Qualitative Analysis and Antioxidant Potential of Nellikai Decoction

1. Anila Janet MaryM

Full time Research scholar (Reg No:22213162262028), Department of Botany and Research centre, Scott Christian College (Autonomous), Nagercoil. Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India.

2. Dr.B ChristudhasWilliams

Assistant professor Department of Botany and Research Centre, Scott Christian College (Autonomous), Nagercoil Affiliated to Manonmaniam Sundaranar university, Tirunelveli, Tamilnadu, India.

Citethispaperas: Anila Janet Mary M and Dr.B Christudhas Williams (2024). Qualitative Analysis And Antioxidant Potential Of Nellikai Decoction. Frontiers in Health Informatics, Vol. 13, No.8, 7358-7363

Abstract

Cancer is a major health problem in the world wide. The symptoms and root cause were different in each person. In the present situation the life style modification and climatic changes play key root of the disease. During ancient days the patients were treated with internal and external medicines to eliminate toxins from the body. Nellikai decoction showed the presence of different types of phytoconstituents and antioxidant has the effect on cancer and acts as good source in the initial stage of treatment.

Keywords:cancer, Nellikai decoction, Kalanchi, Phytoconstituent, Antioxidant, Cytotoxicity

Introduction

Cancer is a serious metabolic disease, causing uncontrolled division and survival of transformed cells. A host of molecules, factors and condition have been designated as underlying causes for the inception and progression of the disease (Arun Upadhyay, 2020). Cancer occurs by a series of successive mutations in genes so that these mutation change cell functions. Chemical compounds have an obvious role of forming gene mutations and cancer cells. Cancer is the second leading cause of mortality world wide, the prevalence of cancer has actually increased. In addition, smoking involves several carcinogenic chemical compounds that leads to cancer (Aizawa et al., 2016). The mortality rate as per 2021 is 60.44 per 10,000 population in India (Jena et al., 2024). Nellikai decoction and extracts are rich in bioactive compounds with significant antioxidant, anti-inflammatory and anti-diabetic properties (Po-Hsien Li, 2022). Natural products have proven to be promising anti-cancer agents due to their diverse chemical structures and bioactivity. Medicinal plants contain bioactive compounds, such as flavonoids, alkaloids, terpenoids and polyphenols which exhibit various anticancer properties. There are still challenges in the development and use of natural products as anticancer drugs, such as the need for further research in to their

mechanisms of action, possible drug interactions and optimal dosage (Andrej Jenca et al., 2024).

Materials and Methods

The Nellikai decoction is the formulated by using 1 to 25 Kalanchi (1Kalanchi=5gm.) of medicinal plant part of thippili, Nellikai, Kadukai, Kadartengay, Kiraththandu, Jadamanjil, Veppampattai, Karamjiragam, Seenthil, Kottamalli, Omam, Jathipathiri, Illavangam, Athimathuram, Chitarathi, Adathoda, Nerunjil, Mukkulikkirai, Kattuppakkal, Kattukirambu, Karkadashingi, Katukurohini, Karpurappul, Gopuramtangi, Korai, Chathakuppai and Kekkuvitai were collected from the westernGhats. The collected medicinal plant parts were sun dried for one week and then powdered by using mortar and pestle. The collected ingredients of dried and crushed medicines mixed with water was allowed to boil until it reduces to 750ml was sieved by using cotton cloth and stored in earthern pot for further scientific assessment. The Phytochemical present in the Nellikai decoction and different solvent was done according to the standard procedure of Harborne, (1973) and hydroxyl radical scavenging activity (Halliwell *et al.*, 1987).

Result and Discussion

Nellikai decoction is an internal cancer medicine. Twenty seven medicinal plants were used in different combination of kalanchi for decoction preparation *Piper longum, Terminalia chebulla, Lodociea maldivica, Nigella sativa, Carum copticum, Myristica fragrans, Cinnamom verum, Rhus succedanea, Cyperus rotandus* (1 Kalanchi), *Azadiracta indica, Tinospora cordifolia, Coriandrum sativum, Glycyrrhiza glabra, Protulaca quadrifida, Ludwigia octovalvis, Cymbogan citrates* and *Carum carvi* (2 Kalanchi), *Alpinia speciosa, Adathoda vasica, Tribulus terrestris, Momordica dioica, Veratei virdii, Andrographis echiodes* and *Antheum graveolens* (3 Kalanchi), *Amaranthus gangeticus* (4 Kalanchi), *Nardostachys grandifolia* (5 Kalanchi) and *Emblica officinalis* (25 Kalanchi) are the ingredients used for the preparation of Nellikai decoction (Table - 1).

Table 1: Composition of Nellikai Decoction

Sl. No	Botanical Name	Quantity	
1.	Piper longum	1 Kalanchi	
2.	Emblica officinalis	25 Kalanchi	
3.	Terminalia chebulla	1 Kalanchi	
4.	Lodociea maldivica	1 Kalanchi	
5.	Amaranthus gangeticus	4 Kalanchi	
6.	Nardostachys grandifolia	5 Kalanchi	
7.	Azadirachta indica	2 Kalanchi	
8.	Nigella sativa	1 Kalanchi	
9.	Tinospora cordifolia	2 Kalanchi	
10.	Coriandrum sativum	2 Kalanchi	
11.	Carum copticum	1 Kalanchi	
12.	Myristica fragrans	1 Kalanchi	
13.	Cinnamom verum	1 Kalanchi	
14.	Glycyrrhiza glabra	2 Kalanchi	
15.	Alpinia speciosa	3 Kalanchi	
16.	Adathoda vasica	3 Kalanchi	
17.	Tribulus terrestris	3 Kalanchi	
18.	Protulaca quadrifida	2 Kalanchi	
19.	Momordica dioica	3 Kalanchi	
20.	Ludwigia octovalvis	2 Kalanchi	
21.	Rhus succedanea	1 Kalanchi	
22.	Veratei viridi	3 Kalanchi	
23.	Cymbopogan citrates	2 Kalanchi	
24.	Andrographis echioides	3 Kalanchi	
25.	Cyperus rotundus	1 Kalanchi	
26.	Anethum graveolens	3 Kalanchi	
27.	Carum carvi	2 Kalanchi	

Qualitative analysis

The earlier studies on the phytochemical analysis of Siddha Paavu decoction showed the presence of alkaloid, flavonoid, phenol, terpenoid, reducing sugar, tannin, steroid and glycoside (Suja and Williams, 2015). In the present study, qualitative analysis of Nellikai decoction of showed the presence of flavonoid, terpenoid, alkaloid, phenol, tannin, steroid, saponin, reducing sugar and amino acid in all solvent extracts except glycosides in control. The aqueous extract was present in flavonoid, phenol, saponin, steroid and amino acid. The ethanol extract was present in flavonoid, terpenoid and saponin. The chloroform extract is present in flavonoid, terpenoid, saponin, reducing sugar and glycosides. The presence of methanol extracts in flavonoid, phenol, alkaloid, saponin and reducing sugar. The acetone extract was present in flavonoid, phenol, tannin and amino acid. In general qualitative analysis of Nellikai decoction showed the presence of flavonoid is present in all the tested solvent extracts in control (Table - 2).

Table 2: Qualitative analysis of Nellikai decoction and solvent extracts

Phytoconstituents	Solvent Extracts					
1 ny toconstituents	Control	Aqueous	Ethanol	Chloroform	Methanol	Acetone
Flavonoid	+	+	+	+	+	+
Terpenoid	+	_	+	+	_	_
Phenol	+	+	_	_	+	+
Alkaloid	+	_	_	_	+	_
Saponin	+	+	+	+	+	_
Tannin	+	-	_	_	_	+
Steroid	+	+	-	_	_	_
Reducing sugar	+	_	_	+	+	_
Amino acid	+	+	_	_	_	+
Glycosides				+	_	_

2024;Vol-13:Issue8

OpenAccess

AntioxidantActivity

Nellikai decoction and extracts are rich in bio active compounds with significant antioxidant, anti-inflammatory and anti-diabetic properties (Po-Hsien et al.,2022). The earlier studies on hydroxyl radical scavenging of Paavu Choornam revealed minimum inhibition of $54.30\pm0.00\%$ to $83.02\pm0.01\%$ (Mary suja , 2016). In the present study Hydroxyl radical scavenging activity showed a minimum scavavenging of 54.76 ± 0.00 (25µl) to $69.01\pm0.01\%$ (100µl), Aqueous extract of 31.11 ± 0.00 (25µl) to $39.62\pm0.00\%$ (100µl), Ethanol extract of $26.23\pm0.01\%$ (25µl) to $35.14\pm0.00\%$ (100µl), Chloroform extract of $16.35\pm0.01\%$ (25µl) to $9.58\pm0.00\%$ (100µl) and standard Vitamin-C extract varied from $61.13\pm0.00\%$ (25µl) to $74.79\pm0.01\%$ (100µl) (Table -3).

Table 3: Hydroxyl radical scavenging activity

Conc. Of extracts	Control	Aqueous	Ethanol	Chloroform	Acetone	Vitamin-c (standard)
25μ1	54.76±0.00	31.11±0.00	26.23±0.01	16.35±0.01	5.35±0.01	61.13±0.00
50µl	58.13±0.01	35.23±0.02	29.78±0.01	19.12±0.02	7.66±0.01	65.40±0.00
75µl	63.13±0.02	38.19±0.00	31.65±0.02	23.48±0.04	8.42±0.01	68.25±0.01
100μ1	69.01±0.01	39.62±0.00	35.14±0.00	27.54±0.00	9.58±0.00	74.79±0.01

Cytotoxicity

The aqueous (decoction) extract of Nellikai (*Phyllanthus emblica*) are generally considered safe for normal use and exhibit cytoprotective effects on healthy cells. However, at high concentrations, these same extracts can be cytotoxic (Pro-apototic) to various cancer cell lines. Other studies show that *Phyllanthus emblica* extracts protect normal fibroblast cells (L929 cell lines) and neural Pc12 cells against damage induced by oxidative stress and certain toxins (Tiejun Zhao *et al.*, 2015), (Sairam *et al.*, 2002). In the present study the effect of HeLa with sample showed a concentration dependent effect of Nellikai decoction. The concentration increased from 6.25μg/ml to 100μg/ml and the percentage of inhibition increased from 6.25μg/ml of 93.83%, 12.5μg of 87.5%, .25μg of 79.50%, 50μg of 66.17% and 100μg of 32.59%. At the concentration 100μg there was a decrease in cell viability of 32.59% (Table 3). In general, the total cell count of HeLa cells decreasing in the concentration of Nellikai decoction indicating an inhibitory effect on the cancer cell lines. The IC50 concentration of Nellikai decoction was found to be 73.19μg/ml (Table- 4).

Table 4: Effect on HeLa with Nellikai decoction

MTT assay-Nellikai decoction with HeLa				
Culture condition	% Cell viability	IC50 conc(μg/ml)		
Untreated	100			
Std.control	49.15	-		
6.25µg	93.83			
12.5µg	87.51	73.19		
25μg	79.50			
50μg	66.17			
100μg	32.59			

Conclusion

The presence of different phytochemicals, antioxidant potential and anticancer activity of Nellikai decoction showed the pharmacological activities of the tested medicine and further assessment on gene expression and mitochondrial responsible need to be done to justify the better effect of the herbal medicine prescribed to cure cancer.

References

Aizawa,Liu,Tang(2016),Tobacco carcinogen induces both lung cancer and non-alcoholic steatohepatitis and hepatocellular carcinomas inferrets which can be attenuated by lycopene supplementation,International Journal of cancer,139:1171-1181.

Andrej enca, Davidmills, Hadis Ghasemi, Elhamsaberian, Meysam Ebrahimifar (2024), Herbal Therapies for cancer treatment: A review of Phytotherapeutic Efficacy Biologics, 18:229-255.

ArunUpadhyay (2020), Cancer: An unknown territory rethinking before going a head, Genes and Disease, 18(5):655-661. doi:10.1016/j.gendis.2020.09.002.

Cotelle, Bernier, Catteau, Pommery, Wallet, (1996), Antioxidant properties of huydroxyl flavones, Rree Radical Biology and Medicine, 20: 35-43.

Halliwell B,Gutteridge JMC and Cross CE,1987,Free radicals, antioxidants and human diseases,Journal of Laboratory and clinical Medicines,119:598-620.

Harborne J`B,(1973),Phytochemical methods,A Guide to modern Techniques of plant analysis,Champan and Health Ltd.,London,49-188.

Jena, Bijaya, Prakashini (2024), Estimation of burden of cancer incidence and mortality in India: based or global burden of disease study 1990-2021, BMC cancer journal, 1278.

Mary Suja and Christudhas Williams (2015). Phytochemical screening and antioxidant potential of Paavu Decoction of Kaniyakumari District, India. European Journal of Pharmaceutical and Medical Research, 2(5): 723-731.

Mary Suja, (2016) Evaluation of Phyto Chemical Screening antioxidant potential and antoproliferative activity of cheruthikonam Traditional Siddha Cancer Medicines of Kanyakumari District India, Ph.D, Dissertation submitted in MS University, Tirunelveli.

NayanaBorah, Aviksha (2022): A Review of Nutritional and medicinal properties, International Journal of Current Microbiology and Applied Sciences, 11(01):375-389.

Po-HsienLi, Chien-Wen Wang, WenChienLu, Tuzz-Ying song, Chiun Wang (2022), Antioxidants, Anti inflammatory Activities and Neuroprotective behaviours of Phyllanthusemblica L. Fruit extracts, Journal of Agriculture, 12(5), 588.

Sai Ram (2002) Cytoprotective and Immuno modulating properties of Amla (Emblica Officinalis) on lymphocytes an in-vitro study, Journal of Ethnopharmacol, 81 (1): 5-10.

Tiejun Zhao, Qiang sun, Maud marques, Michael Witcher (2015) Anticancer properties of Phyllanthus emblica (Indian Goosberry) oxidative Medicine and cellular longevity: 950890. doi:10.1155/950890.