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ABSTRACT 
Healthcare IoT (Internet of Things) systems have transformed patient monitoring and data management but their 
extensive interconnectivity and sensitive data make them highly susceptible to cyber-attacks. Traditional intrusion 
detection systems (IDS) often fail to meet the stringent security demands of healthcare SIoT environments due to high 
false-positive rates, computational inefficiencies, and limited adaptability to emerging threats. This paper introduces 
SecuMed-SIoT a novel security-focused hybrid IDS specifically designed for healthcare SIoT, leveraging Social IoT 
(SIoT) principles and a CNN-Transformer architecture (CTLGNet) to enhance threat detection capabilities. SecuMed-
SIoT incorporates security-driven interaction modeling to evaluate device behaviours and collaborates with a network 
of trusted devices to detect anomalies in real time, achieving high detection accuracy with minimal false alarms. 
Extensive experiments demonstrate that SecuMed-SIoT attains a detection accuracy of 94.2% and a false-positive rate 
of 3.1%, significantly outperforming conventional IDS models in both performance and efficiency. These findings 
underscore SecuMed-SIoT effectiveness in protecting sensitive healthcare data and ensuring device security within 
SIoT networks. 
 
Keywords: Healthcare IoT, Intrusion Detection System, Social IoT, Security, CNN-Transformer, SecuMed-SIoT. 

 

INTRODUCTION 

The rapid advancement of Internet of Things (IoT) technology has transformed healthcare by enabling real-time 
patient monitoring, remote medical consultations, and efficient data exchange through interconnected devices. 
However, this increasing reliance on networked healthcare devices presents significant security vulnerabilities, 
especially in protecting sensitive patient information. Network intrusion recognition plays a pivotal role in 
safeguarding healthcare systems from potential cyber threats that can compromise data integrity and patient 
safety. Given the critical nature of healthcare information, maintaining the security of Electronic Health Records 
(EHR) and Personal Health Records (PHR) is paramount to avoid unauthorized access, data tampering, or loss. A 
breach in these records could lead to misdiagnosis, incorrect treatment plans, and a loss of patient trust. Thus, 
effective intrusion detection systems (IDS) tailored specifically for healthcare environments are essential to meet 
these challenges [1]. Traditional network intrusion detection relies on Machine Learning (ML) models like K-
Nearest Neighbours (KNN) and Logistic Regression, which often require extensive fine-tuning to recognize new and 
evolving attack types. These models struggle with the healthcare SIoT context, where device interactions are 
complex and data integrity is highly sensitive. Constant updates and retraining are required to maintain 
effectiveness, which is both computationally expensive and time-intensive [2]. While ensemble learning models, 
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such as Random Forest and Gradient Boosting, and Deep Learning (DL)-based models offer greater adaptability and 
accuracy, they still face limitations in interpreting security dynamics, which could improve collaborative detection 
efforts. 

Security-Driven Interaction Modeling 

To address the unique security challenges of healthcare SIoT systems, security-driven interaction modeling 
introduces a promising paradigm in IDS design. This approach leverages Social IoT (SIoT) concepts to enhance 
network security by enabling devices to establish secure communication channels. In healthcare, this could mean 
that frequently interacting devices, such as a heart monitor and patient database, evaluate each other’s behaviour 
to establish secure operational parameters. By modeling these interactions with a focus on security, an IDS can 
better detect anomalies in device behaviour, flagging unusual activities that might indicate an intrusion attempt [3]. 
This approach forms a basis for more nuanced and efficient IDS solutions by filtering out noise, prioritizing alerts 
based on the severity of detected anomalies, and promoting seamless interaction among verified devices. 

Healthcare-Specific Attack Simulation 

Healthcare networks are highly attractive targets for cyber-attacks due to the sensitivity and value of patient data. 
Healthcare-specific attack simulation enables IDS models to better understand and detect the types of threats that 
are more prevalent in these environments. Common threats in healthcare SIoT include malware injections targeting 
connected medical devices, unauthorized access to EHRs, and distributed denial of service (DDoS) attacks aiming to 
overload network resources [4]. By incorporating attack simulations that mimic these real-world scenarios, the IDS 
can develop a more precise understanding of threats likely to be encountered in healthcare. Moreover, these 
simulations allow the IDS to refine detection mechanisms, evaluating how devices react under attack conditions 
and adjusting accordingly [5]. 

Collaborative Intrusion Detection 

With the rise of Social IoT, collaborative intrusion detection offers a scalable approach to managing healthcare 
security. Collaborative IDS uses a network of interconnected devices to detect intrusions collectively, where trusted 
devices can communicate alerts or threat indicators across the network. This enables faster responses and reduces 
the reliance on centralized systems, which are more prone to bottlenecks and single points of failure. In healthcare, 
where uninterrupted data flow is critical, collaborative detection allows devices to "consult" each other, sharing 
threat insights and blocking suspicious activities before they spread. This collaborative approach enhances 
resilience and mitigates false alarms, allowing the IDS to quickly adapt to changing threat landscapes and sustain 
high-performance detection [6]. 

Challenges with Artificial Intelligence-based Systems 

Despite its advantages, Artificial Intelligence (AI)-based intrusion detection comes with specific challenges, 
especially in healthcare applications. AI models are often "black boxes," making it difficult to interpret the decision-
making processes behind their alerts. In healthcare, where transparency is essential, this lack of explain ability can 
be a major drawback. Additionally, AI models trained on outdated datasets may produce false positives, mistaking 
legitimate network activities for intrusions. This problem is exacerbated in healthcare, where device interactions 
are varied and complex, and continuous retraining can be both costly and disruptive to critical network functions 
[7].While Deep Learning (DL) models have made strides in IDS effectiveness, they require large amounts of labelled 
data and high computational resources, which are not always feasible in a healthcare setting. For instance, 
traditional models like KNN and Logistic Regression are prone to high false-positive rates if not fine-tuned 
regularly. In contrast, ensemble learning techniques, like Random Forests, have shown to provide robustness but 
lack the adaptability that deep learning models bring to intrusion detection. Thus, while DL models and ensemble 
learning offer strong performance, an optimized solution is required to handle the complexity of healthcare SIoT, 
where device interactions are continuous and security must be maintained at all times [8]. 

Proposed Solution: SecuMed-SIoT 
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This paper introduces SecuMed-SIoT, a novel hybrid framework specifically designed for intrusion detection in 
healthcare systems, integrating deep learning with Social IoT (SIoT) principles to enhance network security. 
SecuMed-SIoT employs a security-driven interaction model to evaluate device behaviours, healthcare-specific 
attack simulations to improve detection accuracy, and collaborative intrusion detection mechanisms to bolster the 
network’s resilience against attacks. By focusing on security dynamics within medical IoT devices, SecuMed-SIoT 
provides lightweight and efficient IDS capable of detecting and responding to threats in real time, thereby ensuring 
the protection of sensitive patient data and device integrity revised version emphasizes SecuMed-SIoT’s security-
centred approaches. 

Problem Statement 

Traditional intrusion detection systems are insufficient for healthcare SIoT environments due to the lack of 
collaborative and security-enhanced threat detection mechanisms. Existing systems also struggle with high false 
positives, frequent retraining needs, and an inability to adapt to the complex, evolving threats specific to healthcare 
SIoT. There is a need for an advanced IDS framework that leverages SIoT concepts, security metrics, and deep 
learning to offer robust, scalable, and accurate intrusion detection. 

Objectives 

The objectives of this research are as follows: 

1. Develop a security-based intrusion detection model for healthcare SIoT that evaluates device interactions 
based on behavioural patterns. 

2. Simulate healthcare-specific attacks and integrate them into the IDS model to improve the framework’s 
sensitivity to realistic threats. 

3. Implement collaborative intrusion detection mechanisms that allow devices to share threat data and alert 
the network to suspicious activities in real time. 

4. Evaluate and optimize the framework using deep learning to ensure low false-positive rates, high detection 
accuracy, and adaptability to new attack types with minimal retraining. 

Significance and Contributions 

The significance of this research lies in its innovative approach to securing healthcare SIoT systems through a 
framework called SecuMed-SIoT. With the rapid integration of SIoT devices in healthcare, securing sensitive patient 
data and critical medical operations is paramount. Traditional intrusion detection systems (IDS) lack the precision 
needed for healthcare’s unique challenges, including high data sensitivity, dynamic device interactions, and 
minimal tolerance for false alarms. SecuMed-SIoT addresses these challenges by incorporating Social IoT (SIoT) 
principles to foster secure interactions among medical devices, enhancing the system’s ability to detect and 
respond to intrusions collaboratively. Key contributions include a security-focused interaction model that evaluates 
device behaviour, healthcare-specific attack simulations, and a hybrid deep learning model combining CNN and 
Transformer layers, all optimized for the healthcare environment.  Designed for real-world feasibility, SecuMed-
SIoT aims to provide an effective, resource-efficient, and adaptable IDS framework, setting a new standard for cyber 
security in healthcare SIoT. 

LITERATURE REVIEW 

The growing complexity of Internet of Things (IoT) systems in healthcare settings has spurred the development of 
advanced Intrusion Detection Systems (IDS) to secure sensitive patient data and medical operations. Traditional 
IDS models struggle to handle the unique challenges posed by healthcare SIoT environments, such as high device 
interaction diversity, sensitive data, and the need for real-time threat detection. Recent research has explored the 
integration of Social IoT(SIoT) concepts, Security-Based models, and deep learning techniques to enhance IDS 
performance, reduce false positives, and improve adaptability to evolving threats. 



Frontiers in Health Informatics 
ISSN-Online: 2676-7104 

www.healthinformaticsjournal.com 
 

2024; Vol 12: Issue 3 Open Access 
 

2921 
 

Security-Based models have become integral to enhancing security in IoT networks, leveraging trust scores and 
device reputation to filter out anomalies. Zhang et al. [9] developed a Security-Based IDS using Convolutional 
Neural Networks (CNN) that achieved a detection accuracy of 92% and effectively minimized false positives by 
analyzing interaction consistency and reliability among devices. Similarly, Kim et al. [10] demonstrated that an 
SIoT-based IDS for smart cities increased detection accuracy by 15% by enabling device-to-device communication 
for alert sharing. Saeed et al. [11] introduced collaborative intrusion detection using social trust metrics, resulting 
in an 88% detection accuracy, highlighting the role of collaborative trust in increasing detection precision. Patel and 
Gupta [12] proposed a trust and reputation model tailored for SIoT applications, which reduced false positives by 
12% and provided an effective security layer for IoT networks. Rahman et al. [13] introduced a hybrid CNN-LSTM 
model for anomaly detection in healthcare IoT, reporting a 14% improvement in detection accuracy over 
traditional models. Wang et al. [14] developed a deep hybrid learning approach optimized for IoT security, which 
achieved a detection accuracy of 91%, showing promise in resource-constrained healthcare networks. In 
healthcare, Yu et al. [15] demonstrated that SIoT-enhanced IDS improved resilience to attacks by 25%, as trusted 
medical devices collaborated to detect and mitigate intrusions. 

Collaborative intrusion detection, enabled through SIoT, has shown potential in enhancing IDS scalability and 
resilience. Fang and Zhao [16] proposed a trust-aware IDS specifically for healthcare IoT, reporting an 89% 
accuracy, thereby validating the effectiveness of Security-Based models in high-stakes environments. Yang et al. 
[17] implemented a hybrid Transformer-CNN model, achieving an 11% increase in detection precision, 
demonstrating the efficacy of hybrid architectures in complex IoT environments like healthcare. Verma and Singh 
[18] utilized an ensemble model for IDS in healthcare IoT, achieving 87% accuracy with reduced computational 
requirements, making it suitable for resource-limited medical devices. J. Singh and M. Agrawal [19] designed 
hierarchical IDS for IoT that reduced false alarms by 18% through SIoT-based collaboration, underscoring the role 
of SIoT in minimizing disruptions in critical healthcare networks. Li and Xu [20] incorporated trust metrics into a 
hybrid deep learning model, increasing anomaly detection accuracy by 10% and illustrating the effectiveness of 
Security-Based approaches in enhancing model precision. Chen and Yuan [21] integrated CNN and attention 
mechanisms in an explainable IDS model, resulting in a 13% increase in detection accuracy, highlighting the 
importance of interpretability in critical healthcare systems. 

Luo et al. [22] developed an SIoT-based trust framework, improving detection accuracy by 16% by enabling real-
time Security-Based collaboration among devices. Ahmed et al. [23] designed a machine learning-driven IDS for 
healthcare, demonstrating 93% detection rate by leveraging SIoT-based real-time security, which ensured minimal 
delay in detecting and responding to threats. 

PROPOSED METHODOLOGY 

The proposed framework, SecuMed-SIoT, is a sophisticated hybrid intrusion detection system (IDS) specifically 
designed for securing healthcare SIoT networks. Given the sensitive nature of healthcare environments—
comprising interconnected devices such as patient monitors, infusion pumps, and wearable devices—SecuMed-
SIoT is tailored to protect these networks against diverse cyber threats. Unlike traditional IDS solutions, SecuMed-
SIoT employs Social IoT (SIoT) principles combined with advanced deep learning techniques to provide a multi-
layered security approach that addresses the unique challenges within healthcare SIoT. 

System Architecture Overview 

The architecture of SecuMed-SIoT includes several essential components, each contributing to intrusion detection 
and strengthening network security: 

 IoT Devices and Network: This layer consists of medical devices (e.g., patient monitors, infusion pumps) 
and IoT sensors operating within the healthcare environment. These devices communicate critical data and 
form the foundation of patient care, making their security paramount [24]. 
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 Security Evaluation Module: This module evaluates device behaviours based on historical interactions 
and peer-assessed security metrics, leveraging both Direct and Indirect Security Scores to assess the risk 
associated with each device. 

 Deep Learning-Based IDS: The IDS employs a Convolutional Transformer Layered Graph Network 
(CTLGNet) model to detect anomalies by analyzing device interaction data and security scores, enabling it 
to identify suspicious behaviours effectively. 

 Collaborative Intrusion Detection Network: Utilizing SIoT, this network facilitates real-time sharing of 
alerts and security metrics among devices, enabling rapid response to emerging threats and reinforcing 
network-wide security [25]. 

Figure 1. provides a high-level overview of the SecuMed-SIoT architecture, illustrating the interactions between its 
core components and their roles in securing healthcare SIoT networks 

 

Figure 1.  SecuMed-SIoT System Architecture  

 

Algorithm-1: SecuMed-SIoT - Hybrid Intrusion Detection for Healthcare SIoT 

Input: IoT device interaction data (frequency, session duration, trust scores, packet size). 
Output: Classification as benign or malicious with generated alerts. 

Step 1: Data Collection and Pre-processing 

1. Collect and pre-process data from healthcare IoT devices, ensuring feature uniformity. 

2. Split data into training (70%), validation (15%), and testing (15%) sets. 

Step 2: Security-Driven Interaction Modeling 

1. Direct Security Score: Evaluate each device’s reliability and consistency over time to calculate the direct 
security score Sd(I,t). 

2. Indirect Security Score: Aggregate peer assessments from trusted devices to compute the indirect 
security score Sind(I,t). 

3. Overall Security Score: Combine direct and indirect scores to obtain the dynamic overall security score 
S(i,t) for each device. 

Step 3: Feature Extraction and Data Augmentation 

1. Extract key features: security scores, packet size, session duration, and interaction frequency. 
2. Balance classes by simulating healthcare-specific attack scenarios (e.g., DDoS, unauthorized access) to 

improve model adaptability. 

Step 4: Model Training with CNN-Transformer (CTLGNet) 

1. Initialize CTLGNet with CNN and Transformer layers. 
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2. Configure and train the model on the training set for 100 epochs. 

3. Validate using the validation set and adjust hyperparameters as needed. 

Step 5: Collaborative Intrusion Detection via SIoT 

1. Detected each anomaly in the network. 

2. Calculate a detection score and propagate alerts within the SIoT network. 

3. Devices evaluate these alerts using security scores to make collective, threshold-based decisions, 
enhancing detection accuracy and reducing false positives. 

Step 6: Model Evaluation 

1. Test model performance on the test set using metrics: accuracy, precision, recall, F1 score, and AUC. 

2. Assess latency and computational efficiency for real-time application suitability. 

Step 7: Decision and Alert Generation 

1. Generate alerts for malicious interactions that meet SIoT thresholds. 

2. Allow benign interactions to proceed without alerting. 

Security-Driven Interaction Modeling 

Security-driven interaction modeling is central to the SecuMed-SIoT framework, enabling devices within a 
healthcare SIoT network to continually assess each other's security status. By establishing a security score based on 
behaviour patterns, SecuMed-SIoT can dynamically monitor and evaluate devices, making it easier to detect 
anomalies that may indicate cyber threats. This modeling is achieved through two primary components: Direct 
Security Score and Indirect Security Score, both of which feed into a Dynamic Security Score Calculation. 

1. Direct Security Score: 

Direct trust measures a device’s reliability based on its consistency and past interactions. The direct Security score 
Sd for device i at time t is computed as: 

Sd(I,t) = α × Reliability (i, t) + β × Consistency (i, t) 

where α and β are weight factors that control the influence of reliability and consistency. 

 Reliability: This factor reflects how dependable a device has been over time, based on its historical 
performance and adherence to expected operational parameters. For example, if a device frequently shows 
stable, expected communication patterns without errors or irregularities, it earns a high reliability rating. 

 Consistency: This metric assesses whether the device’s behaviour has remained predictable over recent 
interactions. Consistency is crucial in healthcare IoT, where erratic device behaviour (e.g., unusual session 
durations or packet sizes) may suggest compromised security. 

2. Indirect Security Score: 

Indirect trust leverages the reputation of devices, calculated from peer evaluations. If device j Security device i, and 
device j itself has a high Security score, then device i’s indirect Security increases. Indirect trust Sind(I,t) is updated 
as: 

Sind(I,t)=∑ 𝑇(𝑗, 𝑡)𝑋𝑊(𝑖, 𝑗)௝∈்௥௨௦௧௘ௗ ௣௘௘௥௦  

where W(i,j) is the weighting factor based on the strength of secure between devices i and j. This indirect score 
helps SecuMed-SIoT gauge the security status of a device within a larger network context, offering insights based on 
external evaluations rather than solely on the device’s history. 

3. Dynamic Trust Score Calculation: 
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The overall Dynamic Security Score S(i, t) is a dynamic value combining direct and indirect Security Score: 

S(i,t)=γ X Sd(I,t) + δ X Sind(i,t) 

where γ and δ adjust the balance between direct and indirect trust. Trust scores update as devices interact, 
dynamically adjusting to new behaviours or anomalies. This score is updated in real time as devices interact, 
allowing SecuMed-SIoT to adaptively adjust to emerging behaviours or anomalies. Devices exhibiting suspicious or 
unexpected activities may experience decreased security scores, triggering alerts and closer monitoring by the IDS. 
Through these continuously updated scores, SecuMed-SIoT maintains a proactive stance, quickly identifying 
devices with fluctuating or declining security metrics. 

Healthcare-Specific Attack Simulation 

To improve the IDS’s ability to detect healthcare-specific threats, we simulate several common attack scenarios 
during training: 

 DDoS Attacks: These attacks flood the network, preventing access to critical healthcare systems. Training 
data includes packet bursts to simulate such attacks. 

 Unauthorized EHR Access: Simulations involve attempts to access EHR systems, generating unusual 
access patterns. 

 Malware Injection: We model malware attacks on IoT devices, creating abnormal data traffic that the IDS 
can learn to detect. 

In Table 1. The types and counts of simulated attacks are listed to show the diversity and relevance of healthcare-
specific threats. 

Table 1: Healthcare-Specific Attack Types and Counts in Training Data 

Attack Type Count Description 

DDoS 1500 Large volume packet floods 

Unauthorized EHR Access 1000 Unusual access patterns 

Malware Injection 1200 Abnormal communication patterns 

 

Deep Learning Model Architecture 

The deep learning component of SecuMed-SIoT is built on a CNN-Transformer hybrid model, named CTLGNet 
(CNN-Transformer Local-Global Network), designed to leverage both spatial and temporal features from IoT 
interactions. This architecture suits the complex security requirements of healthcare SIoT, where detecting 
anomalies in device interactions is critical for network protection. CTLGNet combines the spatial feature extraction 
strengths of Convolutional Neural Networks (CNN) with the temporal analysis capabilities of Transformer layers, 
allowing the model to identify nuanced patterns that characterize both benign and malicious activities within SIoT 
interactions [26]. 

1. CNN Layer: 

The CNN layer in CTLGNet extracts local features from individual device interactions. In healthcare SIoT, devices 
generate specific interaction patterns, such as data transmission frequency, session duration, and packet 
characteristics [27]. By analyzing these features, the CNN layer can identify unique attributes of each interaction, 
helping distinguish between normal and potentially malicious activities [28]. 

 Local Pattern Recognition: CNNs apply convolutional filters to the input data, capturing critical features 
across multiple levels. In SecuMed-SIoT, these filters are configured to detect interaction characteristics 
like burst frequency and packet consistency, which are essential for identifying legitimate and suspicious 
behaviours. 
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 Detecting Deviations: Through convolutional operations and pooling layers, the CNN layer can spot slight 
deviations in interaction characteristics that may indicate intrusions, such as a spike in packet frequency or 
unusually long sessions. 

 Representation Learning: Multiple CNN layers allow CTLGNet to learn an effective feature representation, 
encoding spatial characteristics of each interaction for deeper analysis by the Transformer layer, aiding in 
distinguishing between benign and suspicious activity patterns. 

2. Transformer Layer: 

 The Transformer layer in CTLGNet captures temporal relationships among device interactions, essential 
for detecting sequential patterns that may indicate evolving threats. The self-attention mechanism in 
Transformers enables the model to analyse interactions in a non-sequential, context-aware manner, 
making it more efficient and robust than traditional recurrent models. 

 Temporal Anomaly Detection: Transformers excel in identifying temporal patterns, useful for detecting 
gradual or staged attacks. In healthcare SIoT, certain threats like unauthorized access attempts or data 
exfiltration may show subtle patterns over time, which the Transformer layer detects by comparing each 
interaction within a broader context. 

 Self-Attention Mechanism: The self-attention mechanism enables the Transformer layer to weigh each 
interaction relative to others, focusing on significant anomalies. For instance, a sudden spike in anomalous 
scores coupled with frequent interactions could signify abnormal activity. 

 Non-Sequential Context Analysis: Transformers analyze entire sequences simultaneously, allowing for 
context-aware anomaly detection. This non-sequential processing is advantageous in healthcare SIoT, 
where devices may not communicate linearly. The Transformer’s ability to assess context enhances its 
capability to detect complex intrusion patterns. 

3. Input Features: 

 SecuMed-SIoT relies on curate input features that feed into the CNN and Transformer layers, aiding in 
effective anomaly detection [29]. Selected features help differentiate between typical and suspicious device 
behaviours. 

 Interaction Frequency: Reflects device communication rates within a timeframe. Rapid interactions may 
indicate network overloading or data exfiltration, crucial to monitor in healthcare where communication is 
regulated. 

 Session Duration: Unusually prolonged interactions could suggest data exfiltration, while very brief 
sessions may indicate probing activities. 

 Security Scores: Derived from direct and indirect assessments, security scores represent each device's 
reliability history, with low scores indicating suspicious past behaviours. 

 Packet Size: Abnormal packet sizes may indicate data exfiltration or injection attacks. Regular device 
communications usually have consistent packet sizes. 

These features provide CTLGNet with both spatial and temporal data, enabling it to detect a range of threat patterns 
with accuracy. 

Table 2. outlines the hyper parameters used in CTLGNet, including layer sizes, activation functions, and optimizers. 

 

Table 2: CTLGNet Hyper parameter Details 

Parameter Value 

CNN Layers 2 

Transformer Layers 1 

Activation Function ReLU 
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Optimizer Adam 

Learning Rate 0.001 

Batch Size 32 

 

Collaborative Intrusion Detection in SecuMed-SIoT 

Collaborative Intrusion Detection in SecuMed-SIoT employs Social IoT (SIoT) principles, enabling devices to share 
threat intelligence across the network in real-time. This collaborative detection reduces isolated false-positive 
alerts that may disrupt healthcare services and enhances network resilience by distributing threat response across 
multiple trusted devices. 

SecuMed-SIoT is a SIoT-based Collaborative Detection Mechanism consists of two components: Distributed Alert 
System and Threshold-Based Decision Making. 

1. Distributed Alert System: 

 The Distributed Alert System propagates alerts across the network when a device detects an anomaly. 
Instead of isolating the alert, the device shares it with others, creating a network-wide awareness. 

 Anomaly Detection and Alert Generation: Anomalies trigger alerts tagged with a unique identifier, 
timestamp and security score. Security scores derived from direct and indirect evaluations, reflect the 
device’s reliability in assessing threats. 

 Propagation Based on Security Scores: Receiving devices assess the security score of the alert source. 
Devices with high security scores are more likely to propagate the alert and filtering out less credible 
alerts. 

 Real-Time Network Awareness: The distributed system keeps devices informed of potential threats, 
enabling them to prepare proactively. 

 Cumulative Risk Assessment: Devices perform cumulative assessments based on alert frequency, security 
scores, and types. Multiple trusted devices reporting the same anomaly triggers an escalated response. 

2. Threshold-Based Decision Making: 

 This mechanism introduces verification for each alert, ensuring only high-confidence alerts trigger 
responses. Devices evaluate alerts against a security-based threshold, filtering for genuine threats. 

 Security-Based Thresholds: Each device has a threshold based on its security context. Alerts exceeding this 
threshold are acted upon, while others may be delayed until confirmed. 

 Cross-Verification: High-priority alerts may request verification from other trusted devices, adding 
reliability and reducing false positives. 

 Dynamic Threshold Adjustment: Devices adjust thresholds based on real-time network conditions and 
historical alert patterns, responding appropriately to varying levels of network risk. 

 Filtering False Positives: By implementing threshold-based decision-making, SecuMed-SIoT effectively 
filters benign anomalies, ensuring only high-confidence alerts trigger responses. 

Training and Evaluation Strategy 

The Training and Evaluation Strategy for SecuMed-SIoT is designed to create a highly accurate, resilient model 
capable of effectively detecting intrusions within healthcare SIoT networks. This strategy includes two primary 
components: Dataset Preparation and Model Optimization, which are essential for achieving high performance 
in detection metrics and generalizing well across real-world healthcare scenarios. 

1. Dataset Preparation 

 Dataset Selection and Processing: SecuMed-SIoT utilizes the MedBIoT dataset, enriched with healthcare-
specific interactions and security-based threat scenarios relevant to IoT devices in healthcare. The dataset 
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includes security metrics, such as direct and indirect security scores for each device, along with simulated 
attack data (e.g., DDoS attacks, unauthorized access attempts and malware injections). These features 
create a representative dataset that helps the model distinguish between benign and malicious 
interactions. 

 Data Balance and Attack Simulations: Healthcare SIoT networks often experience an imbalance in benign 
and malicious interactions, with routine activities typically dominating. To reduce bias, the dataset is 
balanced by simulating healthcare-specific attack scenarios at varying frequencies, ensuring an adequate 
number of malicious samples across threat categories. This approach improves the model’s ability to detect 
rare but critical threats without overfitting to benign activities. 

 Data Split and Allocation: The dataset is divided into training, validation, and testing sets to ensure 
comprehensive model evaluation, as shown in Table 3. 

 

Table 3:  Data Split for Training, Validation, and Testing 

Dataset Training Samples Validation Samples Testing Samples 

MedBIoT 5000 1500 2000 

 Training Set: Comprises 5,000 samples with a balanced mix of benign and simulated attack data. This set is 
used to train the model, allowing it to learn interaction patterns, trust scores and other distinguishing 
features. 

 Validation Set: Contains 1,500 samples used during training to fine-tune hyper parameters and monitor the 
model’s performance. The validation set provides early insights into potential overfitting or underfitting, 
enabling adjustments before final testing. 

 Testing Set: Consists of 2,000 samples reserved for final performance evaluation. The testing set is used 
solely for assessment after model training and validation, providing unbiased metrics on detection 
accuracy, false-positive rate and other key indicators. 

Evaluation Metrics: 

To ensure SecuMed-SIoT’s performance, several key metrics are tracked during training and evaluation: 

 Accuracy: Measures the proportion of correctly classified interactions, indicating overall reliability in 
distinguishing between benign and malicious interactions. 

 Precision: Evaluates the model's effectiveness in correctly identifying true positives, showing how well it 
minimizes false positives. 

 Recall: Reflects the model’s ability to detect true positives, ensuring that genuine threats are accurately 
identified. 

 F1-Score: The F1-score is the harmonic mean of precision and recall, measuring a model's balance 
between false positives and false negatives. 

 AUC (Area Under the Curve): An aggregate measure from the ROC curve that assesses the model’s ability 
to differentiate benign and malicious interactions across varying thresholds. 
 

2. Model Optimization 

Hyper parameter Tuning with Grid Search: 

A grid search systematically tests combinations of hyper parameters, such as learning rate, batch size, CNN layers, 
and Transformer attention heads, to maximize performance on the validation set while preventing overfitting. 

 Learning Rate: Controls the model’s update rate. A grid of learning rates is tested to balance between fast 
convergence and stability. 
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 Batch Size: Determines learning stability and efficiency. Grid search identifies the optimal batch size to 
balance memory usage and update stability. 

 CNN and Transformer Layers: The number of CNN filters and Transformer attention heads are optimized 
to maximize the model’s ability to capture relevant local and temporal features. 

 Early Stopping and Regularization: To prevent overfitting, training halts if validation performance 
plateaus, implementing early stopping. Regularization, such as dropout layers, is used to deactivate 
neurons during training, ensuring robust generalization. 

 Performance Monitoring and Adjustment: SecuMed-SIoT’s performance is continuously monitored 
across key metrics (accuracy, precision, recall, F1-Score and AUC). If performance falls below a set 
threshold, hyper parameters or architecture adjustments are made. This iterative tuning achieves high 
accuracy while reducing false positives and negatives. 

 Final Model Evaluation on Testing Set: After optimization, a final evaluation is conducted on the testing 
set to validate the model’s intrusion detection performance under real-world conditions. Metrics from this 
evaluation confirm the model’s effectiveness in meeting the unique security demands of healthcare SIoT 
networks. 

Testing in Simulated Environment 

SecuMed-SIoT undergoes extensive testing within a simulated healthcare network to validate its collaborative 
intrusion detection capabilities. This environment replicates real-world interactions, challenges and device 
diversity in healthcare SIoT, with devices ranging from patient monitors to imaging systems and wearable sensors. 
Testing in this controlled yet realistic setting allows SecuMed-SIoT to demonstrate its performance in handling 
security alerts, exchanging security scores and responding to detected threats. 

Key Aspects of Testing in a Simulated Environment 

Collaborative Detection with Social IoT (SIoT): 

In this simulated environment SecuMed-SIoT employs SIoT principles, enabling devices to function as independent 
and collaborative agents. When a device detects an anomaly, it communicates an alert to nearby devices. These 
devices assess the alert’s credibility based on the sender security score, applying Distributed Alert System and 
Threshold-Based Decision Making. 

Real-Time Security Score Exchanges allow devices to evaluate and propagate alerts dynamically, reducing false 
positives by allowing trusted devices to verify detected threats. 

Real-Time Threat Response: 

SecuMed-SIoT’s architecture is designed to handle simultaneous alerts, leveraging SIoT collaboration for rapid 
assessment. When multiple devices confirm a threat, the system triggers an escalated response, alerting network 
administrators for immediate intervention. 

This testing setup evaluates SecuMed-SIoT’s ability to respond quickly and accurately in high-stakes healthcare 
settings, where any delay could compromise patient safety or device functionality. 

Evaluation Metrics 

The following metrics assess SecuMed-SIoT’s performance, focusing on accuracy, efficiency, and adaptability within 
resource-constrained healthcare IoT settings: 

Detection Accuracy: Measures the proportion of correctly classified interactions. High accuracy ensures the system 
reliably identifies both benign and malicious interactions, reducing the risk of undetected threats in healthcare 
SIoT. 

False-Positive Rate (FPR): Indicates the rate of benign interactions incorrectly flagged as malicious. A low FPR is 
crucial in healthcare where false positives can lead to unnecessary alerts, disrupt operations and cause alert fatigue 
among administrators. 
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Computational Efficiency: Assesses processing time, memory usage and response latency. Efficient operation is 
essential for real-time deployment in healthcare where computational resources may be limited. SecuMed-SIoT’s 
CNN-Transformer model maximizes efficiency for timely threat detection. 

Area Under the Curve (AUC): Derived from the ROC curve, AUC measures the model’s discriminative power to 
distinguish benign and malicious interactions. A high AUC ensures strong discrimination between benign and 
malicious interactions, crucial for maintaining patient safety in healthcare SIoT. 

RESULTS 

This section evaluates the performance of SecuMed-SIoT a hybrid intrusion detection framework specifically 
designed for healthcare SIoT networks. SecuMed-SIoT integrates security-driven interaction modeling and Social 
IoT (SIoT) principles with a CNN-Transformer model (CTLGNet) to achieve high accuracy in intrusion detection 
while minimizing false positives. The framework operates through a structured algorithm, beginning with data 
collection and preprocessing where social network and IoT device interaction data (including frequency, session 
duration and security scores) is gathered, normalized and split into training, validation and testing sets for robust 
evaluation. We present detailed findings from the confusion matrix, comparative evaluation with other deep 
learning models, the Receiver Operating Characteristic (ROC) curve and training performance metrics over 100 
epochs. 

The confusion matrix provides an insightful breakdown of SecuMed-SIoT’s classification results. With 895 true 
negatives (correctly identified benign interactions) and 1028 true positives (correctly identified malicious 
interactions) SecuMed-SIoT demonstrates high detection reliability. The matrix also reveals a low count of false 
positives (45) and false negatives (32) underscoring the model’s robustness in accurately identifying both benign 
and malicious interactions. The low number of false positives is particularly valuable in healthcare settings, where 
unnecessary alarms can disrupt essential operations, while the low count of false negatives emphasizes the model’s 
capability to reliably capture malicious behaviours without missing critical threats. 

Table 4. displays the confusion matrix for SecuMed-SIoT illustrating its high classification accuracy with 
substantial true positive and true negative counts, accompanied by minimal false positives and false negatives. This 
performance aligns with findings from other security-focused IDS models in healthcare SIoT, reinforcing the 
effectiveness of security-enhanced frameworks for precise classification in critical environments. Figure 2. shows 
SecuMed-SIoT’s confusion matrix, reflecting the high counts of true positives and true negatives alongside minimal 
false counts. This result aligns with similar studies in healthcare SIoT security, demonstrating the efficacy of 
security-driven models for accurate intrusion detection and low error rates in sensitive networks. 

 

Figure 2. Confusion Matrix for SecuMed-SIoT on Test Data 

 

Table 4: Confusion Matrix of SecuMed-SIoT on Test Data 
 

Predicted Benign Predicted Malicious 
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Actual Benign 895 45 

Actual Malicious 32 1028 

 

To evaluate the effectiveness of SecuMed-SIoT we compare its performance metrics with established deep learning 
models including CNN, LSTM, and CNN-LSTM. SecuMed-SIoT outperforms these models across all key metrics, 
achieving an accuracy of 94.2%, precision of 93.8%, and recall of 92.1%. The model’s F1 score of 92.9% indicates a 
well-balanced precision-recall trade-off, reflecting its ability to minimize both false positives and false negatives 
effectively. Furthermore, the high AUC (0.95) demonstrates SecuMed-SIoT’s strong discriminative power in 
distinguishing between benign and malicious interactions, further validating its robustness for securing healthcare 
SIoT networks. In comparison, the CNN model achieved an accuracy of 86.3% with a higher false-positive rate of 
5.6%, while the LSTM and CNN-LSTM models showed slight improvements but were still outperformed by 
SecuMed-SIoT in terms of accuracy, precision, recall, F1-score and AUC. These findings underscore SecuMed-SIoT’s 
reliability in detecting a range of threats, representing a significant advancement over traditional IDS models. 

Table 5 and Figure 3 presents a comparative analysis of SecuMed-SIoT against other prominent models, such as 
CNN, LSTM, and CNN-LSTM, across evaluation metrics including accuracy, precision, recall, F1 score, AUC, and false-
positive rate, accuracy (94.2%) and AUC (95.0%), while also having the lowest False Positive Rate (FPR) of 3.1%, 
demonstrating its superior effectiveness for healthcare SIoT security applications. 

Table 5: Comparison of Models Based on Evaluation Metrics 

Model Accuracy Precision Recall F1 Score AUC False-
Positive 
Rate 

CNN 86.3% 84.2% 81.4% 82.7% 87.0% 5.6% 

LSTM 89.2% 88.1% 84.7% 86.3% 89.0% 4.7% 

CNN-LSTM 90.5% 89.0% 86.8% 87.9% 91.0% 4.2% 

SecuMed- SIoT 
(CTLGNet) 

94.2% 93.8% 92.1% 92.9% 95.0% 3.1% 

 

 

                                               Figure 3. Performance analysis of each model 
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The ROC curve serves as a graphical representation of SecuMed-SIoT’s diagnostic accuracy across different 
thresholds, plotting the true positive rate against the false positive rate. SecuMed-SIoT’s ROC curve rises sharply 
towards the upper left corner, reflecting high sensitivity paired with a low false positive rate. With an AUC of 0.95, 
SecuMed-SIoT outperforms CNN (0.87), LSTM (0.89) and CNN-LSTM (0.91) models, underscoring its robustness in 
detecting malicious activities across various threshold settings. The ROC curve confirms SecuMed-SIoT’s superior 
ability to distinguish benign interactions from malicious ones with greater precision, a critical attribute for real-
time security in healthcare environments. The Receiver Operating Characteristic (ROC) curve in Figure 4 illustrates 
SecuMed-SIoT’s capacity to differentiate between benign and malicious interactions, yielding an AUC of 0.95. This 
performance surpasses traditional models and aligns with other security-focused IDS findings. 

Training SecuMed-SIoT over 100 epochs provided valuable insights into the model’s learning behaviour and 
convergence. The training accuracy curve shows a consistent increase, reaching over 94% by epoch 80 and 
stabilizing around 95% by epoch 100, indicating a robust learning process. Simultaneously the training loss curve 
demonstrates a smooth decline, stabilizing near 0.1 by epoch 80, suggesting minimal overfitting and efficient 
learning. The validation accuracy and loss curves also stabilize by epoch 100, underscoring the model’s strong 
generalization ability. This stability in training and validation performance suggests that SecuMed-SIoT can reliably 
handle new, unseen data, a crucial factor for dependable intrusion detection in the diverse interactions typical of 
healthcare SIoT systems. 

SecuMed-SIoT’s exceptional performance across all metrics is attributed to several key factors. Firstly, the 
integration of security-driven interaction modeling—utilizing both direct and indirect security scores—
significantly aids in filtering out benign anomalies, contributing to a low false-positive rate of 3.1%. This reduces 
unnecessary alerts, an essential improvement in healthcare environments where false alarms could disrupt critical 
medical procedures. Additionally, the CNN-Transformer architecture (CTLGNet) enhances SecuMed-SIoT’s ability 
to capture both spatial and temporal features, proving particularly effective in detecting sophisticated intrusion 
patterns in real-time. SecuMed-SIoT’s low latency (32 ms) and efficient resource utilization further support its 
suitability for deployment in healthcare SIoT settings, where real-time threat detection is necessary without 
imposing high computational demands. 

The training and validation accuracy and loss curves in Figure 5. highlight SecuMed-SIoT’s effective convergence 
over 100 epochs, achieving stable accuracy and loss values by epoch 80. This finding is consistent with other 
studies on deep learning in IDS, where training stability indicates strong generalization capability. 

 

 

Figure 4. ROC Curve for SecuMed-SIoT and Comparison Models 
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Figure 5. Training Accuracy and Loss Curves over 100 Epochs 

DISCUSSION 

The results obtained in this study demonstrate the effectiveness of SecuMed-SIoT, a security-focused, hybrid 
intrusion detection system (IDS) specifically designed for healthcare IoT. By integrating Social IoT (SIoT) principles 
with a CNN-Transformer architecture (CTLGNet), SecuMed-SIoT achieves a substantial improvement over 
traditional IDS models such as standalone CNN, LSTM, and CNN-LSTM, particularly in terms of accuracy, false-
positive reduction and computational efficiency. 

SecuMed-SIoT’s security-driven interaction modeling, using both direct and indirect security assessments, adds a 
unique layer of defence by continuously evaluating device behaviours within the network. This feature is especially 
effective in reducing false positives, a persistent challenge in IoT IDS systems. By calculating security scores based 
on historical interactions and peer evaluations, SecuMed-SIoT can distinguish between benign anomalies and actual 
threats with high accuracy. Its low false-positive rate (3.1%) compared to other models reflects the system’s 
precision and reliability, reducing unnecessary alerts that might otherwise disrupt healthcare operations. 

The ROC curve analysis and performance metrics comparison underscore SecuMed-SIoT’s ability to outperform 
standard deep learning models in both true positive and true negative rates. This advantage is crucial in a 
healthcare environment where false negatives (missed threats) can have serious consequences. The inclusion of 
healthcare-specific attack simulations during training, such as DDoS attacks, unauthorized access, and malware 
injections, has further enhanced the model’s adaptability to real-world threats, making it highly applicable for 
safeguarding patient data and the integrity of medical devices. 

Another notable aspect is SecuMed-SIoT’s low computational latency, which remains within acceptable real-time 
limits for healthcare applications. Traditional LSTM and CNN-LSTM models, while effective, typically require higher 
computational resources due to their reliance on recurrent structures and complex feature extraction mechanisms. 
The SecuMed-SIoT algorithm’s CNN-Transformer model, however, provides a more streamlined approach that 
balances spatial and temporal feature extraction, ensuring both high performance and efficiency. 

Conclusion 

The SecuMed-SIoT represents a significant advancement in healthcare SIoT security by providing a robust, efficient, 
and highly accurate IDS tailored to the unique requirements of healthcare environments. The system’s integration 
of security-driven interaction modeling and Social IoT principles enables a collaborative approach to intrusion 
detection, reducing the false-positive rate and enhancing threat response. SecuMed-SIoT’s high accuracy (94.2%), 
low false-positive rate (3.1%), and low latency (32 ms) make it a practical and scalable solution for real-time 
deployment in resource-constrained healthcare networks. 

The findings of this study suggest that security-enhanced and collaborative IDS frameworks like SecuMed-SIoT can 
address many of the challenges in healthcare SIoT, such as high data sensitivity, frequent anomalies and diverse 
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device interactions. Future work may focus on further optimizing SecuMed-SIoT by expanding the range of 
healthcare-specific threat simulations and enhancing the SIoT network’s adaptability to rapidly evolving attack 
patterns. Additionally implementing explainable AI techniques could make SecuMed-SIoT’s decision-making more 
transparent for building trust among healthcare professionals and ensuring compliance with industry regulations. 
SecuMed-SIoT is positioned as a viable framework for protecting critical healthcare systems and contributing to the 
broader field of SIoT security while addressing the specific needs of the healthcare sector. 
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