 ± 3
CuO-OFX	74 ± 5	-19.8 ± 1.7	67 ± 2

1. FITC Conjugation:

- o 5 mg of each nanoparticle formulation (Ag–OFX, ZnO–OFX, CuO–OFX) were dispersed in 5 mL of carbonate buffer (pH 9.0).
- o FITC (0.5 mg/mL in DMSO) was added dropwise under gentle stirring and incubated in the dark for 2 h at room temperature.
- Excess FITC was removed by three rounds of centrifugation (15,000 g, 20 min) and washing with PBS.
- o Final FITC-NPs were resuspended in PBS at 1 mg/mL.

2. Bacterial Culture:

o *C. diphtheriae* ATCC 13812 was cultured in brain—heart infusion broth to mid-log phase (OD₆₀₀ = 0.5), washed twice with PBS, and resuspended to 1×10^8 CFU/mL.

4.4.2 Confocal Microscopy Analysis

Incubation: Bacterial suspensions were treated with FITC–NPs at 1×MIC for each formulation (Ag–OFX 0.8 μg/mL; ZnO–OFX 2.2 μg/mL; CuO–OFX 3.5 μg/mL) and incubated at 37 °C with gentle shaking.

2024; Vol 13: Issue 2 Open Access

- **Time Points:** Samples withdrawn at 15 min, 30 min, 1 h, 1.5 h, and 2 h.
- **Fixation & Mounting:** Cells were fixed in 4% paraformaldehyde for 15 min, washed, and mounted on poly-L-lysine–coated slides with ProLong Gold antifade reagent.
- Imaging Parameters:
 - o Microscope: Zeiss LSM 880 with Airyscan.
 - o Objective: 63× oil-immersion, NA 1.4.
 - Excitation/Emission: 488 nm/500–550 nm for FITC; 633 nm/650–700 nm for bacterial autofluorescence.
 - o Z-stacks: 0.3 μm step size, 10 slices per cell cluster.

Observations:

- 15 min: FITC signal predominantly localized on the bacterial outer membrane; ~20% of cells showed peripheral fluorescence.
- **30 min:** Intracellular fluorescence detected in ~65% of Ag–OFX–treated cells; ZnO–OFX and CuO–OFX showed ~35% and ~25% internalization, respectively.
- 1 h: Ag-OFX uptake plateaued at ~85% of cells with uniform cytoplasmic distribution. ZnO-OFX reached ~70% internalization; CuO-OFX ~60%.
- 1.5 h & 2 h: No significant further increase in Ag–OFX; ZnO and CuO continued slight uptake to final ~75% and ~68%.

4.2 Antibacterial Potency

Table 2. MIC, MBC, and ZOI

NP Type	MIC (μg/mL)	MBC (μg/mL)	ZOI (mm)
Ag-OFX	0.8 ± 0.1	2.0 ± 0.2	28.5 ± 0.8
ZnO-OFX	2.2 ± 0.2	4.5 ± 0.3	22.0 ± 1.0
CuO-OFX	3.5 ± 0.4	6.0 ± 0.5	18.5 ± 1.2
All values mean \pm SD, $n=3$; ANOVA, $p<0.01$ for Ag–OFX vs. others.			

4.3 Time-Kill Kinetics

Ag-OFX showed >4-log reduction by 6 h, ZnO-OFX ~3-log, CuO-OFX ~2-log (Figure 1).

4.4 Cellular Uptake

Table 3. FITC Uptake Kinetics and Flow Cytometry Data

NP Type	Uptake Time	% Cells Positive	MFI (AU)
Ag-OFX	30 min	85 ± 3	$1,450 \pm 50$
ZnO-OFX	60 min	75 ± 4	850 ± 40
CuO-OFX	90 min	68 ± 3	650 ± 35
Confocal confirmed intracellular localization; $n=100$ cells/sample.			

4.5 ROS & Membrane Disruption

Table 4. ROS Generation (DCFH-DA) and PI Uptake

Formulation	ROS (fold ↑)	% PI-Positive	Mean PI MFI (AU)
Control	1.0	5 ± 1	120 ± 10

ISSN-Online: 2676-7104

2024; Vol 13: Issue 2 Open Access

Free OFX	2.0	15 ± 2	300 ± 20
ZnO-OFX	3.6	45 ± 3	850 ± 30
CuO-OFX	2.7	30 ± 2	600 ± 25
Ag-OFX	4.2	60 ± 4	$1,050 \pm 35$
ANOVA, p <0.01 for Ag–OFX vs. free OFX.			

4.6 In Vitro Drug Release

Table 5. Cumulative OFX Release Over 48 h

Time (h)	Ag-OFX (%)	ZnO-OFX (%)	CuO-OFX (%)
2	18 ± 1.2	25 ± 1.5	30 ± 2.0
6	35 ± 2.0	45 ± 2.5	50 ± 3.0
12	50 ± 2.8	60 ± 3.1	65 ± 3.3
24	68 ± 3.5	75 ± 3.8	80 ± 4.0
48	85 ± 4.2	88 ± 4.5	90 ± 4.7

4.7 Colloidal Stability

Table 6. Stability Over 30 Days at 4 °C

Day	Ag-OFX Size	Ag-OFX Zeta	ZnO-OFX Size	ZnO-OFX Zeta	CuO-OFX Size	CuO-OFX Zeta
0	55 ± 3	-29.5 ± 1.2	82 ± 4	-22.3 ± 1.5	74 ± 5	-19.8 ± 1.7
15	57 ± 4	-28.7 ± 1.4	84 ± 5	-21.8 ± 1.6	76 ± 6	-19.2 ± 1.9
30	59 ± 4	-28.0 ± 1.5	86 ± 5	-21.3 ± 1.8	78 ± 6	-18.7 ± 2.0

4.8 Statistical Analysis

Data meet normality (Shapiro–Wilk) and homoscedasticity (Levene's test). ANOVA with Tukey's post hoc showed significant differences between Ag–OFX and other groups for all key metrics (p<0.05).

5. Discussion

Ag-OFX superiority stems from optimal size, charge, and redox-active silver. Enhanced uptake accelerates intracellular OFX delivery; elevated ROS and membrane poration potentiate bactericidal synergy. Data align with Li et al. (2019) and Zhang et al. (2020). ZnO-OFX and CuO-OFX follow similar but attenuated mechanisms. Future in vivo toxicity and pharmacokinetics are warranted.

6. Conclusion

This comprehensive study elucidates four-pronged antibacterial mechanisms of OFX-functionalized metallic NPs. Ag–OFX emerges as a lead candidate for diphtheria therapy, combining sustained release, potent ROS induction, membrane disruption, and enzymatic inhibition. Clinical translation will require scale-up and safety profiling.

7. References

- 1. Gupta, P., & Patel, S. (2021). Ofloxacin resistance mechanisms in gram-positive bacteria. *Antimicrobial Agents and Chemotherapy*, 65(4), e01234-20.
- 2. Huang, X. et al. (2019). Propidium iodide uptake as a membrane integrity assay in bacterial cells. *BioTechniques*, 66(4), 182–190.
- 3. Li, X. et al. (2019). Mechanistic study of silver nanoparticle–induced ROS in bacteria. *Journal of Nanobiotechnology*, 17, 141.

ISSN-Online: 2676-7104

2024; Vol 13: Issue 2

Open Access

- 4. Raghavan, K. V. et al. (2021). Synergistic effects of nanoparticles and antibiotics on bacterial oxidative stress. *Frontiers in Microbiology*, 12, 657844.
- 5. World Health Organization. (2023). Diphtheria Fact Sheet.
- 6. Zhang, L. et al. (2020). Silver nanoparticle–antibiotic synergistic effects: A review. *Journal of Nanobiotechnology*, 18, 143.