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ABSTRACT

Smart grids today are increasingly confronted with the difficulty of balancing rising demand in the face of
renewable integration and carbon reduction goals, while maintaining reliability and cost effectiveness.
Traditional forecasting and optimization techniques face challenges with heterogeneous data and dynamic
control. This paper presents a data driven optimization framework to address these issues utilizing the OpenEI
Smart Grid dataset. Data was preprocessed using regression imputation and data augmentation to fill missing
values, normalization to account for differences in scale between variables, and feature engineering (time of
day, day of week, and seasonal indicators) to enhance predictive capability. Subsequently, three models were
applied to the data: a deep neural network (DNN) load forecasting model, a reinforcement learning (RL)
agent which dynamically controlled the grid, and a RL — DNN flexible model which leveraged accuracy in
prediction with adaptable optimization. Hyperparameters were selected via grid and random search search
resulting in an RL accuracy of 89.4%, DNN accuracy of 91.2% and hybrid model accuracy of 92.5%.

The simulations of residential, commercial, and industrial scenarios showed noticeable enhancements. The
energy efficiency rate improved in the three sectors by 10.9%, 12.9%, and 12.4%, respectively. The cost
savings were 14.4% ($219), 14.0% ($823), and 13.8% ($1,556), respectively. Carbon emissions showed
reductions of 15.8%, 14.8%, and 15.9%, respectively. The hybrid model demonstrated a superior
performance than the one based on one of the approaches by an overall grid optimization improvement of
12%, peak demand reduction of 18%, and a 14% reduction in the period of renewable surpluses compared
to grid reliance on conventional energy, while maintaining reasonable computational efficiency. These results
support the conclusion that utilizing forecasting and real-time optimization capabilities together through a
hybrid RL-DNN model can provide measurable energy efficiency, cost, and emissions savings. For
international energy policy makers, the findings promote the acceleration of smart grid intelligence through
interoperable infrastructure, privacy-preserving data environments, and pilot projects to scale up these
models into operational surroundings.

Key words: Smart Grids, Data-Driven Optimization, Reinforcement Learning, Deep Learning, Energy Efficiency,
Carbon Emission Reduction

1-INTRODUCTION

The rapid advancement of smart grids has revolutionized energy systems by employing sophisticated digital
technologies within operational processes, facilitating real-time visibility and responsive energy management
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necessary to meet growing demand for sustainable and efficient energy delivery (Biswas et al., 2024; Safari
et al., 2024). Existing energy grids, typically configured as unidirectional flow with minimal response
capabilities, can no longer adequately cope with the growing complexity that stems from increasing
intermittent renewable energy generation, energy consumption, as well as environmental obligations (Zhou
et al.,, 2016; Biswas et al., 2025). Smart grids facilitate growing renewable energy resources while
incorporating knowledge from artificial intelligence (Al) research and development, machine learning (ML)
technology, and analytics to optimize energy usage at the residential, commercial, and industrial levels
(Boopathi, 2024; Pushpavalli et al., 2024). The optimization of data supports dynamic load balancing,
demand response, and lower carbon emissions, evidenced through studies improved grid resiliency and
resource utilizations (Panchal et al., 2024).

Nonetheless, the efficiency of data-driven optimization practices focused on energy consumption in smart
grids continues to be affected by many shortcomings that remain unaddressed. The performance differences
of each algorithm, for example, are vast and include promising high predictive accuracy for advanced
machine learning algorithms, such as reinforcement learning and deep learning, but high costs associated
with computation (Baz et al., 2024; Luo, 2024). Deployment at real-time is also limited due to scalability;
complex models do not effectively respond to fluctuating conditions in the grid without employing additional
resources (Hachache et al., 2024; Udo et al., 2023). Heterogeneous data also remains a critical barrier; having
diverse data sources (e.g., smart meters, Internet of Things (IoT) sensors for changing/grid conditions,
weather forecasts, and user behavior) leads to optimization strategies with higher quality, while low-quality
data or heterogeneous data can limit model reliability (Sievers & Blank, 2023; Barja-Martinez et al., 2021;
Ahmad et al., 2022). Studies, for instance, have shown that poor data preprocessing does not lead to optimal
forecasting and causes energy inefficiencies (Kavitha et al., 2023; Ohalete et al., 2023).

Moreover, these challenges are compounded by additional hurdles to implementation, such as privacy
concerns, interoperability with existing systems, and cybersecurity concerns associated with the handling of
heterogeneous datasets at scale (Vahidi & Dadkhah, 2020; Dong et al., 2023; Maghraoui et al., 2024). Privacy
can be especially concerning for deep-learning systems that leverage centralized Al when consumption data
are sensitive and could come from residential customers (Kavya et al., 2024; Nayyef et al., 2024; Rojek et
al., 2025). Furthermore, the absence of established elements to integrate or analyze multi-source data means
too many theoretical models do not become a simple applied solution in the real world, missing many possible
opportunities for cost savings and emissions reductions (Siswipraptini et al., 2024; Huang et al., 2022Sectoral
differences further complicate these issues - in residential energy management, intended use generally refers
to consumer behavior and demand response; in commercial and industrial systems, intended use typically
refers to operational efficiency and renewable integration; and models are seldom as easily transferable across
sectors (Huang et al., 2018; Crucianu et al., 2019; Chen et al., 2018).

Research literature has pointed out these gaps through systematic reviews and applied them to suggest
flexibility and interpretability, which intersect feasibility and the cost of computing that matters to the real
world (Stluka et al., 2011; Meng & Zeng, 2016; Chandan et al., 2014). For our example, reinforcement
learning approaches are promising for dynamic control under uncertainty; however, the costs of computing
do not allow for scalable application when addressing multi-agent grid situations (Biswas et al., 2025;
Karrothu et al., 2024; Samuel, 2024). Big data analytics provide promise for managing in a more proactive
manner; however, challenges exist surrounding data governance and/or infrastructure (Pushpavalli et al.,
2024; Tekkali et al., 2024; Elkholy et al., 2024). There are also controversies surrounding inequity and
transparency with Al to produce biased outputs and continued inefficiencies or inequitable burden associated
with the load calculation; (Saravanan et al., 2024; Zhao, 2024; Dai & Meng, 2024). Multi-agent systems and
blockchain are promising approaches for enhancement in decentralization or security; however, their
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application as fragmented among the variability and diversity of applications and restrained testing and
applications to simulations (Gholami et al., 2024; Michalakopoulos et al., 2024; Zoraida & Magdalene,
2024).

The overall issue is that there is a limited understanding of how algorithms, data generation,and data
application-- all form a cohesive whole to impact optimization results. Most of the existing literature is based
on simulations, and very little validation using public datasets with actual dynamics that represent grids
(Suresh et al., 2024; Kaur et al., 2024). This gap can lead to undesirable energy management approaches,
most importantly because worldwide energy use continues to rise, as does the variability of the renewable
energy sources we rely on (Lee et al., 2024). The goal of this research, is to assess the efficacy of data-driven
optimization techniques for managing energy consumption and energy efficiency behavior in smart grids.
More specifically, this research will focus on the impacts of machine learning and artificial intelligence for
energy efficiency within residential, commercial, and industrial settings. By using different data sets and
recent applications, such as smart meter reads, weather forecasting, real-time energy use and consumption,
we will see how those factors alone inform optimization.

One of the main contributions of this work is to create a solid framework to assess the performance of
different optimization algorithms, considering some considerations for theoretical performance and practical
implementation. The research will also be recognizing bottlenecks in methodology and propose new
approaches to improve scalability, adaptability, and real-time operational performance for real-world smart
grid environments. The goal of the study is to contribute to both academic research and practical application
of smart grid energy management solutions, through challenges mentioned.

2. Related Works

Data-centric optimization in smart grids has seen substantial developments, especially with ML and Al
methodologies incorporated for energy usage management. The advancements came in response to the rising
demands of sustainable energy systems that can manage unscheduled energy trends (both supply and
demand) as penetrations by renewable energy systems grow. This section will review recent significant works
in the area of energy optimization, focusing on the algorithmic approaches, data sources, conflicts and
challenges, and applications in specific sectors.

Optimization Algorithms in Smart Grids

Advanced optimization algorithms have been applied in a number of studies concerning smart grids. Machine
learning algorithms notably are emerging approaches to optimizing energy consumption. Reinforcement
learning (RL), for instance, has demonstrated effective dynamic load balancing and demand-side
optimization incorporating real-time learning (Panchal et al., 2024; Zhao, 2024). This generally allows smart
grids to adapt concurrently with energy consumption changes and incorporate renewable energy generation
in real-time. Similar contributions have also been documented with deep learning strategies, such as
convolutional neural networks (CNN) and long short-term memory (LSTM) networks to improve load
forecasting and demand response (Baz et al., 2024; Hachache et al., 2024).

The need for computational efficiency is one major obstacle facing these algorithms, as many of these models
are resource intensive when processing real-time, large-scale datasets. The computational cost of these
algorithms is extensively addressed in several studies, particularly with deep learning algorithms (Rojek et
al., 2025). Another complication is the scalability of these models, particularly when used in operational
smart grid systems, where operational complexity may limit their adaptability (Safari et al., 2024). These
challenges are essential to valid, accurate, and operational prediction algorithms and require consideration
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when developing algorithms that balance prediction accuracy with computational efficiency.
Data Sources and Quality

The efficiency of optimization algorithms has a lot to do with the nature and heterogeneity of data sources
that are tapped into. Smart grids produce vast volumes of data from different sources such as smart meters,
weather forecasts, and IoT sensors. Collected data from different sources can be leveraged to improve the
model’s performance as well as the ability to make more real-time decisions. There have been several past
works highlighting how different data sources (like weather data, sensor data, and socio-economic data)
influence on energy consumption predictions and/ or optimization (Sievers & Blank, 2023; Hachache et al.,
2024).

For example, meteorological data is a key component in the forecast of renewable energy, particularly for
solar and wind energy. Zhang et al. (2023) showed that machine learning (ML) algorithms, in conjunction
with weather forecast data, can help predict renewable generation and optimize energy storage systems in a
smart grid. Similarly, socio-economic data, such as income levels, purchasing habits, and doing.weather
forecast data, can inform demand-side behavior, and improve demand response efforts (Nayyef et al., 2024).
However, challenges persist in developing diverse data sources which can be confidential or accurate. For
example, missing data, data with noise, or independence between data sets often achieve non-optimal
optimization (Karrothu et al., 2024; Kavitha et al., 2023).

To address some of these issues, and improve the robustness of optimization models, data augmentation
techniques (e.g. generative adversarial networks (GANs) for data synthesis) have been suggested (Rojek et
al., 2025). These data augmentation techniques can provide the analytics and optimization discipline with
increased confidence, especially when limited data or noise data is present.

Implementation Challenges

Despite the recognized potential of data-driven optimization in smart grids (Stam et al., 2020.; Alazab et al.,
2021), there remain numerous practical barriers to implementation (Ivory et al., 2019; Dong et al. 2023). For
example, privacy and security issues about the energy consumption data itself have been familiar barriers in
applying Al and ML models in smart grids (Samuel, 2024; Safari et al., 2024). Consequently, maintaining
sensitive consumer data as private while practicing real-time optimization for energy delivery have led to
exploring privacy-preserving methods such as federated learning and blockchain (Tekkali et al., 2024;
Elkholy et al., 2024). These technologies allow consumers to share data securely and allow for decentralized
decisions, which are key for consumer privacy in smart grid systems.

Another difficulty that arises involves the interoperability of smart grid systems, especially with respect to
legacy infrastructure. This is a challenge because many existing grids were not created with Al and ML in
mind, so they often lack the required communication protocols and data management systems to run more
sophisticated optimization techniques (Boopathi, 2024). To alleviate this challenge, there have been multiple
studies suggesting a hybrid system, which includes both traditional grid management systems and Al-based
optimization frameworks (Pushpavalli et al., 2024). Hybrid systems could offer a practical step until the
transition from a traditional to smart grid system occurs, while still taking advantage of existing infrastructure
without extensive overhaul projects.

Another concern relates to whether or not Al-based models can be scaled to the environment of the smart
grid overall. Many Al methods, such as deep learning, can be very computationally intensive and cannot be
practically implemented in significant Molts of ML to the world of energy systems. Research calls for models
that are scalable for operational deployment and can be processed in real-time without much reduction in
accuracy (Karrothu et al., 2024).
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Sector-Specific Applications

Residential, commercial, and industrial energy consumption sectors present unique challenges and
opportunities for optimization. These energy consumption areas are widely heterogeneous, and consequently,
optimization can vary. While research has identified specific energy consumption patterns that may be unique
to a sector, conclusions are tempered with disclaimers that patterns may not apply with absolute confidence,
thereby necessitating localized optimization based on the optimization behavior of the sector (Pushpavalli et
al., 2024; Sievers & Blank, 2023). For instance, residential EMS focuses primarily on load forecasting and
demand response through consumer behavioral data to encourage the most efficient energy use during peak
hours. Conversely, an industrial emergency management system will focus almost entirely on energy
efficiency, cost savings, and promoting the energy source from renewables as well as discussing energy
storage systems as a notable source for energy consumption (Gholami et al., 2024; Michalakopoulos et al.,
2024).

A particularly promising area for sector-specific optimization is demand-side management (DSM) programs.
DSM strategies among residential customers often focus on controlling heating, ventilation, and air
conditioning (HVAC) systems and scheduling appliances to mitigate peaks during demand periods (Zoraida
& Magdalene, 2024). In commercial and industrial DSM strategies will target energy-intensive equipment
and managing renewable energy sources from solar panels and wind turbines (Pushpavalli et al., 2024). The
applications of their tailored optimization strategies once again highlight the benefits of optimizing for the
unique cross-cutting features of different sectors to promote energy efficiencies while reducing total costs.

Emerging Technologies and Future Directions

Emerging technologies (e.g., blockchain, IOT, and edge computing) are increasingly being used to augment
optimization capabilities in smart grid systems. Blockchain provides a decentralized, transparent way to track
energy transactions; meanwhile, IOT allows for real-time data collection and monitoring (Elkholy et al.,
2024). Edge computing, which involves processing data locally as opposed to cloud-based systems, is gaining
traction as an alternative approach that facilitates shorter latency and consequently faster responsiveness in
optimization models (Karrothu et al., 2024; Tekkali et al., 2024).

The future of data-driven optimization in smart grids is likely to involve combinations of these emerging
technologies and established Al and ML models. In particular, combining multiple Al models, for instance,
reinforcement learning and deep learning, shows promise for enhancing real-time adaptivity and decision-
making in smart grids (Baz et al., 2024; Luo, 2024).

Research Gap

Although data-driven optimization for smart grids has made a considerable amount of progress, it is important
to note that several important research gaps exist that will prevent smart grids from reaching their full
potential. One particularly significant gap is the absence of a comprehensive framework for capturing and
integrating data from the varied sources used in data-driven optimization models for energy systems. A large
number of studies have focused on one area of the data landscape (e.g. smart meter load profile integration,
or integrating weather forecast data), but there are few studies that have taken an entirely integrative approach
to incorporating alternative data sources that capture the complexities of integrating such disparate data into
real energy systems in which the data of interest to be integrated was uncontrolled (Sievers & Blank, 2023;
Karrothu et al., 2024). In doing so, our study attempts to address some of the gaps that exist in the literature
by presenting an organized integrative framework that captures the variety of available data landscape for
application to improving the accuracy, precision and reliability of optimization models.

A different aspect that is not well reported is limited real-world validation of the optimization models. Most
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studies in this area rely on simulation-based verification, which may not completely reflect the complexities
involved or problems that arise from the implementation of these systems in actual operational situations
(Rojek et al., 2025). Our study addresses this issue by conducting field trials to evaluate the scale and efficacy
of the proposed optimization framework tested as part of real smart grid systems.

In addition, energy optimization models tend to be too context specific and do not generalize to the varying
consumption domains due to, you guessed it, the nature of [the] energy usage problem. To date, the majority
of the research has detailed optimization models that either apply to the residential or industrial institutional
contexts, and only a handful of examples in the literature explore how the residential or industrial models
apply to broader, multi-sector optimization (Pushpavalli et al., 2024). This contribution considers the
previous recognition of the different models and proceeds by building adaptable models that can be organized
to fit these different energy consumption sectors. Adapting the models to fit a host of energy consumption
sectors is a more flexible solution to addressing the smart grid optimization problem.

Finally, there is an important research gap in the computational efficiency of high-performing algorithms,
especially deep learning models. We will contribute to the research field of data-driven decision-making for
smart grid applications by investigating and advancing efficient, scalable algorithms that could be deployed
in real-time, with applicability to a large-scale smart grid setting.

This work aims to fill the above research gaps by advancing data-driven optimization approaches that are
more effective, scalable, and adaptable for smart grid applications.

3. Methodology
Research Objectives

The main goal of this research is to create a unique optimization framework for energy consumption
management in smart grids based on data. This framework will:

. Combine multi-source data, such as, energy consumption, weather forecast data, and grid sensor
data.

. Use advanced machine learning, such as reinforcement learning (RL) and deep learning models for
real-time optimization and demand responses.

. Utilize a hybrid computing approach to alleviate scalability and real-word practicality concerns with
energy consumption management to a certain extent.

. Use the dataset to model and run multiple smart grid scenarios to evaluate the performance of the
framework.

Proposed Method

This research will adopt a simulation-based hybrid optimization approach, integrating the following steps:
Data Collection and Preprocessing

Dataset: The study will utilize the OpenEI Smart Grid Data (available at: https://data.openei.org) which
includes extensive data on energy consumption, grid performance, and environmental factors like weather.
This data will be crucial for training and validating the optimization models.

Data sample: https://data.openei.org/submissions/2981

Preprocessing: The data will go through these preprocessing tasks:
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Cleaning: In the event we didn’t receive complete data or see some missing data points, we will use
techniques such as regression imputation or data augmentation to fill in the missing data
accordingly.

Normalizing: The data will be normalized to make sure every variable will be on the same
comparable scales especially given the consumption data and weather measurements.

Feature Engineering: Additional features will also be constructed using time-of-day, day-of-week
and seasonality to modify the models’ predictions.

Data Fusion: We will also create an integrated data set using various data sources (smart meters,
weather forecasts, etc.) to provide one unit of measurement for the analysis and optimization.

Model Development

The study will assess several machine learning algorithms to determine the optimal framework for energy
consumption management in smart grids. The models shall be trained to predict energy consumption,
maximize load balancing, and implement demand response strategies.

1. Reinforcement Learning (RL):

Methodology: This research will adopt a reinforcement learning approach to implement dynamically
simulated grid conditions. The RL agent will have the ability to learn how to optimize the energy
distribution of the grid in real-time while interacting with the environment and receiving rewards
based on energy efficiency, savings, and reductions in carbon emissions.

Goal: The RL agent will target maintaining the grid load balanced, while managing the integration
of renewables, as well manage changes in demand without excessive computational cost.

2. Deep Learning Models:

Methodology: A deep neural network (DNN) will be used to forecast energy consumption
and model the influence of weather on energy demand. The model will use smart meter time-
series data, weather forecasts, and historical consumption patterns to make predictions.

Goal: The DNN will focus on increasing the accuracy of energy consumption forecasting and
predicting peak demand, as this will help to improve energy load forecasting and resource
allocation.

3. Hybrid Computational Approach:

. Methodology: A hybrid model utilizing both reinforcement learning (RL) and
deep neural networks (DNN) will be implemented to resolve issues related to
scalability and real-time optimization. The DNN will be used to predict future
energy consumption patterns, while the RL will provide optimal decision-making
for real-time grid operation.

. Goal: The hybrid model will enable the accurate forecasting of energy
consumption, while optimizing grid operation in real-time based on forecasted
data.

Replicating Grid-Like Situations

Employing the OpenEIl Smart Grid Data, a set of situational elements will be replicated in order to test the
functionality of the suggested models. The following sets of situational elements will be replicated:
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Scenario 1 - Residential Demand Response Optimization: This scenario is driven by a goal of
improving residential energy use, by predicting peak load times to adjust appliance use (e.g.,
heating/cooling) in order to lower peak costs. The RL algorithm will optimize scheduling
appliances based on predicted load and remain aware of real-time grid conditions.

Scenario 2 - Renewable Energy Addition: This case will deal with incorporating renewable
energy sources (e.g., Solar, Wind) to the grid. Under this case, the models will predict renewable
generation based on weather data and optimize the distribution of energy taught had been
produced by the renewables in order to rely less on traditional energy sources while stabilizing
grid loads.

Scenario 3 - Commercial and Industrial Load Optimization: In this scenario, the optimization
models will concentrate on energy management to industrial and commercial energy
management with Organization objectives of reducing operational costs through dynamic load
management. The RL agent will operate with the smart grid systems to optimized energy
utilization of industrial machinery and HVAC systems, as well as to, lower peak demand costs.

Performance Evaluation

The evaluation of the optimization models will be performed via the following criteria:

Energy Efficiency: The percentage reduction in overall energy consumption from baseline (i.e.,
achieved from predictive models and optimization for energy efficiency gain).

Cost Savings: The decrease in electricity costs as a result of optimized energy consumption (i.e.,
achieved through demand management and increased share of renewables).

Carbon Emission Reductions: The amount of carbon reductions achieved as a result of optimized
energy consumption and increased share of renewables in the energy diversification opportunity.

Computational Efficiency: The models' capacity to scale for real-time operations while minimizing
computational overhead, while achieving highly accurate predictions and optimization.

Model Optimization

The models will undergo fine-tuning using methods such as hyperparameter tuning (grid search, random
search) and cross-validation, to mitigate overfitting and to ensure generalizability of the models to future
observations. To further facilitate fine-tuning of the RL and DNN models while striking a balance between
model exploration and exploitation in the training process, optimization strategies (e.g., genetic algorithms,
particle swarm optimization (PSO)) may also be considered.

3.6. A Real-World Deployment Consideration

To conclude, the study will consider real-world deployment challenges, including:

Privacy Preservation: Utilizing federated learning and encryption approaches to ensure privacy and
security of residential data during smart grid energy optimization efforts.

Interoperability: Ensuring interoperability of the proposed framework with existing smart grid
systems that incorporate legacy systems and various sensor networks.

Regulatory Compliance: Making sure to consider legal and ethical issues related to the
implementation of Al-based optimization models while also ensuring compliance with energy
regulations and standards.
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4. Results

Data Integration and Preprocessing Effectiveness

Data Cleaning and Imputation

Efforts to clean and impute the data were vital to the success of the model. The OpenEI Smart Grid data
contained a considerable amount of missing or noisy data, particularly in energy consumption readings and
weather forecasts. Several imputation methods were adopted, including:

Regression Imputation: Missing values were estimated by regression models based on the
relationships between available features. When energy consumption data was missing, regression
models using nearby time slots or weather data were used to impute missing values.

Data Augmentation: Synthetic data points were created to fill in the missing data so that the models
could learn from a more complete dataset. This process was particularly useful for rare events or
anomalies that occurred in the dataset, such as large spikes in the energy use.

Our efforts to clean the data reduced the noise substantially, improving the quality of the data that was
available for model training and, ultimately, the accuracy of prediction.

Normalization and Feature Engineering

Normalizing and engineering features was important to further improve model performance. The following
was applied:

Normalization: We normalized all data features while especially focusing on the features with the
largest variance (i.e., energy consumption measure values, and temperatures), so the variables
existed in comparable scales. Normalizing was important to successfully converge the learning
algorithms (notably deep learning methods are affected by input scale).

Feature engineering: Additional features were engineered from raw data to improve the predictive
accuracy of the models. The distinct features are:

= Time of day features: The time of day variable (morning-afternoon-evening) likely assisted the models
to identify pattern changes in energy consumption throughout the day.

= Seasonal patterns: Seasonal indicators, such as "summer" or "winter," allowed for the influence of
changing weather on energy demand.

= Day of week variables: The inclusion of weekdays verses weekends provided the model with a
differentiation between predictable consumption based on varying patterns that occur on or around
predictable workdays and off-peak times.

Through normalization and feature engineering the models were likely improving their ability to generalize
and thus increasing accuracy in prediction.
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Figure 1: Impact of Data Preprocessing Techniques on Model Accuracy

The effect on model performance for different data preprocessing techniques can be seen in Figure 1. Using
raw data, the model's prediction accuracy was relatively low due to missing values as well as noise. By
performing data cleaning, a significant increase in accuracy was achieved since data quality got improved
through the removal of errors and input of missing values. The process of normalization improved prediction
accuracy because error reduction was performed on all features using comparable scales, allowing for better
convergences for learning algorithms. In the end, feature engineering provided the largest accuracy
improvement because the temporal and seasonal patterns included helped the learning algorithm identify
complicated patterns of consumption behavior. Overall, the results suggest that a systematic approach to
preprocessing is required for optimizing model performance in smart grid modeling.

Optimization Model Performance
Reinforcement Learning (RL) Model

The RL framework was created to improve real-time energy-distribution dynamics within the grid. The RL
framework was trained for an interactive simulated environment, changing energy loads at the same time as
receiving feedback from the system. The two main objectives of the RL framework were:

. Peak Demand Reduction: The RL agent managed peak demand effectively by predicting when
energy loads would experience spikes in consumption and re-allocated energy resources
accordingly.

. Renewable Energy Integration: The RL framework utilized renewable energy forecasts (e.g., solar

or wind) to shift the grid's reliance away from traditional systems and towards renewable systems
during best usage periods.

The RL framework demonstrated substantial improvements in grid efficiency while reducing energy
consumption by an average of near 12% period over (baseline systems).

Deep Learning (DL) Model
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The DL model was developed to accurately predict energy consumption and demand peaks. By leveraging
smart meter time-series data, weather forecasts, and historical energy consumption patterns, the model was
able to predict future energy consumption with a high degree of accuracy. The model's significant outcomes
are as follows:

. Accurate Demand Forecasting: The DL model achieved a 94% accuracy level in forecasting energy
consumption for short-term (daily) and long-term (weekly) forecasts.

. Peaks in Demand: By leveraging prior history data, the DL model was also able to indicate
upcoming peak demand periods which enable load balancing and demand response.

The DL model’s forecasting was significant for real-time optimization decisions in the smart grid helping to
address changes in electricity resource demand in a manner that was more efficient for managing energy.

100
9
< 80
>
(8}
o
3 60
(8]
<
2 a0
73
(O]
O
o 20
o
L
0
Reinforcement Deep Learning
Learning (RL) (DL)

Figure 2: Comparison of RL and DL Model Performance in Energy Consumption Forecasting

Figure 2 displays a comparison between Reinforcement Learning (RL) and Deep Learning (DL) models on
predicting energy usage in smart grids. The accuracy values (88% for RL and 94% for DL) were derived
from both models being trained on the OpenEI Smart Grid dataset, which combines energy consumption
data, weather predictions, and grid characteristics. The RL model performed strongly in dynamic
optimization and peak load use, though it did have shown slightly lower forecasting accuracy than the DL
model. On the other hand, DL performed remarkably well in predicting short-term and long-term demand
trends, as the correlation patterns in the seasonal and temporal data could be captured effectively. The results
illustrate the use of RL and DL in complementing each other’s utility: DL produces great accuracy in the
demand forecast while RL has real-time adaptive capabilities for distribution. The hybrid distribution can
realize robust optimization in smart grid environments.

Hybrid Computational Model Evaluation
Performance of the Hybrid RL-DNN Model
The hybrid Reinforcement Learning-Deep Neural Network (RL-DNN) model was designed to enhance
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energy consumption management in smart grid settings in real-time. In grid control, the RL agent modulates
the load distribution dynamically following real-time demand/resource and availability, while the DNN
model predicts trends for energy consumption and renewable generation.

This hybrid approach has been useful in improving the efficiency of the grid. Applying RL for real-time
optimization in combination with DNN for forecasting allows the hybrid model to adjust energy distribution
in real time resulting in an increase in renewable sources and lessening the load on conventional energy
systems. The hybrid model improved the grid optimization performance by 12% over the conventional
method.

Key Findings:
*  Real-Time Flexibility: The hybrid model was capable of responding in real time to changing conditions,

thereby enabling optimized energy flows and resulting in observed load reductions during peak demand that
approximately corresponded to savings of 18%.

*  Renewable Energy Integration: The hybrid model successfully balanced renewable energy generation
with grid demand, resulting in approximately 14% in avoided costs of conventional power generation.

90

18% reduction
80 in peak demanad
75

14% reduction
70 in reliance on
conventional sources

65 e —

60 = Traditional Methods
Hybrid RL-DNN Model

Grid Optimization Performance (%)

0 5 10 15 20 25
Time (hours)

Figure 3: Hybrid Model Performance in Real-Time Grid Optimization

Scalability

The scalability of the hybrid RL-DNN model was tested by running a number of simulations of different grid
sizes from small residential systems to larger industrial grids. The model scaled well and performed
effectively in both small and large grids without any significant penalties to its optimization performance.

Key Findings:

e For small grids (up to 10,000 households), the hybrid formed 94% accuracy in load balancing and
optimization
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e For large grids (greater than 100,000 households), the accuracy was 89% and operated successfully
on energy distribution even under significant load conditions

The hybrid model presents a strong prospect for real-world deployments, specifically in deploying large-
scale smart grid configurations, where scalability is important.

Scenario-Based Performance Evaluation
Residential Demand Response Optimization

The evaluation of the demand response at residences was conducted through real-time appliance scheduling
by predicting energy consumption behaviors, which created predictable peak demand periods. Once a peak
time was identified, the model was able to schedule residential appliances such as air conditioners, washing
machines, and refrigerators to run during off-peak energy times to decrease energy consumption during peak
periods.

Key Findings:
e Overall, there was a 17% reduction in total energy for residential users, with the peak demand

reduction down 13%.

o The reduction in overall energy was in part due to scheduling appliances, that typically use high
amounts of energy, to run outside of peak times, which allowed for more residential energy to be
included in the grid load balancing.

Renewable Energy Integration

The incorporation of renewable energy resources such as solar and wind energy was evaluated on the basis
of using the weather forecast to anticipate renewable energy production while efficiently scheduling
renewable energy dispatch. The intent was to maximize renewable energy use while maintaining stability in
the power grid.

Key Findings:
e Solar Energy: The model was successful in integrating solar energy and increased the share of solar
energy in the grid from 25% to 38% during peak generation.
e Wind Energy: Wind increased its contribution by 20%, and the model decreased conventional
energy use by 16% in total.

The renewable integration was seamless, providing a renewable energy mix that is sustainable and helped in
minimizing carbon emissions.

Commercial and Industrial Load Optimization

Implemented changes in energy usage in commercial and industrial applications resulted in energy-saving
measures based on changes in the operating regime of major energy consumption equipment. The RL-DNN
model increased the performance of both commercial and industrial energy by systematically changing the
operating effectiveness of these loads without impacting productivity.

Key Findings:
e In commercial applications, energy usage reduces by 14% through lighting and HVAC scheduling
3069



Frontiers in Health InformaticsISSN-Online: www.healthinformaticsjournal.com
2676-7104

2025; Vol 14: Issue 2 Open Access

regimes that address historical non-business hours of energy consumption.

e In industrial applications, energy usage reduced by 19% through dynamically managing machinery
to minimize energy consumption during on-peak times on the grid.

Ultimately, these changes resulted in a significant economic benefit, and improvement in productive
relationship with loaded capacities against availability of the grid energizing those loads.

Industrial

Commercial

Residential

0 5 10 15 20 25
Energy Savings (%)

Figure 4: Energy Savings in Residential, Commercial, and Industrial Scenarios

Quantitative Performance Metrics

Table 1: Energy Efficiency Improvements by Scenario

. After
Baseline Preprocessin Energy
Sector Efficiency E fﬁIc)iency g Efficiency
(%) %) Gain (%)
Residential 68.5 79.4 10.9
Commercial 72.2 85.1 12.9
Industrial 65.8 78.2 12.4

Table 1 compares the gains in energy efficiency by sector as a result of using the optimization framework.

3070



Frontiers in Health InformaticsISSN-Online:
2676-7104

www.healthinformaticsjournal.com

The residential sector achieved a gain of 10.9% while the commercial and industrial sectors saw
improvements of 12.9% and 12.4%, respectively. The improvements demonstrate the optimization models
were effective in reducing total energy consumption.

Table 2: Cost Savings from Optimized Energy Consumption

Baseline Optimized Cost Percent.age
. Reduction
Sector Cost Cost Savings in  Costs
USD USD D
(USD) (USD) (USD) %)
Residential 1,524 1,305 219 14.4
Commercial 5,887 5,064 823 14.0
Industrial 11,250 9,694 1,556 13.8

Table 2 compares energy expenditures from before and after implementing the optimization framework. The
commercial sector netted the highest savings in absolute terms ($823), while the residential and industrial
sectors also realized meaningful reductions in costs of 14.4% and 13.8%, respectively.

Table 3: Carbon Emissions Reduction by Sector

. Optimize Emission Percentag
Baseline d s e
Sector L0 5 ) Emission Reductio Beductlon
s (kg S (kg n (kg in
CO,) Emissions
CO») CO») %)
Residential 3,800 3,200 600 15.8
aclommml 14,550 12,400 2,150 14.8
Industrial 28,900 24,300 4,600 15.9

The optimization framework led to an incredible reduction in carbon emissions across all sectors. Residential
carbon emissions decreased by 15.8%, while commercial and industrial carbon emissions decreased by
14.8% and 15.9%, respectively. The reductions in carbon emissions can mostly be attributed to energy
consumption optimization and the increased use of renewable energy.

3071



Frontiers in Health InformaticsISSN-Online: www.healthinformaticsjournal.com
2676-7104

2025; Vol 14: Issue 2 Open Access
20.0¢

mm Efficiency Gain (%)
B Cost Reduction (%)
17.5¢ . Emission Reduction (%)

15.8% 15.9%
15.01

12.5¢

10.0¢

N
U
.

Percentage Improvement (%)

5.0F

2.5F

0.0

Residential Commercial Industrial

Figure 5: Comparative Performance Improvements by Sector

Figure 5 provides a comparison of the three primary performance enhancements initiated by the proposed
optimization framework in residential, commercial, and industrial areas: improvement in energy efficiency,
improvement in cost savings, and decrease in carbon emissions. The results show improvements across all
sectors, with the largest cost savings occurring in residential (14.4%) and the highest improvement
consideration for energy efficiency occurring in commercial (12.9), while all sectors all demonstrated
reductions in carbon emissions (14.8-15.9%).

Table 4: Computational Efficiency of RL, DL, and Hybrid Models

Model Average . Accuracy Scalability
Tvoe Computational (%) (%)
yp Time (s) ¢ ¢
RL Model 4.2 87.5 92
DL Model 6.7 90.1 89
Hybrid
Model 5.1 91.2 93

Table 4 shows the computational efficiency of the three models (RL, DL, and Hybrid) over a period of time.
Balanced between computational time, accuracy, and scalability, the hybrid model achieves 91.2% accuracy,
with an enhanced scalability of 93%, outlasting the RL and DL models for real-time optimization
performance.

Model Optimization
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Hyperparameter Tuning and Advanced Techniques

Several hyperparameter tuning approaches including Grid Search and Random Search were used to ensure
maximum model performance. The hyperparameters were adjusted, with learning rate, batch size, and the
overall architecture of the neural networks adjusted to improve both accuracy and generalization.

. Grid Search - this method exhaustively tests all combinations of hyperparameters across a
predefined grid. While this method can be expensive from a compute perspective, it guarantees that
all combinations of hyperparameters are tested so that the optimal set of hyperparameters is
identified.

. Random Search - this method samples the hyperparameter space at random, and will often arrive at
the optimal hyperparameter sooner than Grid Search. This method is often more efficient for large
parameter spaces.

Both Grid Search and Random Search improve generalization, reduce overfitting, and ensure model
performance on new/unseen data.

Key Findings:

¢ Reinforcement Learning Model: Hyperparameter tuning for the RL model produced a 4% increase in
accuracy and a 7% decrease in overfitting.

e Deep Learning Model: Random Search led to a 5% increase in accuracy and a 6% improvement in
generalizing the model across different data sets.

e Hybrid Model: The combination of Grid Search and Random Search produced the most optimal
configuration that increased accuracy by 6% while decreasing complexity by 8% which allowed for a
faster computation rate without losing accuracy.

Table S: Optimization Model Hyperparameter Tuning Results

Model Tuning Optimal Accuracy ?{Zill;itttll:l;g Computational
Method Hyperparameters (%) (%) Time (s)
(1]

Grid Learning Rate:

RL Model | S 0.001, Batch Size: 89.4 7 5.6
Search 3
Random Learning Rate:

DL Model Search 0.0005, Epochs: 50 912 6 12.3

. Grid + | Learning Rate:

ﬁ-‘g%relf Random | 0.0008, Epochs: 60, 92.5 8 8.2

Search Hidden Layers: 4

The results for hyperparameter tuning of the models can be found in the table above. The hybrid model
achieved the highest accuracy of 92.5% and most improvement in overfitting of 8%, largely due to the
combination of Grid and Random Search. Following that, the RL model achieved 89.4% accuracy with a 7%
improvement in overfitting, and the DL model reached the highest accuracy of 91.2% and a 6% improvement
in generalization.
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Real-World Deployment Considerations
Privacy, Interoperability, and Regulatory Compliance

Utilizing the developed optimization models in real-world smart grid systems involves multiple challenges
that must be addressed. These are:

. Privacy: When using smart grid data, especially in homes, it is extremely important to keep
consumers' sensitive data private. Federated learning and encryption of data could be useful to
achieve this objective. Effective use of models to optimize energy consumption should be paired
with adequate privacy procedures to protect personal data.

. Interoperability: Smart grids contain heterogeneous systems, sensors, and devices. The challenge is
to ensure that the framework developed can connect to existing systems, especially legacy systems,
and sensors. The model has to be flexible, and able to integrate with various sensors, hardware, and
software, used in smart grids.

. Regulatory compliance: Smart grid systems often face various regulations, such as related to energy
use, data, and stability of the grid. The optimization models must comply with local and international
regulations. This means understanding energy policy, emissions regulations, and data protection.

Solutions addressing deployment are important to address these challenges while maintaining the
effectiveness of the energy optimization models in the grid.

Table 6: Comparison of Real-World Deployment Challenges

Challenge Description Proposed Solution
Protecting privacy for Execution of federated

Privacy consumer data while learning and sophisticated
maximizing energy use. encryption methods.

Maintaining alignment
between the developed

model and the existing Creation of a flexible API

Interoperability . and middleware level for
infrastructure and legacy system integration
devices in the grid gacy sy £ '
system.

Conforming to
applicable local and .
apprica’ Regular audits for
international energy .
Regulatory . regulatory compliance and
. regulations, data . .

Compliance . - integration  to  energy
protection policies, and .

. compliance databases.
environmental
practices.

The table below summarizes the main difficulties in implementing the models within real-world settings and
identifies an approach for each problem. To address Privacy, federated learning and encryption are used to
protect data while performing optimization. To address interoperability, an API layer will be proposed to
support integration and an audit process will be proposed to support regulatory compliance with energy
policies.
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5. Discussion and Conclusions

This research shows us that optimization using data, especially through a hybrid reinforcement learning (RL)
and deep-neural network (DNN) structure can greatly improve the management of energy consumption in
smart grids. Providing predictive capability with control that transfers learning in real-time optimizes
efficiency, improves costs, and reduces carbon emissions for residences, business, and industry. For global
energy policy makers, this research shows the necessity of investing in digital intelligence for grid
management along with traditional infrastructure investment. Relative to the current literature, the specific
contributions we make extend the state of the art in several meaningful ways. Biswas et al. (2024) has pointed
out that Al provides many opportunities to optimize energy production and distribution, yet challenges
remain regarding scalability and adaptability. Our hybrid RL-DNN framework specifically addresses the
scalability and adaptability concerns: RL enables real-time adaptability, whereas DNN delivers high accuracy
in forecasting, even under volatile conditions. Similarly, Biswas et al. (2024, 2025) identified a broad range
of Al approaches, but also highlighted that development has little or no applicability to practice. In our
approach, we couple learning and control in real-time, which makes it more appropriate for operational scale
implementations instead of being left in simulation studies. Our findings are in line with research by Rojek
etal. (2025) who emphasized the contribution of artificial intelligence to accelerate decarbonization strategies
by enhancing forecasting and grid management. We affirm this view, but take it further by illustrating how
predictive accuracy can be put to work in real-time demand response actions, and diminish reliance on fossil
fuel based peak generation. Similarly, studies like Pushpavalli et al. (2024), and Karrothu et al. (2024),
illustrated how deep learning models such as LSTMs have forecasting potential. Their results strengthened
the case for data-driven forecasting and forecasting powered by technology, however our results provide
evidence that combining predictive and prescriptive principles generates greater results than predictive alone,
particularly in smoothing load profiles and integrating renewables more effectively.

From a policy perspective, there are three relevant implications. First, a hybrid system strengthens support
for carbon reduction commitments. The hybrid system will reduce peak loads and allow demand to match
renewable generation for measurable emissions reductions. This aligns with international commitments in
agreements like the Paris Agreement, where load flexibility is increasingly considered a complementary
value to renewable deployment. Second, results draw attention to the potential for real-time demand response
programs. Existing programs are often delayed or performed by hand, but an Al controller reacts in seconds,
which allows a policymaker to design more responsive pricing schemes or emergency plans. Third, the
framework enhanced renewable energy generation nexus with reduced curtailment and flexibility to rely on
intermittency that maximizes the value of solar and wind investments. Yet, challenges related to deployment
are still present. Interoperability is a key concern given that smart grids include numerous devices,
communication protocols, and legacy systems. The lack of standards can hinder optimal functioning of Al-
based controller. For this reason, policymakers should prioritize international standardization for
interoperability and encourage the development of middleware platforms that can provide interoperability
across heterogeneous systems. Another major consideration is privacy. The data optimization framework
relies on using fine-grained data, and could raise risks of information access and loss of trust among
consumers. Federated learning and edge computing provide a path forward by allowing private data to remain
local while still permitting system-level optimization. Cooperation from policymakers through regulations
and incentives for privacy-preserving alternatives could be beneficial.

An additional critical concern pertains to computational efficiency. Deep learning models are routinely
faulted for high computational expense during application and limited potential for real-time implementation.
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We show that hybrid RL-DNN computational cost provides a reasonable balance with network accuracies
above 91 percent. From a policy perspective, these findings suggest that advanced Al approaches that focus
on energy issues can be scaled successfully without generating excessive operating expense. The research
findings also strengthen the case for ongoing investment in energy-specific Al approaches that balance
accuracy, scaling, and computational efficiency.

Aside from technical issues, this research has wider strategic considerations. International energy transitions
call for a double-pronged strategy: to increase renewable capacity and to improve demand-side management
at the same time. The evidence provided here indicates that Al-based optimization can support these efforts
in the second prong, developing smarter, more flexible grids that permit larger renewable shares. This could
address the need for infrastructure expansion, which will be costly, as well as create greater resilience to
shocks such as sudden demand increases and renewable variability. To international policymakers, digital
interventions, like those outlined here, present a low-cost way to reinforce the physical grid.

However, the difference between simulation-based results and deployment in the real world must be
recognized. While our framework appears promising in simulations and trials, a wider-cast deployment will
require utility, regulator, and technology provider collaboration. Regulatory sandboxes, as well as
international pilot projects, might facilitate taking the next step toward these broader implementation efforts,
and would enable such models, like ours, to be deployed in varying conditions while managing risk. This is
similar to what other sectors have done to responsibly scale up Al, which is to do so in phases and via adaptive
regulation.
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