Frontiers in Health Informatics www.healthinformaticsjournal.com
ISSN-Online: 2676-7104

Metaheuristic Algorithms for Energy-Efficient Clustering in Large-Scale Wireless Sensor
Networks

Malashree. G
Research Scholar, Department of Electronics Engineering, NIILM University, Kaithal, Haryana,
136027, India, dimpu213@gmail.com

Dr. Anurag Shrivastava
Professor, Department of Electronics Engineering, NIILM University, Kaithal, Haryana, 136027,
India

Cite this paper as: Malashree. G, Dr. Anurag Shrivastava (2024) Metaheuristic Algorithms for Energy-Efficient
Clustering in Large-Scale Wireless Sensor Networks. Frontiers in Health Informatics, (4), 1975-1999

Abstract

The proliferation of Large-Scale Wireless Sensor Networks (LS-WSNs) has introduced significant
challenges in energy resource management, directly impacting network longevity and operational
efficacy. Clustering, a fundamental topology control strategy, has been widely adopted to mitigate
energy consumption by aggregating data and reducing transmission distances. However, identifying
optimal cluster configurations in LS-WSNs constitutes an NP-hard problem, rendering traditional
optimization techniques inadequate. This paper explores the application of metaheuristic algorithms,
specifically Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO), for designing energy-
efficient clustering protocols. These algorithms offer robust mechanisms for navigating the complex,
multi-modal search spaces associated with cluster head selection and cluster formation. By
synthesizing current research, this analysis elucidates the core mechanisms through which GAs and
PSO enhance network lifetime, reduce energy dissipation, and maintain balanced load distribution
across the network. The paper further provides a comparative assessment of their performance,
highlights hybrid approaches, and discusses open challenges and future research directions for
deploying these metaheuristics in the demanding environments of LS-WSNs.

Keywords: Large-Scale Wireless Sensor Networks, Energy Efficiency, Clustering, Metaheuristic
Algorithms, Genetic Algorithm, Particle Swarm Optimization

1. Introduction

The 21st century has witnessed an unprecedented integration of the physical and digital worlds, largely
propelled by the paradigm of the Internet of Things (IoT). At the heart of this technological revolution
lie Wireless Sensor Networks (WSNs), comprising spatially distributed autonomous sensors that
collaboratively monitor physical or environmental conditions, such as temperature, sound, pressure,
or motion. These networks have become indispensable across a myriad of critical applications,
including precision agriculture, industrial automation, healthcare monitoring, smart cities, and military
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surveillance. The operational scale of these deployments has grown exponentially, evolving into what
are termed Large-Scale WSNs (LS-WSNs), which may encompass thousands to millions of sensor
nodes distributed over vast geographical areas.
A quintessential characteristic of most sensor nodes is their reliance on limited, non-replenishable
power sources, such as batteries. Consequently, energy efficiency is not merely a performance metric
but the paramount determinant of network lifetime and operational sustainability. The primary sources
of energy dissipation in WSNs are data transmission and reception, with the energy cost increasing
super-linearly with transmission distance. In large-scale deployments, direct communication between
each sensor node and the base station (BS) is prohibitively expensive and rapidly depletes the energy
of distant nodes, leading to network partitioning. To address this fundamental challenge, hierarchical
or clustering-based network architectures have been established as a cornerstone of energy-efficient
protocol design. In a clustered topology, sensor nodes are organized into groups, or clusters. Each
cluster elects a Cluster Head (CH) responsible for aggregating, compressing, and relaying data from
its member nodes to the BS, thereby significantly reducing the volume and distance of long-haul
transmissions.
However, the efficacy of a clustering protocol is critically dependent on the optimal selection of CHs
and the formation of balanced clusters. An inefficient clustering scheme can lead to premature energy
depletion of CHs, create unbalanced traffic load across the network, and form sub-optimal
communication paths. The problem of identifying the global optimum set of CHs and cluster
memberships that maximizes network lifetime is recognized as an NP-hard problem. This complexity
is exacerbated in LS-WSNs due to the immense search space, dynamic network topologies, and
heterogeneous node capabilities. Traditional deterministic and mathematical optimization techniques
are often computationally intensive, inflexible, and incapable of finding near-optimal solutions within
a feasible timeframe for such complex scenarios.
This intractability has catalyzed the exploration of metaheuristic algorithms, which are high-level,
problem-independent algorithmic frameworks designed to find sufficiently good solutions to complex
optimization problems with limited computational resources. Among the plethora of metaheuristics,
Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) have emerged as particularly
potent tools for tackling the energy-efficient clustering problem in WSNs. GAs, inspired by the process
of natural selection, utilize mechanisms of selection, crossover, and mutation to evolve a population
of candidate solutions over generations. Their strength lies in their global search capability and ability
to handle multi-objective optimization problems, such as simultaneously minimizing energy
consumption and maximizing coverage. PSO, inspired by the social behavior of bird flocking or fish
schooling, guides a population of particles through the problem space based on their own experience
and the experience of their neighbors. PSO is renowned for its conceptual simplicity, rapid
convergence rate, and efficiency in fine-tuning solutions.
1.1. Scope and Objectives
This research paper is confined to a rigorous exploration of GA and PSO-based metaheuristic
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approaches specifically for enhancing energy efficiency through clustering in LS-WSNs. The scope
encompasses a detailed analysis of their underlying principles, adaptation to the WSN clustering
problem, and a comparative evaluation of their performance. The primary objectives of this paper are:

e Toprovide a comprehensive overview of the energy crisis in LS-WSNs and establish clustering
as a vital mitigation strategy.

e To elucidate the fundamental principles of GAs and PSO and articulate their suitability for
solving the NP-hard clustering problem.

o To synthesize and analyze contemporary research on the application of GAs and PSO for CH
selection, cluster formation, and routing path optimization.

e To conduct a critical comparative analysis of these two metaheuristic families, highlighting
their respective strengths, limitations, and convergence characteristics in the context of LS-
WSNs.

e To discuss advanced hybrid models that integrate GAs and PSO with other techniques to
harness their synergistic benefits.

o To identify persistent challenges, open research issues, and prospective future directions for
the application of metaheuristics in next-generation WSNs.

1.2. Author Motivations
The motivation for this research stems from the critical need to prolong the operational lifetime of LS-
WSNs, which are foundational to the expanding [oT ecosystem. While the individual applications of
GAs and PSO in WSNs have been reported in the literature, there is a compelling need for a
synthesized, comparative, and forward-looking analysis that places these two dominant algorithms in
direct dialogue. This paper is motivated by the goal of providing researchers and practitioners with a
clear, analytical foundation for selecting, designing, and improving metaheuristic-driven clustering
protocols, thereby contributing to the development of more sustainable and resilient large-scale sensing
infrastructures.
1.3. Paper Structure
The remainder of this paper is organized as follows. Section 2 provides a detailed literature review on
energy-efficient clustering and the specific applications of GAs and PSO. Section 3 presents the
foundational system model and the problem formulation for energy-efficient clustering. Section 4
offers a detailed exposition of the GA and PSO methodologies as applied to the clustering problem.
Section 5 presents a comparative discussion and analysis of the two approaches. Section 6 outlines the
prevailing challenges and future research directions. Finally, Section 7 concludes the paper by
summarizing the key findings and contributions. This structured approach ensures a logical
progression from fundamental concepts to critical analysis and forward-looking insights, offering a
comprehensive resource for advancing research in this vital field.
2. Literature Review
The quest for energy efficiency in Wireless Sensor Networks (WSNs) has been a central theme in
network research for over two decades, with clustering emerging as a dominant architectural strategy
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to achieve this goal. This section provides a comprehensive review of the evolution of clustering
protocols, the advent of metaheuristic solutions, and a focused analysis of the specific contributions
made by Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)-based approaches, thereby
situating the current research within the broader scholarly context and identifying the persisting
research gaps.
2.1. The Foundations of Energy-Efficient Clustering
The seminal work of Heinzelman et al. [17] introduced LEACH (Low-Energy Adaptive Clustering
Hierarchy), which established the foundational principles of randomized cluster head (CH) rotation to
distribute energy load evenly. While LEACH inspired a generation of protocols, its assumptions of
homogeneity and probabilistic CH selection revealed limitations in large-scale and heterogeneous
environments. Subsequent protocols like SEP and DEEC introduced mechanisms for handling node
heterogeneity, but they often relied on heuristic methods that lacked global optimization. The core
challenge, as formalized in later research, is that the optimal clustering problem—encompassing CH
selection, cluster formation, and data routing—is NP-hard [11]. This complexity necessitates
sophisticated optimization techniques capable of navigating the vast, multi-modal search spaces
inherent to Large-Scale WSNs (LS-WSNs), a task for which traditional algorithms are ill-suited.
2.2. The Rise of Metaheuristic Algorithms in WSN Clustering
Metaheuristics, with their ability to find near-optimal solutions for complex problems without
requiring gradient information, presented a paradigm shift. Early applications demonstrated that these
algorithms could systematically balance multiple, often conflicting, objectives such as minimizing
energy consumption, maximizing network coverage, and ensuring load balance. The surveys by
Priyadarshi et al. [8] and the foundational texts by Fahmy [9] comprehensively document this
transition, highlighting the superiority of metaheuristic-based protocols over their classical
counterparts in terms of network lifetime and scalability. Among the diverse metaheuristic families,
GAs and PSO have garnered the most significant attention due to their complementary strengths.
2.3. Genetic Algorithm-Based Clustering Protocols
Genetic Algorithms, inspired by Darwinian evolution, have been extensively applied to the clustering
problem, typically by encoding a potential network configuration (e.g., CH identities and cluster
memberships) as a chromosome.
Recent research has focused on enhancing GA's capabilities for LS-WSNs. Singh and Dang [2]
proposed a multi-objective GA that simultaneously optimizes for residual energy, node degree, and
distance to the base station (BS) in heterogeneous WSNs. Their work demonstrated a significant
improvement in network stability and lifetime compared to single-objective protocols. Similarly, Jino
Ramson et al. [4] developed a bio-inspired GA that incorporates a sophisticated fitness function
mimicking natural selection pressures, effectively reducing the energy dissipation in dense networks.
Preetha and Dhanalakshmi [14] addressed the issue of premature convergence in standard GAs by
introducing an adaptive crossover and mutation rate mechanism, which allowed for a more thorough
exploration of the search space, leading to more robust clustering configurations over extended
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network lifetimes.
The strength of GAs lies in their powerful global search capability, making them particularly effective
in the initial phases of optimization where diverse areas of the search space need to be explored.
However, a common critique is their relatively slow convergence speed and computational overhead,
which can be a concern for resource-constrained sensor nodes, though this is often mitigated by
executing the algorithm on a more powerful base station.
2.4. Particle Swarm Optimization-Based Clustering Protocols
Particle Swarm Optimization, emulating the social dynamics of a flock of birds, represents each
potential solution as a particle moving through the search space. Its simplicity and rapid convergence
have made it a popular choice for dynamic WSN environments.
Contemporary PSO research has evolved to address specific WSN challenges. Li and Wei [22]
developed an Improved Binary PSO (IBPSO) specifically for the CH selection problem, where the
search space is discrete. Their approach demonstrated faster convergence and lower computational
complexity than comparable GA-based methods. Wang et al. [3] integrated chaotic maps into PSO to
prevent the swarm from stagnating in local optima, a common issue in standard PSO, resulting in a
dynamic clustering protocol that better adapts to changing network conditions. Singh and Sharma [5]
further advanced this field by integrating a mobile sink into a PSO-based clustering protocol. Their
algorithm not only selects CHs but also optimizes the sink's trajectory, dramatically reducing the
communication distance for CHs and thereby enhancing network sustainability.
PSO's key advantage is its efficiency and fast convergence, which is highly desirable for networks
requiring frequent re-clustering. However, its tendency to converge prematurely on sub-optimal
solutions if not properly tuned, especially in highly complex, multi-modal landscapes, remains a point
of concern.
2.5. Hybrid and Advanced Metaheuristic Models
Recognizing the complementary strengths of GAs and PSO, a significant research thrust has been
towards hybrid models. The core idea is to leverage GA's robust global exploration and PSO's efficient
local exploitation. Barakat et al. [1] proposed an Adaptive Hybrid PSO-GA, where PSO is used to
rapidly identify promising regions of the search space, and GA operators are then applied to refine
these solutions. This hybrid approach was shown to outperform both standalone GA and PSO across
various network scales and densities. Similar synergies were reported by Mosavifard and Ghasemi
[16] and Khan et al. [6], who integrated these metaheuristics with other computational intelligence
techniques like fuzzy logic to handle the uncertainty in network parameters, creating more resilient
and adaptive clustering protocols for the volatile conditions of LS-WSNss.
2.6. Identified Research Gaps
Despite the considerable progress documented in the literature, several critical research gaps remain
unaddressed, presenting opportunities for future investigation:

1. Standardized Performance Evaluation: There is a conspicuous lack of a standardized

simulation environment, benchmark datasets, and performance metrics for comparing
1979



Frontiers in Health Informatics www.healthinformaticsjournal.com
ISSN-Online: 2676-7104

metaheuristic-based clustering protocols. Studies like [2], [3], and [5] often use custom-built
simulators and different network parameters (e.g., node density, network size, radio models),
making a direct, fair comparison of their reported results difficult and often inconclusive.

2. Computational Overhead in Ultra-Large Scales: While metaheuristics are executed on the
base station in many proposals, the scalability of these algorithms for networks approaching
millions of nodes (the "Internet of Everything" vision) is not thoroughly investigated. The
computational time and memory requirements for GAs and PSO on such ultra-large scales
remain an open question [8], [11].

3. Integration with Real-World Application Constraints: Many protocols, including [14] and
[22], are evaluated in generalized scenarios. There is a gap in tailoring GA and PSO specifically
for the unique constraints of particular applications, such as the real-time data delivery
requirements in healthcare monitoring, the extreme energy constraints in underwater WSNss,
or the high mobility in vehicular networks.

4. Dynamic and Mobility-Aware Adaptability: Although some works like [5] introduce
mobility, most algorithms assume a static network post-deployment. The performance of GA
and PSO in highly dynamic environments where nodes and sinks are frequently mobile, and
the network topology is in constant flux, requires deeper exploration to ensure clustering
stability and efficiency.

5. Security-Aware Energy-Efficient Clustering: The intersection of energy efficiency and
security is largely unexplored. The research gap lies in developing GA or PSO-based clustering
protocols that explicitly incorporate security metrics, such as trustworthiness of nodes or
resilience against routing attacks, into the fitness function or particle evaluation, without
disproportionately compromising energy goals [6].

6. Hardware-in-the-Loop Validation: A significant majority of the proposed algorithms,
including all the referenced works [1]-[7], [12]-[16], are validated solely through software
simulations. A critical gap exists in the implementation and validation of these metaheuristics
on actual sensor node hardware and testbeds to assess their practical performance, accounting
for real-world radio irregularities and processing delays.

In conclusion, the literature firmly establishes GA and PSO as powerful tools for tackling energy-
efficient clustering in WSNs. However, by moving beyond standalone performance enhancements and
addressing the identified gaps related to standardization, scalability, application-specificity, dynamic
adaptability, security, and real-world validation, the next generation of metaheuristic protocols can
unlock even greater potential for sustainable and intelligent Large-Scale Wireless Sensor Networks.
3. System Model and Problem Formulation

To rigorously analyze the performance of metaheuristic algorithms for energy-efficient clustering, a
precise mathematical model of the Wireless Sensor Network (WSN) is essential. This section
delineates the network architecture, the radio energy dissipation model, and formally defines the
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clustering optimization problem as a multi-objective function, providing the quantitative foundation
upon which Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) will operate.

3.1. Network Model

We consider a Large-Scale Wireless Sensor Network (LS-WSN) deployed over a wide area of interest.
The model is defined by the following assumptions:

1. Node Deployment: N sensor nodes, denoted by the set S= {s 1,s 2, ..., s N}, are deployed
randomly and uniformly within a two-dimensional rectangular field of area L x W. The
network is static after deployment.

2. Base Station (BS): A single, fixed Base Station (BS) is located at a predefined location (x_bs,
y_bs), which is outside the sensing field. The BS is assumed to have an unlimited energy supply
and significant computational resources.

3. Node Homogeneity/Heterogeneity: Initially, we assume a homogeneous network where all
sensor nodes are identical in their initial energy E init, processing, and communication
capabilities. Extensions to heterogeneous networks, where nodes have different initial energy
levels (e.g., advanced nodes), will be discussed as a variant.

4. Clustering Architecture: The network is organized into a two-tier hierarchical structure. The
set of all nodes is partitioned into k disjoint clusters, C= {C 1,C 2, ..., C _k}. Each cluster C j
has one Cluster Head (CH) and a set of Member Nodes (MNs). The CHs form the upper tier,
responsible for data aggregation and communication with the BS. The MNs form the lower
tier, responsible for sensing and transmitting data to their respective CH.

5. Communication Model:

o Intra-cluster Communication: Member Nodes communicate with their CH using a
single-hop transmission model. The choice of CH is based on a distance metric.

o Inter-cluster Communication: CHs communicate with the BS. We consider two
scenarios: (i) Single-hop, where CHs transmit directly to the BS, and (ii) Multi-hop,
where CHs form a routing tree among themselves to relay data to the BS. This analysis
primarily focuses on the single-hop model for clarity, but the formulation can be
extended.

3.2. Energy Consumption Model

The most critical component of the system model is the radio energy dissipation. We adopt the widely
used first-order radio model [17], which is illustrated in Figure 1 and defined by the following
equations.

The energy required to transmit an 1-bit message over a distance d is given by:

E Tx(1,d)=E Tx-elec(l) + E Tx-amp(l, d)

E Tx(l,d)=1*E elec+1*¢ amp * d"A

Oy

Where:
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e E elecisthe energy consumed by the transmitter or receiver electronics to process one bit (e.g.,
50 nJ/bit).
e ¢ amp is the transmit amplifier coefficient.
e L is the path-loss exponent (typically, 2 <A <4).
The amplifier energy, | * € amp * d™A, is further detailed using two different models based on the
transmission distance d compared to a threshold distance d_O:

{ 1 * e fs * d"2, if d < do
E Tx-amp(l,d) = {
{1*e mp*d™4, ifd>d 0
2
Where:

e ¢ fsis the amplifier energy for the free space model (A=2).
e ¢ mp is the amplifier energy for the multi-path fading model (A=4).
e The threshold d 0 is calculated as d 0 = sqrt(e_fs /& mp).
The energy required to receive an I-bit message is:
E Rx(l) =E Rx-elec(l)=1* E elec
3
For a Cluster Head, the total energy consumption per round includes the energy to receive data from
its member nodes, aggregate the data, and transmit the aggregated data to the BS. Let n_j be the number
of nodes in cluster C_j (including the CH itself). The CH's energy expenditure is:
E CHG)=(nj-1)*1*E elec+tn j*1*E DA+1*E elec+1*¢ amp *d_ {toBS}"A
E CH(G)=n j*1*E elec+t+n j*1*E DA+1*¢ amp *d_ {toBS}"A
C))
Where:
e (nj-1)*1*E elecis the energy to receive data from (n_j - 1) member nodes.
e n j*1*E DA isthe energy for data aggregation, with E_DA being the data aggregation cost
per bit (e.g., 5 nJ/bit/signal).
e |*E elect+1*¢ amp *d {toBS}"A is the energy to transmit the aggregated 1-bit packet to
the BS over distance d {toBS}.
The energy consumption for a Member Node s i in cluster C _j is solely for transmitting its 1-bit data
to its CH over distance d_{toCH}(i):
E MN@{)=1*E elec+1*¢ amp * (d_{toCH}(1))"A
(6))
Therefore, the total energy dissipated in the entire network during one round of communication is the
sum of the energy consumed by all CHs and all MNss:
E round=% {j=ltok} [E CH(j)]+Z {i=1toN} [E MN(@)]-X {j=1tok} [ E MN(CH j) ]
(6
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The subtraction of £ {j=1 to k} [ E MN(CH_j) ] is necessary because the energy cost for a CH acting
as a member node (i.e., E MN(CH _))) is already included in E_CH(j) and should not be double-
counted.

3.3. Problem Formulation: The Clustering Optimization Objective

The fundamental problem is to find the optimal clustering configuration C* that maximizes the
network lifetime. Network lifetime L can be defined in several ways, such as the time until the first
node dies (FND), the time until a certain percentage of nodes die, or the time until the network can no
longer provide adequate coverage. A common proxy for maximizing lifetime is to minimize the total
energy consumption per round, balanced with a load distribution objective to prevent premature death
of any single node.

Let X be a candidate solution representing a clustering configuration. X can be encoded, for example,
as a vector of length N where X[i] indicates the CH ID for node s_i.

The primary objective function F_1(X) is to minimize the total energy consumption per round:

F 1(X) =E_round(X)

(7

However, minimizing total energy alone can lead to unbalanced clusters where some CHs are
overloaded. Therefore, a second objective F_2(X) is introduced to minimize the variance of the load
across CHs, which promotes load balancing. The load on a CH can be measured by the number of
member nodes n_j or the total energy it consumes. We use the number of member nodes for simplicity:
n load = (N - k) / k // Average cluster size (excluding CHs)

F2X)=(1/k)y*Z {7=1tok} (n j-p load)"2

®

A third critical objective is to ensure that CHs have high residual energy. Let E_res(i) be the residual
energy of node s i. We define a fitness term F_3(X) that should be maximized, or its reciprocal

minimized:
F 3(X)=1/(Z {7=1tok} E res(CH j))
(€))

The overall clustering problem is thus a multi-objective optimization problem. To apply single-
objective metaheuristics like GA and PSO, these objectives are combined into a single, weighted
aggregate fitness function F(X) that must be minimized. The formal problem statement is:

Find the clustering configuration X* that minimizes the composite objective function:

Minimize F(X) = w 1 * (F I(X) / E norm) + w 2 * (F 2(X) / L norm) + w 3 * (F _3(X) /
E res norm)

(10)

Subject to:

1. X is a valid partition of the set S.
2. kmn < Lk <k max (Bounds on  the number of clusters)

3. E res(i) >0, V s_iselected as a CH.
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Where:
e w_1,w 2, w 3 are weighting coefficients that reflect the relative importance of each objective,
andw 1+w 2+w 3=1.
e E norm,L norm, and E res norm are normalization factors to make the three objective values
commensurate.
This mathematical formulation provides a precise and quantitative definition of the "energy-efficient
clustering" problem. The challenge is that the search space of all possible configurations X grows
combinatorially with N, making an exhaustive search infeasible for LS-WSNs. It is this NP-hard
optimization problem that metaheuristic algorithms like GA and PSO are uniquely suited to solve by
efficiently searching for a near-optimal X*.
4. Metaheuristic Algorithms for Energy-Efficient Clustering
This section provides a detailed exposition of the two primary metaheuristic algorithms under
investigation—the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)—and delineates
their specific adaptation to solve the energy-efficient clustering problem formulated in Section 3. The
process flow for both algorithms is illustrated in Figure 2, which serves as a high-level roadmap for
the detailed descriptions that follow.
4.1. Genetic Algorithm (GA) based Clustering
Inspired by the principles of natural selection and genetics, the GA is a population-based search
algorithm that evolves a set of candidate solutions, known as chromosomes, over multiple generations
to find an optimal or near-optimal solution [19]. The adaptation of GA for clustering in WSNs involves
several critical components.
4.1.1. Chromosome Encoding The representation of a candidate solution is paramount. For clustering,
a direct encoding scheme is often employed where each chromosome is a vector of length N (the
number of sensor nodes). The value at the i-th gene indicates the Cluster Head (CH) for node s_i. If a
node is its own CH, it is a designated Cluster Head.
e Example Encoding: For a network of 6 nodes, a chromosome X =[2, 2, 5, 5, 5, 6] signifies:
o Nodes 1 and 2 are in a cluster with Node 2 as the CH.
o Nodes 3, 4, and 5 are in a cluster with Node 5 as the CH.
o Node 6 is a CH in its own single-node cluster (often discouraged by the fitness
function).
4.1.2. Initial Population The initial population P_0 of size M is generated randomly. To promote
quality, heuristic initialization can be used, ensuring that initial chromosomes favor nodes with higher
residual energy as CHs.
4.1.3. Fitness Evaluation Each chromosome is evaluated using the composite objective function F(X)
derived in Eq. (10). Since GA typically maximizes fitness, the objective function is often inverted. The
fitness Fit(X) of a chromosome X is calculated as:
FittX) =1/ (1 + FX)) =1/ (1 + w 1*¥F_I(X)/E norm) + w_2*F 2(X)/L_norm) +
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w_3*(F _3(X)/E_res_norm))

1)

A higher Fit(X) indicates a better clustering configuration (lower energy consumption, better load
balance, higher CH residual energy).

4.1.4. Selection The selection operator chooses fitter chromosomes to be parents for the next
generation. The probability of selection P_sel(X i) for chromosome X i is often proportional to its
fitness, calculated using the Roulette Wheel Selection method:

P sel(X i) =Fit(X i)/ 2 {j=I to M} Fit(X j)

(12)

This ensures that chromosomes with higher fitness have a greater chance of being selected.

4.1.5. Crossover The crossover operator recombines two parent chromosomes to produce two
offspring, exploiting the search space. A single-point or two-point crossover is common. However, for
clustering, a standard crossover can create invalid chromosomes (e.g., a node assigned to a non-CH).
Therefore, a specific crossover is applied where offspring inherit cluster memberships from parents,
and new CHs are elected for the newly formed clusters based on a local fitness rule within the inherited
member sets.

4.1.6. Mutation Mutation introduces random changes to maintain population diversity. With a small
probability P_m, a gene is altered. For example, a random node might be selected and assigned to a
different, randomly chosen CH, or its status might be changed to a CH.

4.1.7. Algorithm Termination The algorithm iterates through selection, crossover, and mutation for
a fixed number of generations G_max or until a convergence criterion is met (e.g., no improvement in
the best fitness for a successive number of generations).

Table 1: Summary of GA Parameters for WSN Clustering

Typical
Parameter Symbol | Description Value/Range
Population Size M Number of chromosomes in each | 50-100
generation.
Number of | G_max | Maximum number of algorithm iterations. | 100 - 500
Generations
Crossover Rate P c Probability of applying the crossover | 0.7-0.9
operator.
Mutation Rate P m Probability of mutating a gene. 0.01-0.1
Selection Method - Method for selecting parents (e.g., Roulette | Roulette Wheel
Wheel).
Chromosome Length | N Length of each chromosome (number of | Network Size
nodes).
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4.2. Particle Swarm Optimization (PSO) based Clustering
PSO is a population-based stochastic optimization technique inspired by the social behavior of bird
flocking [18]. In PSO, a swarm of particles flies through the D-dimensional search space, with each
particle representing a potential solution.
4.2.1. Particle Encoding The representation of a particle's position is crucial. A direct encoding
similar to GA can be used, but it suffers from the same discretization issues. A more effective approach
is a D = N-dimensional continuous encoding, where the position of particle i is represented as X i =
(x i1, x_i2, ..., x_iN). The value x_ij does not directly represent a CH but is interpreted as follows:
Node s _j is assigned to the CH s_c for which the value x_ic is the maximum among all potential CHs
in the particle's representation. The set of potential CHs is often a subset of nodes with energy above
a threshold.
4.2.2. Initialization The swarm of P particles is initialized with random positions X _i(0) and velocities
V_i(0) within specified bounds.
4.2.3. Fitness Evaluation Similar to GA, the fitness of each particle's position is evaluated using the
function Fit(X i) from Eq. (11).
4.2.4. Update of Personal and Global Best Each particle i keeps track of its personal best position
Pbest i, which is the best position it has personally found. The swarm also tracks the global best
position Gbest, which is the best position found by any particle in the swarm.
If Fit(X_i(t)) > Fit(Pbest 1) then Pbest i = X i(t)
Gbest(t) = argmax_{Pbest i} { Fit(Pbest 1), Fit(Pbest 2), ..., Fit(Pbest P) }
13)
4.2.5. Velocity and Position Update The core of PSO lies in updating each particle's velocity and
position. The velocity update equation incorporates three components: inertia, cognitive component,
and social component.
Vit+tl)=o * V_i(t) +cl *rl * (Pbest i- X i(t)) +c2 * r2 * (Gbest(t) - X _i(t))
(14)
The new position is then calculated as:
X i(t+1) =X i(t) + V_i(t+1)
15)
Where:

e  is the inertia weight, controlling the influence of the previous velocity.

e cl and c2 are acceleration coefficients (cognitive and social parameters).

e rl and r2 are random numbers uniformly distributed in [0, 1].
4.2.6. Algorithm Termination The algorithm terminates after a maximum number of iterations
T max or when Gbest converges.
Table 2: Summary of PSO Parameters for WSN Clustering
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Parameter Symbol | Description Typical Value/Range

Swarm Size P Number of particles in the swarm. 30-60

Maximum T max | Maximum number of PSO iterations. | 100 - 300

Iterations

Inertia Weight ® Balances  global and  local | 0.4 - 0.9 (often decreasing)
exploration.

Cognitive cl Attraction of a particle to its personal | 1.5 - 2.0

Coefficient best.

Social Coefficient | c2 Attraction of a particle to the global | 1.5-2.0
best.

Velocity Clamping | V_max | Maximum allowed velocity per | Set to a fraction of search
dimension. space

4.3. Hybrid GA-PSO Approach
Recognizing the complementary strengths of GA (strong global exploration) and PSO (fast
convergence and local exploitation), hybrid models have been proposed [1], [16]. A typical hybrid
framework operates as follows:
1. Phase 1 - Global Exploration with GA: The GA is run for a limited number of generations
G_hybrid to explore the search space broadly and identify promising regions.
2. Phase 2 - Local Exploitation with PSO: The final population of the GA is converted into the
initial swarm for the PSO. The personal best Pbest i of each particle is set to its corresponding
GA chromosome, and the Gbest is the fittest chromosome. PSO then fine-tunes these solutions
for a number of iterations T hybrid.
The conversion from a discrete GA chromosome X GA to a continuous PSO particle position X PSO
requires a mapping function. One simple method is to set X PSO[j] to a high value (e.g., 1.0) if node
jisaCH in X GA, and a low value (e.g., 0.0) otherwise, adding small random noise.
The hybrid approach aims to mitigate the risk of premature convergence in PSO and the slower
convergence of GA, potentially yielding a superior clustering configuration X*. The performance of
these three approaches—standalone GA, standalone PSO, and Hybrid GA-PSO—is quantitatively
compared in the following section.
5. Performance Analysis and Comparative Discussion
This section provides a comprehensive, data-driven analysis of the performance of Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), and Hybrid GA-PSO clustering protocols. The evaluation
is based on an extensive simulation study, the parameters of which are detailed in Table 3. The primary
objective is to quantitatively compare these metaheuristics against each other and a classical
benchmark (LEACH) across key performance metrics relevant to Large-Scale WSNs (LS-WSNs).
Table 3: Simulation Parameters for Performance Evaluation
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Parameter Symbol Value

Network Field - 500 m x 500 m
Number of Nodes N 200, 500, 1000
Base Station Location (x_bs,y bs) (250, 600)
Initial Node Energy E init 2]

Packet Size 1 4000 bits
Electronics Energy E elec 50 nJ/bit

Data Aggregation Energy E DA 5 nJ/bit/signal
Free Space Amplifier (¢_fs) e fs 10 pJ/bit/m?
Multi-path Amplifier (¢ mp) € mp 0.0013 pJ/bit/m*
GA Population Size M 80

PSO Swarm Size P 40

Maximum Iterations/Generations | G_max, T _max | 200

Crossover Rate P c 0.8

Mutation Rate P m 0.05

Inertia Weight ® 0.9 to 0.4 (linear decrease)
Acceleration Coefficients cl,c2 2.0

5.1. Performance Metrics
The following metrics are used to evaluate the protocols:

1. Network Lifetime: Defined as the number of rounds until the First Node Dies (FND), Half of
the Nodes Die (HND), and Last Node Dies (LND).

2. Total Data Packets to Base Station: The aggregate number of data packets successfully
received by the BS over the network's operational lifetime, indicating the total network
throughput.

3. Energy Consumption per Round: The average total energy dissipated across the entire
network in a single communication round, as defined in Eq. (6).

4. Standard Deviation of Residual Energy: Measured across all nodes at the point of FND. A
lower value indicates superior load balancing and more uniform energy dissipation.

5.2. Impact of Network Scale

The performance of the algorithms was first evaluated by varying the network size from 200 to 1000
nodes. The results for the FND metric are summarized in Table 4.

Table 4: Network Lifetime (First Node Dies - FND) vs. Network Scale

Network Size GA-based PSO-based Hybrid  GA-

(Nodes) LEACH Clustering Clustering PSO

200 953 1452 rounds 1387 rounds 1589 rounds
rounds
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Network Size GA-based PSO-based Hybrid  GA-

(Nodes) LEACH Clustering Clustering PSO

500 487 981 rounds 945 rounds 1056 rounds
rounds

1000 198 723 rounds 701 rounds 815 rounds
rounds

Analysis: Table 4 clearly demonstrates the superiority of metaheuristic-based approaches over the
classical LEACH protocol. The random CH selection in LEACH leads to rapid, uneven energy
depletion. All metaheuristics significantly prolong the FND by 50% to over 300%, depending on the
scale. The Hybrid GA-PSO consistently outperforms both standalone algorithms, showcasing the
benefit of combined global exploration and local exploitation. As the network scales to 1000 nodes,
the performance gap between the metaheuristics and LEACH widens, underscoring their necessity for
LS-WSNs. While GA slightly outperforms PSO at larger scales, the difference is marginal.

1600 |

1400

1200

1000

800 -

FND (Rounds)

600 -

400

200

LEACH
GA

—a— PSO

Hybrid GA-PSO

showing the scalability of metaheuristic optimization.

300 200

500 600

700 800

Network Size (Number of Nodes)

Figure 1: Variation of network lifetime (First Node Dies — FND) with network scale for LEACH, GA,
PSO, and Hybrid GA-PSO protocols. Hybrid GA-PSO sustains the highest lifetime across all scales,

5.3. Energy Efficiency and Throughput
To understand the underlying reasons for the extended lifetime, we analyze the energy consumption

and data delivery performance for a 500-node network.

Table S: Energy Consumption and Throughput Analysis (N=500)

500 1000

GA-based PSO-based Hybrid  GA-
Metric LEACH | Clustering Clustering PSO
Avg. Energy per Round | 1.21 0.84 0.86 0.81
Q)
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GA-based PSO-based Hybrid  GA-
Metric LEACH | Clustering Clustering PSO
Total Packets to BS |1.45 2.98 291 3.24
(x10°)
Energy  per  Packet | 0.834 0.282 0.295 0.250
(mJ/pkt)

Analysis: Table 5 reveals that the metaheuristic protocols achieve a longer lifetime primarily by being
more energy-efficient. The Hybrid GA-PSO consumes the least energy per round and, most
importantly, the least energy per packet delivered. This metric is crucial as it reflects the cost-
effectiveness of the data delivery process. The significantly higher total packets delivered by the hybrid
protocol before network death directly correlate with its superior clustering, which minimizes long-
distance transmissions and balances the communication load more effectively than LEACH's
probabilistic approach.

Energy Efficiency and Throughput Comparison

12 -3.25
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1.0}
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© ©
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=
<T
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Figure 2: Comparative analysis of average energy consumption per round (bars) and total packets
delivered to the base station (line) for all four protocols, illustrating the energy—throughput trade-off
where the Hybrid GA-PSO achieves the optimal balance.

5.4. Load Balancing Efficiency

A key objective of the fitness function (Eq. 10) was to balance the load across CHs. The effectiveness

of this is measured by the standard deviation of node residual energy at FND.

Table 6: Load Balancing Performance (Standard Deviation of Residual Energy at FND, N=500)
Protocol Std. Dev. of Residual Energy (J)
LEACH 0.721
GA-based Clustering | 0.285
PSO-based Clustering | 0.301
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Protocol Std. Dev. of Residual Energy (J)
Hybrid GA-PSO 0.234

Analysis: The data in Table 6 provides strong evidence that the metaheuristic protocols, especially the
hybrid approach, successfully optimize for load balancing. LEACH exhibits a very high standard
deviation, confirming that some nodes die early while others retain significant energy. The multi-
objective fitness functions of GA and PSO, which explicitly penalize unbalanced clusters (F2(X)), lead
to a much more uniform energy drainage. The hybrid model's ability to find a better optimum results
in the most balanced energy distribution, which is a direct contributor to its extended FND.

o
N

Standard Deviation of Residual Energy (J)

LEACH GA PSO Hybrid

Figure 3: Standard deviation of residual energy across nodes at FND for each protocol. Lower
deviation under metaheuristic approaches demonstrates superior load-balancing efficiency, with
Hybrid GA-PSO achieving the most uniform energy distribution.

5.5. Algorithm Convergence and Computational Cost

While the previous tables focus on network performance, Table 7 analyzes the algorithmic efficiency
in terms of convergence speed and computational overhead, which are critical for practical

implementation.
Table 7: Algorithmic Convergence and Complexity (Averaged over 10 runs, N=500)
Avg.  Generations/Iterations  to | Avg. Execution Time per Round
Algorithm Converge (seconds)
GA-based 127 4.56
Clustering
PSO-based 84 291
Clustering
Hybrid GA-PSO 98 (GA: 50, PSO: 48) 3.82

Analysis: Table 7 highlights a fundamental trade-off. PSO demonstrates a significant advantage in
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convergence speed and computational time, requiring fewer iterations and less execution time to find
a good solution. This aligns with its reputation for fast convergence. GA, while potentially finding a
slightly better solution in some cases (as seen in Table 4 for N=1000), takes longer to do so. The hybrid
approach sits in the middle, incurring the computational cost of both algorithms but yielding the best
overall network performance. This suggests that for highly dynamic networks requiring frequent re-
clustering, PSO might be preferable, whereas for mission-critical static deployments where ultimate
performance is key, the hybrid or GA approach is justified.
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Figure 4: Algorithmic convergence behavior showing average iterations to convergence (bars) and
execution time per round (line). PSO converges fastest, whereas GA requires longer search; the hybrid
balances both with moderate cost and improved stability.

5.6. Robustness in Heterogeneous Networks

Real-world WSNs often contain nodes with different initial energy levels. Table 8 evaluates the
protocols in a heterogeneous setting where 20% of nodes are "advanced nodes" with 3 J of initial
energy, while the rest have 2 J.

Table 8: Performance in Heterogeneous WSN (FND, N=500)

Homogeneous Network | Heterogeneous Network | %

Protocol (FND) (FND) Improvement
LEACH 487 561 +15.2%
GA-based 981 1258 +28.2%
Clustering

PSO-based 945 1193 +26.2%
Clustering

Hybrid GA-PSO 1056 1372 +29.9%

Analysis: The results in Table 8 demonstrate that metaheuristic protocols are not only more efficient
but also more adaptable. Their fitness functions, which can incorporate residual energy (F3(X)), allow
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them to leverage heterogeneity effectively by preferentially selecting advanced nodes as CHs. The
hybrid GA-PSO shows the greatest relative improvement in a heterogeneous environment, indicating
its superior capability to optimize complex, multi-constraint problems. LEACH shows some
improvement due to its probabilistic nature, but it is far less effective at strategically utilizing the extra

energy.
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(0]
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Figure 5: Comparison of FND in homogeneous versus heterogeneous WSNs (20 % advanced nodes).
Metaheuristic algorithms adapt efficiently to heterogeneity, with Hybrid GA-PSO showing the highest
+29.9 % lifetime improvement.

5.7. Summary of Comparative Discussion

The data-driven analysis leads to the following conclusions:

Overall Performance: The Hybrid GA-PSO protocol consistently delivers the best
performance across all primary metrics: network lifetime, energy efficiency, throughput, and
load balancing. It successfully merges the robust exploration of GA with the fast exploitation
of PSO.

GA vs. PSO: GA generally finds a marginally better clustering solution in terms of network
lifetime, especially as scale increases, but at a higher computational cost. PSO offers an
excellent balance of good performance and significantly faster convergence, making it suitable
for scenarios where computational resources or time are constrained.

Superiority over Classical Methods: The improvement over LEACH is not incremental but
substantial, often doubling or tripling the network lifetime. This firmly establishes
metaheuristics as essential for LS-WSNs.

Adaptability: All metaheuristics show an ability to handle network heterogeneity effectively,

with the hybrid model again showing the highest adaptability.
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This comparative analysis provides a solid foundation for understanding the operational trade-offs and
assists network designers in selecting the appropriate algorithm based on specific application
requirements and constraints. The next section will explore the challenges that remain despite these
advanced approaches.

6. Specific Outcomes, Challenges, and Future Research Directions

The comprehensive analysis of metaheuristic algorithms for energy-efficient clustering in LS-WSNs

yields distinct outcomes, while also revealing persistent challenges that pave the way for future

research.
6.1. Specific Outcomes
The investigation concretely establishes that:

1.

Quantifiable Superiority of Metaheuristics: The application of GA and PSO is not merely
an incremental improvement but a fundamental enhancement. As evidenced in Table 4, these
algorithms can extend the network lifetime (FND) by 52% to 312% compared to the LEACH
protocol, with the performance gap widening significantly as network scale increases.

The Hybrid Advantage: The Hybrid GA-PSO model is empirically validated as the most
effective approach. It consistently outperforms standalone algorithms, achieving a 5-15%
longer network lifetime and a 10-20% higher total data delivery (Table 5) by successfully
mitigating the premature convergence of PSO and the slower convergence of GA.

Effective Multi-Objective Optimization: The mathematical formulation in Eq. (10) is proven
effective. The algorithms successfully balance the competing objectives of energy
minimization and load balancing, resulting in a 67-75% reduction in the standard deviation of
residual energy compared to LEACH (Table 6), confirming highly uniform energy dissipation.
Computational-Performance Trade-off: A clear trade-off is quantified. PSO converges 34-
50% faster than GA (Table 7), making it suitable for dynamic environments. However, for
mission-critical applications where ultimate performance is paramount, the higher
computational cost of GA and the hybrid approach is justified.

Inherent Adaptability to Heterogeneity: Metaheuristic protocols demonstrate intrinsic
robustness in heterogeneous environments. By leveraging the residual energy component
(F_3(X)) in their fitness functions, they achieve a 26-30% further improvement in lifetime
(Table 8), strategically utilizing advanced nodes without protocol modification.

6.2. Persistent Challenges
Despite the promising outcomes, several formidable challenges remain:

1.

Computational Overhead for Ultra-Large-Scale WSNs: While executed on the base station,
the computational complexity of GA (O(G_max * M * N)) and PSO (O(T_max * P * N))
becomes a bottleneck for networks scaling to tens of thousands of nodes or for applications
requiring very frequent re-clustering. The execution times reported in Table 7 may become
prohibitive.
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Dynamic Topology and Mobility: The current models primarily assume a static network. The
performance of these algorithms in environments with mobile sensor nodes or mobile sinks is
not fully characterized. The convergence speed may be insufficient to track rapid topological
changes, leading to stale and inefficient clustering configurations.

Security-Aware Clustering: The optimization objectives are purely performance-centric.
Integrating security metrics, such as the trustworthiness of nodes or resilience against selective
forwarding and sinkhole attacks, into the fitness function remains an open and critical
challenge. A malicious node could artificially inflate its fitness to be selected as a CH,
disrupting the entire network.

Standardization and Benchmarking: The absence of a standard simulation framework,
common network topologies, and a unified set of traffic models makes direct, fair comparison
between proposed algorithms from different research groups difficult and often misleading.
Real-World Validation Gap: A significant chasm exists between simulation-based validation
and real-world deployment. Radio irregularity, packet loss, hardware-specific energy drains,
and communication delays are often oversimplified in simulations, leading to potentially
optimistic performance projections.

6.3. Future Research Directions
To address the aforementioned challenges and advance the field, the following future research
directions are proposed:

1.

Development of Lightweight and Distributed Metaheuristics: Future work should focus on
designing simplified, distributed versions of these algorithms that can run in a decentralized
manner on clusters of nodes, distributing the computational load and enhancing scalability.
Investigating the use of surrogate models to approximate the fitness function could also reduce
computational overhead.
Integration with Machine Learning for Dynamic Adaptation: A promising direction is the
fusion of metaheuristics with machine learning techniques, particularly Reinforcement
Learning (RL). An RL agent could learn to dynamically adjust metaheuristic parameters
(e.g., », P_m) in real-time based on network state, enabling robust performance in mobile and
highly dynamic scenarios.
Multi-Objective Optimization Including Security: Formulating a comprehensive multi-
objective function that includes a security trust score is essential. The fitness function could be
extended to F(X) = wl*F energy + w2*F balance + w3*F trust, where F_trust penalizes
clusters that include nodes with low trust ratings, thereby creating secure and energy-efficient
clusters simultaneously.
Creation of an Open-Source Benchmarking Suite: The community would benefit greatly
from an open-source software framework that provides standard network models, traffic
patterns, and performance metrics. This would ensure reproducible and comparable research
outcomes.
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5. Hardware-in-the-Loop (HIL) Testing and Testbed Deployment: Future research must
prioritize the implementation and evaluation of these algorithms on physical testbeds using
platforms like IoT-Lab or FIT. HIL simulations, where parts of the network are emulated on
real hardware, can provide a more realistic assessment of performance and computational
feasibility before full-scale deployment.

7. Conclusion

This research has systematically explored the application of Genetic Algorithms and Particle Swarm
Optimization for enhancing energy efficiency through clustering in Large-Scale Wireless Sensor
Networks. A detailed mathematical model was formulated, framing the clustering problem as a multi-
objective optimization task. The subsequent analysis demonstrated conclusively that both GA and PSO
significantly outperform classical protocols like LEACH by proactively optimizing cluster head
selection and cluster formation to minimize global energy consumption and balance network load. The
Hybrid GA-PSO model emerged as the most effective strategy, leveraging the global exploration of
GA and the local exploitation of PSO to achieve superior network lifetime, throughput, and energy
efficiency. However, challenges related to computational scalability, dynamic adaptability, and
security integration persist. Addressing these through lightweight distributed algorithms, machine
learning fusion, and robust security-aware optimization presents a vital pathway for future research.
The findings of this study solidify the role of metaheuristics as indispensable tools for realizing the
full potential of sustainable and long-lasting large-scale wireless sensor networks.
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