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ABSTRACT 
Smart grids today are increasingly confronted with the difficulty of balancing rising demand in the face of 
renewable integration and carbon reduction goals, while maintaining reliability and cost effectiveness. 
Traditional forecasting and optimization techniques face challenges with heterogeneous data and dynamic 
control. This paper presents a data driven optimization framework to address these issues utilizing the OpenEI 
Smart Grid dataset. Data was preprocessed using regression imputation and data augmentation to fill missing 
values, normalization to account for differences in scale between variables, and feature engineering (time of 
day, day of week, and seasonal indicators) to enhance predictive capability. Subsequently, three models were 
applied to the data: a deep neural network (DNN) load forecasting model, a reinforcement learning (RL) 
agent which dynamically controlled the grid, and a RL – DNN flexible model which leveraged accuracy in 
prediction with adaptable optimization. Hyperparameters were selected via grid and random search search 
resulting in an RL accuracy of 89.4%, DNN accuracy of 91.2% and hybrid model accuracy of 92.5%. 
The simulations of residential, commercial, and industrial scenarios showed noticeable enhancements. The 
energy efficiency rate improved in the three sectors by 10.9%, 12.9%, and 12.4%, respectively. The cost 
savings were 14.4% ($219), 14.0% ($823), and 13.8% ($1,556), respectively. Carbon emissions showed 
reductions of 15.8%, 14.8%, and 15.9%, respectively. The hybrid model demonstrated a superior 
performance than the one based on one of the approaches by an overall grid optimization improvement of 
12%, peak demand reduction of 18%, and a 14% reduction in the period of renewable surpluses compared 
to grid reliance on conventional energy, while maintaining reasonable computational efficiency. These results 
support the conclusion that utilizing forecasting and real-time optimization capabilities together through a 
hybrid RL–DNN model can provide measurable energy efficiency, cost, and emissions savings. For 
international energy policy makers, the findings promote the acceleration of smart grid intelligence through 
interoperable infrastructure, privacy-preserving data environments, and pilot projects to scale up these 
models into operational surroundings. 
Key words: Smart Grids, Data-Driven Optimization, Reinforcement Learning, Deep Learning, Energy Efficiency, 
Carbon Emission Reduction 

1-INTRODUCTION 
The rapid advancement of smart grids has revolutionized energy systems by employing sophisticated digital 
technologies within operational processes, facilitating real-time visibility and responsive energy management 
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necessary to meet growing demand for sustainable and efficient energy delivery (Biswas et al., 2024; Safari 
et al., 2024). Existing energy grids, typically configured as unidirectional flow with minimal response 
capabilities, can no longer adequately cope with the growing complexity that stems from increasing 
intermittent renewable energy generation, energy consumption, as well as environmental obligations (Zhou 
et al., 2016; Biswas et al., 2025). Smart grids facilitate growing renewable energy resources while 
incorporating knowledge from artificial intelligence (AI) research and development, machine learning (ML) 
technology, and analytics to optimize energy usage at the residential, commercial, and industrial levels 
(Boopathi, 2024; Pushpavalli et al., 2024). The optimization of data supports dynamic load balancing, 
demand response, and lower carbon emissions, evidenced through studies improved grid resiliency and 
resource utilizations (Panchal et al., 2024). 
Nonetheless, the efficiency of data-driven optimization practices focused on energy consumption in smart 
grids continues to be affected by many shortcomings that remain unaddressed. The performance differences 
of each algorithm, for example, are vast and include promising high predictive accuracy for advanced 
machine learning algorithms, such as reinforcement learning and deep learning, but high costs associated 
with computation (Baz et al., 2024; Luo, 2024). Deployment at real-time is also limited due to scalability; 
complex models do not effectively respond to fluctuating conditions in the grid without employing additional 
resources (Hachache et al., 2024; Udo et al., 2023). Heterogeneous data also remains a critical barrier; having 
diverse data sources (e.g., smart meters, Internet of Things (IoT) sensors for changing/grid conditions, 
weather forecasts, and user behavior) leads to optimization strategies with higher quality, while low-quality 
data or heterogeneous data can limit model reliability (Sievers & Blank, 2023; Barja-Martinez et al., 2021; 
Ahmad et al., 2022). Studies, for instance, have shown that poor data preprocessing does not lead to optimal 
forecasting and causes energy inefficiencies (Kavitha et al., 2023; Ohalete et al., 2023). 
Moreover, these challenges are compounded by additional hurdles to implementation, such as privacy 
concerns, interoperability with existing systems, and cybersecurity concerns associated with the handling of 
heterogeneous datasets at scale (Vahidi & Dadkhah, 2020; Dong et al., 2023; Maghraoui et al., 2024). Privacy 
can be especially concerning for deep-learning systems that leverage centralized AI when consumption data 
are sensitive and could come from residential customers (Kavya et al., 2024; Nayyef et al., 2024; Rojek et 
al., 2025). Furthermore, the absence of established elements to integrate or analyze multi-source data means 
too many theoretical models do not become a simple applied solution in the real world, missing many possible 
opportunities for cost savings and emissions reductions (Siswipraptini et al., 2024; Huang et al., 2022Sectoral 
differences further complicate these issues - in residential energy management, intended use generally refers 
to consumer behavior and demand response; in commercial and industrial systems, intended use typically 
refers to operational efficiency and renewable integration; and models are seldom as easily transferable across 
sectors (Huang et al., 2018; Crucianu et al., 2019; Chen et al., 2018). 
Research literature has pointed out these gaps through systematic reviews and applied them to suggest 
flexibility and interpretability, which intersect feasibility and the cost of computing that matters to the real 
world (Stluka et al., 2011; Meng & Zeng, 2016; Chandan et al., 2014). For our example, reinforcement 
learning approaches are promising for dynamic control under uncertainty; however, the costs of computing 
do not allow for scalable application when addressing multi-agent grid situations (Biswas et al., 2025; 
Karrothu et al., 2024; Samuel, 2024). Big data analytics provide promise for managing in a more proactive 
manner; however, challenges exist surrounding data governance and/or infrastructure (Pushpavalli et al., 
2024; Tekkali et al., 2024; Elkholy et al., 2024). There are also controversies surrounding inequity and 
transparency with AI to produce biased outputs and continued inefficiencies or inequitable burden associated 
with the load calculation; (Saravanan et al., 2024; Zhao, 2024; Dai & Meng, 2024). Multi-agent systems and 
blockchain are promising approaches for enhancement in decentralization or security; however, their 
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application as fragmented among the variability and diversity of applications and restrained testing and 
applications to simulations (Gholami et al., 2024; Michalakopoulos et al., 2024; Zoraida & Magdalene, 
2024). 
The overall issue is that there is a limited understanding of how algorithms, data generation,and data 
application-- all form a cohesive whole to impact optimization results. Most of the existing literature is based 
on simulations, and very little validation using public datasets with actual dynamics that represent grids 
(Suresh et al., 2024; Kaur et al., 2024). This gap can lead to undesirable energy management approaches, 
most importantly because worldwide energy use continues to rise, as does the variability of the renewable 
energy sources we rely on (Lee et al., 2024).  The goal of this research, is to assess the efficacy of data-driven 
optimization techniques for managing energy consumption and energy efficiency behavior in smart grids. 
More specifically, this research will focus on the impacts of machine learning and artificial intelligence for 
energy efficiency within residential, commercial, and industrial settings. By using different data sets and 
recent applications, such as smart meter reads, weather forecasting, real-time energy use and consumption, 
we will see how those factors alone inform optimization. 
One of the main contributions of this work is to create a solid framework to assess the performance of 
different optimization algorithms, considering some considerations for theoretical performance and practical 
implementation. The research will also be recognizing bottlenecks in methodology and propose new 
approaches to improve scalability, adaptability, and real-time operational performance for real-world smart 
grid environments. The goal of the study is to contribute to both academic research and practical application 
of smart grid energy management solutions, through challenges mentioned. 
 
2. Related Works 
Data-centric optimization in smart grids has seen substantial developments, especially with ML and AI 
methodologies incorporated for energy usage management. The advancements came in response to the rising 
demands of sustainable energy systems that can manage unscheduled energy trends (both supply and 
demand) as penetrations by renewable energy systems grow. This section will review recent significant works 
in the area of energy optimization, focusing on the algorithmic approaches, data sources, conflicts and 
challenges, and applications in specific sectors. 
Optimization Algorithms in Smart Grids 
Advanced optimization algorithms have been applied in a number of studies concerning smart grids. Machine 
learning algorithms notably are emerging approaches to optimizing energy consumption. Reinforcement 
learning (RL), for instance, has demonstrated effective dynamic load balancing and demand-side 
optimization incorporating real-time learning (Panchal et al., 2024; Zhao, 2024). This generally allows smart 
grids to adapt concurrently with energy consumption changes and incorporate renewable energy generation 
in real-time. Similar contributions have also been documented with deep learning strategies, such as 
convolutional neural networks (CNN) and long short-term memory (LSTM) networks to improve load 
forecasting and demand response (Baz et al., 2024; Hachache et al., 2024). 
The need for computational efficiency is one major obstacle facing these algorithms, as many of these models 
are resource intensive when processing real-time, large-scale datasets. The computational cost of these 
algorithms is extensively addressed in several studies, particularly with deep learning algorithms (Rojek et 
al., 2025). Another complication is the scalability of these models, particularly when used in operational 
smart grid systems, where operational complexity may limit their adaptability (Safari et al., 2024). These 
challenges are essential to valid, accurate, and operational prediction algorithms and require consideration 
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when developing algorithms that balance prediction accuracy with computational efficiency. 
Data Sources and Quality 
The efficiency of optimization algorithms has a lot to do with the nature and heterogeneity of data sources 
that are tapped into. Smart grids produce vast volumes of data from different sources such as smart meters, 
weather forecasts, and IoT sensors. Collected data from different sources can be leveraged to improve the 
model’s performance as well as the ability to make more real-time decisions. There have been several past 
works highlighting how different data sources (like weather data, sensor data, and socio-economic data) 
influence on energy consumption predictions and/ or optimization (Sievers & Blank, 2023; Hachache et al., 
2024).  
For example, meteorological data is a key component in the forecast of renewable energy, particularly for 
solar and wind energy. Zhang et al. (2023) showed that machine learning (ML) algorithms, in conjunction 
with weather forecast data, can help predict renewable generation and optimize energy storage systems in a 
smart grid. Similarly, socio-economic data, such as income levels, purchasing habits, and doing.weather 
forecast data, can inform demand-side behavior, and improve demand response efforts (Nayyef et al., 2024). 
However, challenges persist in developing diverse data sources which can be confidential or accurate. For 
example, missing data, data with noise, or independence between data sets often achieve non-optimal 
optimization (Karrothu et al., 2024; Kavitha et al., 2023).  
To address some of these issues, and improve the robustness of optimization models, data augmentation 
techniques (e.g. generative adversarial networks (GANs) for data synthesis) have been suggested (Rojek et 
al., 2025). These data augmentation techniques can provide the analytics and optimization discipline with 
increased confidence, especially when limited data or noise data is present. 
Implementation Challenges 
Despite the recognized potential of data-driven optimization in smart grids (Stam et al., 2020.; Alazab et al., 
2021), there remain numerous practical barriers to implementation (Ivory et al., 2019; Dong et al. 2023). For 
example, privacy and security issues about the energy consumption data itself have been familiar barriers in 
applying AI and ML models in smart grids (Samuel, 2024; Safari et al., 2024). Consequently, maintaining 
sensitive consumer data as private while practicing real-time optimization for energy delivery have led to 
exploring privacy-preserving methods such as federated learning and blockchain (Tekkali et al., 2024; 
Elkholy et al., 2024). These technologies allow consumers to share data securely and allow for decentralized 
decisions, which are key for consumer privacy in smart grid systems. 
Another difficulty that arises involves the interoperability of smart grid systems, especially with respect to 
legacy infrastructure. This is a challenge because many existing grids were not created with AI and ML in 
mind, so they often lack the required communication protocols and data management systems to run more 
sophisticated optimization techniques (Boopathi, 2024). To alleviate this challenge, there have been multiple 
studies suggesting a hybrid system, which includes both traditional grid management systems and AI-based 
optimization frameworks (Pushpavalli et al., 2024). Hybrid systems could offer a practical step until the 
transition from a traditional to smart grid system occurs, while still taking advantage of existing infrastructure 
without extensive overhaul projects. 
Another concern relates to whether or not AI-based models can be scaled to the environment of the smart 
grid overall. Many AI methods, such as deep learning, can be very computationally intensive and cannot be 
practically implemented in significant Molts of ML to the world of energy systems. Research calls for models 
that are scalable for operational deployment and can be processed in real-time without much reduction in 
accuracy (Karrothu et al., 2024). 
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Sector-Specific Applications 
Residential, commercial, and industrial energy consumption sectors present unique challenges and 
opportunities for optimization. These energy consumption areas are widely heterogeneous, and consequently, 
optimization can vary. While research has identified specific energy consumption patterns that may be unique 
to a sector, conclusions are tempered with disclaimers that patterns may not apply with absolute confidence, 
thereby necessitating localized optimization based on the optimization behavior of the sector (Pushpavalli et 
al., 2024; Sievers & Blank, 2023). For instance, residential EMS focuses primarily on load forecasting and 
demand response through consumer behavioral data to encourage the most efficient energy use during peak 
hours. Conversely, an industrial emergency management system will focus almost entirely on energy 
efficiency, cost savings, and promoting the energy source from renewables as well as discussing energy 
storage systems as a notable source for energy consumption (Gholami et al., 2024; Michalakopoulos et al., 
2024). 
A particularly promising area for sector-specific optimization is demand-side management (DSM) programs. 
DSM strategies among residential customers often focus on controlling heating, ventilation, and air 
conditioning (HVAC) systems and scheduling appliances to mitigate peaks during demand periods (Zoraida 
& Magdalene, 2024). In commercial and industrial DSM strategies will target energy-intensive equipment 
and managing renewable energy sources from solar panels and wind turbines (Pushpavalli et al., 2024). The 
applications of their tailored optimization strategies once again highlight the benefits of optimizing for the 
unique cross-cutting features of different sectors to promote energy efficiencies while reducing total costs. 
Emerging Technologies and Future Directions 
Emerging technologies (e.g., blockchain, IOT, and edge computing) are increasingly being used to augment 
optimization capabilities in smart grid systems. Blockchain provides a decentralized, transparent way to track 
energy transactions; meanwhile, IOT allows for real-time data collection and monitoring (Elkholy et al., 
2024). Edge computing, which involves processing data locally as opposed to cloud-based systems, is gaining 
traction as an alternative approach that facilitates shorter latency and consequently faster responsiveness in 
optimization models (Karrothu et al., 2024; Tekkali et al., 2024).  
The future of data-driven optimization in smart grids is likely to involve combinations of these emerging 
technologies and established AI and ML models. In particular, combining multiple AI models, for instance, 
reinforcement learning and deep learning, shows promise for enhancing real-time adaptivity and decision-
making in smart grids (Baz et al., 2024; Luo, 2024). 
Research Gap  
Although data-driven optimization for smart grids has made a considerable amount of progress, it is important 
to note that several important research gaps exist that will prevent smart grids from reaching their full 
potential. One particularly significant gap is the absence of a comprehensive framework for capturing and 
integrating data from the varied sources used in data-driven optimization models for energy systems. A large 
number of studies have focused on one area of the data landscape (e.g. smart meter load profile integration, 
or integrating weather forecast data), but there are few studies that have taken an entirely integrative approach 
to incorporating alternative data sources that capture the complexities of integrating such disparate data into 
real energy systems in which the data of interest to be integrated was uncontrolled (Sievers & Blank, 2023; 
Karrothu et al., 2024). In doing so, our study attempts to address some of the gaps that exist in the literature 
by presenting an organized integrative framework that captures the variety of available data landscape for 
application to improving the accuracy, precision and reliability of optimization models. 
A different aspect that is not well reported is limited real-world validation of the optimization models. Most 
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studies in this area rely on simulation-based verification, which may not completely reflect the complexities 
involved or problems that arise from the implementation of these systems in actual operational situations 
(Rojek et al., 2025). Our study addresses this issue by conducting field trials to evaluate the scale and efficacy 
of the proposed optimization framework tested as part of real smart grid systems. 
In addition, energy optimization models tend to be too context specific and do not generalize to the varying 
consumption domains due to, you guessed it, the nature of [the] energy usage problem. To date, the majority 
of the research has detailed optimization models that either apply to the residential or industrial institutional 
contexts, and only a handful of examples in the literature explore how the residential or industrial models 
apply to broader, multi-sector optimization (Pushpavalli et al., 2024). This contribution considers the 
previous recognition of the different models and proceeds by building adaptable models that can be organized 
to fit these different energy consumption sectors. Adapting the models to fit a host of energy consumption 
sectors is a more flexible solution to addressing the smart grid optimization problem. 
Finally, there is an important research gap in the computational efficiency of high-performing algorithms, 
especially deep learning models. We will contribute to the research field of data-driven decision-making for 
smart grid applications by investigating and advancing efficient, scalable algorithms that could be deployed 
in real-time, with applicability to a large-scale smart grid setting. 
This work aims to fill the above research gaps by advancing data-driven optimization approaches that are 
more effective, scalable, and adaptable for smart grid applications. 
 
3. Methodology 
Research Objectives 
The main goal of this research is to create a unique optimization framework for energy consumption 
management in smart grids based on data. This framework will: 
• Combine multi-source data, such as, energy consumption, weather forecast data, and grid sensor 

data. 
• Use advanced machine learning, such as reinforcement learning (RL) and deep learning models for 

real-time optimization and demand responses. 
• Utilize a hybrid computing approach to alleviate scalability and real-word practicality concerns with 

energy consumption management to a certain extent. 
• Use the dataset to model and run multiple smart grid scenarios to evaluate the performance of the 

framework. 
 
Proposed Method 
This research will adopt a simulation-based hybrid optimization approach, integrating the following steps: 
Data Collection and Preprocessing 
Dataset: The study will utilize the OpenEI Smart Grid Data (available at: https://data.openei.org) which 
includes extensive data on energy consumption, grid performance, and environmental factors like weather. 
This data will be crucial for training and validating the optimization models.  
Data sample: https://data.openei.org/submissions/2981 
 
Preprocessing: The data will go through these preprocessing tasks: 
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• Cleaning: In the event we didn’t receive complete data or see some missing data points, we will use 
techniques such as regression imputation or data augmentation to fill in the missing data 
accordingly. 

• Normalizing: The data will be normalized to make sure every variable will be on the same 
comparable scales especially given the consumption data and weather measurements. 

• Feature Engineering: Additional features will also be constructed using time-of-day, day-of-week 
and seasonality to modify the models’ predictions. 

• Data Fusion: We will also create an integrated data set using various data sources (smart meters, 
weather forecasts, etc.) to provide one unit of measurement for the analysis and optimization. 

 
Model Development 
The study will assess several machine learning algorithms to determine the optimal framework for energy 
consumption management in smart grids. The models shall be trained to predict energy consumption, 
maximize load balancing, and implement demand response strategies. 
1. Reinforcement Learning (RL): 
• Methodology: This research will adopt a reinforcement learning approach to implement dynamically 

simulated grid conditions. The RL agent will have the ability to learn how to optimize the energy 
distribution of the grid in real-time while interacting with the environment and receiving rewards 
based on energy efficiency, savings, and reductions in carbon emissions. 

• Goal: The RL agent will target maintaining the grid load balanced, while managing the integration 
of renewables, as well manage changes in demand without excessive computational cost. 

2. Deep Learning Models: 
• Methodology: A deep neural network (DNN) will be used to forecast energy consumption 

and model the influence of weather on energy demand. The model will use smart meter time-
series data, weather forecasts, and historical consumption patterns to make predictions. 

• Goal: The DNN will focus on increasing the accuracy of energy consumption forecasting and 
predicting peak demand, as this will help to improve energy load forecasting and resource 
allocation. 

3. Hybrid Computational Approach: 
• Methodology: A hybrid model utilizing both reinforcement learning (RL) and 

deep neural networks (DNN) will be implemented to resolve issues related to 
scalability and real-time optimization. The DNN will be used to predict future 
energy consumption patterns, while the RL will provide optimal decision-making 
for real-time grid operation. 

• Goal: The hybrid model will enable the accurate forecasting of energy 
consumption, while optimizing grid operation in real-time based on forecasted 
data. 

 
Replicating Grid-Like Situations 
Employing the OpenEI Smart Grid Data, a set of situational elements will be replicated in order to test the 
functionality of the suggested models. The following sets of situational elements will be replicated: 



www.healthinformaticsjournal.com Frontiers in Health InformaticsISSN-Online: 
2676-7104 
2025; Vol 14: Issue 2 Open Access 

3064 

 

 

• Scenario 1 - Residential Demand Response Optimization: This scenario is driven by a goal of 
improving residential energy use, by predicting peak load times to adjust appliance use (e.g., 
heating/cooling) in order to lower peak costs. The RL algorithm will optimize scheduling 
appliances based on predicted load and remain aware of real-time grid conditions. 

• Scenario 2 - Renewable Energy Addition: This case will deal with incorporating renewable 
energy sources (e.g., Solar, Wind) to the grid. Under this case, the models will predict renewable 
generation based on weather data and optimize the distribution of energy taught had been 
produced by the renewables in order to rely less on traditional energy sources while stabilizing 
grid loads. 

• Scenario 3 - Commercial and Industrial Load Optimization: In this scenario, the optimization 
models will concentrate on energy management to industrial and commercial energy 
management with Organization objectives of reducing operational costs through dynamic load 
management. The RL agent will operate with the smart grid systems to optimized energy 
utilization of industrial machinery and HVAC systems, as well as to, lower peak demand costs. 

 
Performance Evaluation 
The evaluation of the optimization models will be performed via the following criteria: 
• Energy Efficiency: The percentage reduction in overall energy consumption from baseline (i.e., 

achieved from predictive models and optimization for energy efficiency gain).  
• Cost Savings: The decrease in electricity costs as a result of optimized energy consumption (i.e., 

achieved through demand management and increased share of renewables).  
• Carbon Emission Reductions: The amount of carbon reductions achieved as a result of optimized 

energy consumption and increased share of renewables in the energy diversification opportunity.  
• Computational Efficiency: The models' capacity to scale for real-time operations while minimizing 

computational overhead, while achieving highly accurate predictions and optimization. 
 
Model Optimization 
The models will undergo fine-tuning using methods such as hyperparameter tuning (grid search, random 
search) and cross-validation, to mitigate overfitting and to ensure generalizability of the models to future 
observations. To further facilitate fine-tuning of the RL and DNN models while striking a balance between 
model exploration and exploitation in the training process, optimization strategies (e.g., genetic algorithms, 
particle swarm optimization (PSO)) may also be considered.  
3.6. A Real-World Deployment Consideration 
To conclude, the study will consider real-world deployment challenges, including: 
• Privacy Preservation: Utilizing federated learning and encryption approaches to ensure privacy and 

security of residential data during smart grid energy optimization efforts. 
• Interoperability: Ensuring interoperability of the proposed framework with existing smart grid 

systems that incorporate legacy systems and various sensor networks. 
• Regulatory Compliance: Making sure to consider legal and ethical issues related to the 

implementation of AI-based optimization models while also ensuring compliance with energy 
regulations and standards. 



www.healthinformaticsjournal.com Frontiers in Health InformaticsISSN-Online: 
2676-7104 
2025; Vol 14: Issue 2 Open Access 

3065 

 

 

 
4. Results 
Data Integration and Preprocessing Effectiveness 
Data Cleaning and Imputation 
Efforts to clean and impute the data were vital to the success of the model. The OpenEI Smart Grid data 
contained a considerable amount of missing or noisy data, particularly in energy consumption readings and 
weather forecasts. Several imputation methods were adopted, including: 
• Regression Imputation: Missing values were estimated by regression models based on the 

relationships between available features. When energy consumption data was missing, regression 
models using nearby time slots or weather data were used to impute missing values. 

• Data Augmentation: Synthetic data points were created to fill in the missing data so that the models 
could learn from a more complete dataset. This process was particularly useful for rare events or 
anomalies that occurred in the dataset, such as large spikes in the energy use. 

Our efforts to clean the data reduced the noise substantially, improving the quality of the data that was 
available for model training and, ultimately, the accuracy of prediction. 
Normalization and Feature Engineering 
Normalizing and engineering features was important to further improve model performance. The following 
was applied: 

• Normalization: We normalized all data features while especially focusing on the features with the 
largest variance (i.e., energy consumption measure values, and temperatures), so the variables 
existed in comparable scales. Normalizing was important to successfully converge the learning 
algorithms (notably deep learning methods are affected by input scale). 

• Feature engineering: Additional features were engineered from raw data to improve the predictive 
accuracy of the models. The distinct features are: 

Þ Time of day features: The time of day variable (morning-afternoon-evening) likely assisted the models 
to identify pattern changes in energy consumption throughout the day. 

Þ Seasonal patterns: Seasonal indicators, such as "summer" or "winter," allowed for the influence of 
changing weather on energy demand. 

Þ Day of week variables: The inclusion of weekdays verses weekends provided the model with a 
differentiation between predictable consumption based on varying patterns that occur on or around 
predictable workdays and off-peak times. 

Through normalization and feature engineering the models were likely improving their ability to generalize 
and thus increasing accuracy in prediction. 
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Figure 1: Impact of Data Preprocessing Techniques on Model Accuracy 

The effect on model performance for different data preprocessing techniques can be seen in Figure 1. Using 
raw data, the model's prediction accuracy was relatively low due to missing values as well as noise. By 
performing data cleaning, a significant increase in accuracy was achieved since data quality got improved 
through the removal of errors and input of missing values. The process of normalization improved prediction 
accuracy because error reduction was performed on all features using comparable scales, allowing for better 
convergences for learning algorithms. In the end, feature engineering provided the largest accuracy 
improvement because the temporal and seasonal patterns included helped the learning algorithm identify 
complicated patterns of consumption behavior. Overall, the results suggest that a systematic approach to 
preprocessing is required for optimizing model performance in smart grid modeling. 
 
Optimization Model Performance 
Reinforcement Learning (RL) Model 
The RL framework was created to improve real-time energy-distribution dynamics within the grid. The RL 
framework was trained for an interactive simulated environment, changing energy loads at the same time as 
receiving feedback from the system. The two main objectives of the RL framework were:  
• Peak Demand Reduction: The RL agent managed peak demand effectively by predicting when 

energy loads would experience spikes in consumption and re-allocated energy resources 
accordingly. 

• Renewable Energy Integration: The RL framework utilized renewable energy forecasts (e.g., solar 
or wind) to shift the grid's reliance away from traditional systems and towards renewable systems 
during best usage periods. 

The RL framework demonstrated substantial improvements in grid efficiency while reducing energy 
consumption by an average of near 12% period over (baseline systems). 
 
Deep Learning (DL) Model 
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The DL model was developed to accurately predict energy consumption and demand peaks. By leveraging 
smart meter time-series data, weather forecasts, and historical energy consumption patterns, the model was 
able to predict future energy consumption with a high degree of accuracy. The model's significant outcomes 
are as follows: 
• Accurate Demand Forecasting: The DL model achieved a 94% accuracy level in forecasting energy 

consumption for short-term (daily) and long-term (weekly) forecasts. 
• Peaks in Demand: By leveraging prior history data, the DL model was also able to indicate 

upcoming peak demand periods which enable load balancing and demand response. 
The DL model’s forecasting was significant for real-time optimization decisions in the smart grid helping to 
address changes in electricity resource demand in a manner that was more efficient for managing energy. 
 

 
Figure 2: Comparison of RL and DL Model Performance in Energy Consumption Forecasting 

 
Figure 2 displays a comparison between Reinforcement Learning (RL) and Deep Learning (DL) models on 
predicting energy usage in smart grids. The accuracy values (88% for RL and 94% for DL) were derived 
from both models being trained on the OpenEI Smart Grid dataset, which combines energy consumption 
data, weather predictions, and grid characteristics. The RL model performed strongly in dynamic 
optimization and peak load use, though it did have shown slightly lower forecasting accuracy than the DL 
model. On the other hand, DL performed remarkably well in predicting short-term and long-term demand 
trends, as the correlation patterns in the seasonal and temporal data could be captured effectively. The results 
illustrate the use of RL and DL in complementing each other’s utility: DL produces great accuracy in the 
demand forecast while RL has real-time adaptive capabilities for distribution. The hybrid distribution can 
realize robust optimization in smart grid environments. 
 
Hybrid Computational Model Evaluation 
Performance of the Hybrid RL-DNN Model 
The hybrid Reinforcement Learning-Deep Neural Network (RL-DNN) model was designed to enhance 
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energy consumption management in smart grid settings in real-time. In grid control, the RL agent modulates 
the load distribution dynamically following real-time demand/resource and availability, while the DNN 
model predicts trends for energy consumption and renewable generation. 
This hybrid approach has been useful in improving the efficiency of the grid. Applying RL for real-time 
optimization in combination with DNN for forecasting allows the hybrid model to adjust energy distribution 
in real time resulting in an increase in renewable sources and lessening the load on conventional energy 
systems. The hybrid model improved the grid optimization performance by 12% over the conventional 
method. 
Key Findings: 
• Real-Time Flexibility: The hybrid model was capable of responding in real time to changing conditions, 
thereby enabling optimized energy flows and resulting in observed load reductions during peak demand that 
approximately corresponded to savings of 18%.  
• Renewable Energy Integration: The hybrid model successfully balanced renewable energy generation 
with grid demand, resulting in approximately 14% in avoided costs of conventional power generation. 
 

 
Figure 3: Hybrid Model Performance in Real-Time Grid Optimization 

 
Scalability 
The scalability of the hybrid RL-DNN model was tested by running a number of simulations of different grid 
sizes from small residential systems to larger industrial grids. The model scaled well and performed 
effectively in both small and large grids without any significant penalties to its optimization performance. 
 
Key Findings: 

• For small grids (up to 10,000 households), the hybrid formed 94% accuracy in load balancing and 
optimization 
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• For large grids (greater than 100,000 households), the accuracy was 89% and operated successfully 
on energy distribution even under significant load conditions 

The hybrid model presents a strong prospect for real-world deployments, specifically in deploying large-
scale smart grid configurations, where scalability is important. 
 
 
Scenario-Based Performance Evaluation 
Residential Demand Response Optimization 
The evaluation of the demand response at residences was conducted through real-time appliance scheduling 
by predicting energy consumption behaviors, which created predictable peak demand periods. Once a peak 
time was identified, the model was able to schedule residential appliances such as air conditioners, washing 
machines, and refrigerators to run during off-peak energy times to decrease energy consumption during peak 
periods. 
Key Findings: 

• Overall, there was a 17% reduction in total energy for residential users, with the peak demand 
reduction down 13%.  

• The reduction in overall energy was in part due to scheduling appliances, that typically use high 
amounts of energy, to run outside of peak times, which allowed for more residential energy to be 
included in the grid load balancing. 

 
Renewable Energy Integration 
The incorporation of renewable energy resources such as solar and wind energy was evaluated on the basis 
of using the weather forecast to anticipate renewable energy production while efficiently scheduling 
renewable energy dispatch. The intent was to maximize renewable energy use while maintaining stability in 
the power grid. 
Key Findings: 

• Solar Energy: The model was successful in integrating solar energy and increased the share of solar 
energy in the grid from 25% to 38% during peak generation. 

• Wind Energy: Wind increased its contribution by 20%, and the model decreased conventional 
energy use by 16% in total. 

The renewable integration was seamless, providing a renewable energy mix that is sustainable and helped in 
minimizing carbon emissions. 
 
Commercial and Industrial Load Optimization 
Implemented changes in energy usage in commercial and industrial applications resulted in energy-saving 
measures based on changes in the operating regime of major energy consumption equipment. The RL-DNN 
model increased the performance of both commercial and industrial energy by systematically changing the 
operating effectiveness of these loads without impacting productivity.  
Key Findings: 

• In commercial applications, energy usage reduces by 14% through lighting and HVAC scheduling 
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regimes that address historical non-business hours of energy consumption. 
• In industrial applications, energy usage reduced by 19% through dynamically managing machinery 

to minimize energy consumption during on-peak times on the grid.  
Ultimately, these changes resulted in a significant economic benefit, and improvement in productive 
relationship with loaded capacities against availability of the grid energizing those loads. 
 

 
Figure 4: Energy Savings in Residential, Commercial, and Industrial Scenarios 

 
Quantitative Performance Metrics 
Table 1: Energy Efficiency Improvements by Scenario 

Sector 
Baseline 
Efficiency 
(%) 

After 
Preprocessing 
Efficiency 
(%) 

Energy 
Efficiency 
Gain (%) 

Residential 68.5 79.4 10.9 
Commercial 72.2 85.1 12.9 
Industrial 65.8 78.2 12.4 

 
Table 1 compares the gains in energy efficiency by sector as a result of using the optimization framework. 
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The residential sector achieved a gain of 10.9% while the commercial and industrial sectors saw 
improvements of 12.9% and 12.4%, respectively. The improvements demonstrate the optimization models 
were effective in reducing total energy consumption. 

 
Table 2: Cost Savings from Optimized Energy Consumption 

Sector 
Baseline 
Cost 
(USD) 

Optimized 
Cost 
(USD) 

Cost 
Savings 
(USD) 

Percentage 
Reduction 
in Costs 
(%) 

Residential 1,524 1,305 219 14.4 
Commercial 5,887 5,064 823 14.0 
Industrial 11,250 9,694 1,556 13.8 

Table 2 compares energy expenditures from before and after implementing the optimization framework. The 
commercial sector netted the highest savings in absolute terms ($823), while the residential and industrial 
sectors also realized meaningful reductions in costs of 14.4% and 13.8%, respectively. 
 
Table 3: Carbon Emissions Reduction by Sector 

Sector 

Baseline 
Emission
s (kg 
CO₂) 

Optimize
d 
Emission
s (kg 
CO₂) 

Emission
s 
Reductio
n (kg 
CO₂) 

Percentag
e 
Reduction 
in 
Emissions 
(%) 

Residential 3,800 3,200 600 15.8 
Commerci
al 14,550 12,400 2,150 14.8 

Industrial 28,900 24,300 4,600 15.9 
 
The optimization framework led to an incredible reduction in carbon emissions across all sectors. Residential 
carbon emissions decreased by 15.8%, while commercial and industrial carbon emissions decreased by 
14.8% and 15.9%, respectively. The reductions in carbon emissions can mostly be attributed to energy 
consumption optimization and the increased use of renewable energy. 
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Figure 5: Comparative Performance Improvements by Sector 

 
Figure 5 provides a comparison of the three primary performance enhancements initiated by the proposed 
optimization framework in residential, commercial, and industrial areas: improvement in energy efficiency, 
improvement in cost savings, and decrease in carbon emissions. The results show improvements across all 
sectors, with the largest cost savings occurring in residential (14.4%) and the highest improvement 
consideration for energy efficiency occurring in commercial (12.9), while all sectors all demonstrated 
reductions in carbon emissions (14.8-15.9%). 
 
Table 4: Computational Efficiency of RL, DL, and Hybrid Models 

Model 
Type 

Average 
Computational 
Time (s) 

Accuracy 
(%) 

Scalability 
(%) 

RL Model 4.2 87.5 92 
DL Model 6.7 90.1 89 
Hybrid 
Model 5.1 91.2 93 

 
Table 4 shows the computational efficiency of the three models (RL, DL, and Hybrid) over a period of time. 
Balanced between computational time, accuracy, and scalability, the hybrid model achieves 91.2% accuracy, 
with an enhanced scalability of 93%, outlasting the RL and DL models for real-time optimization 
performance. 
 
Model Optimization 
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Hyperparameter Tuning and Advanced Techniques 
Several hyperparameter tuning approaches including Grid Search and Random Search were used to ensure 
maximum model performance. The hyperparameters were adjusted, with learning rate, batch size, and the 
overall architecture of the neural networks adjusted to improve both accuracy and generalization. 
• Grid Search - this method exhaustively tests all combinations of hyperparameters across a 

predefined grid. While this method can be expensive from a compute perspective, it guarantees that 
all combinations of hyperparameters are tested so that the optimal set of hyperparameters is 
identified. 

• Random Search - this method samples the hyperparameter space at random, and will often arrive at 
the optimal hyperparameter sooner than Grid Search. This method is often more efficient for large 
parameter spaces. 

Both Grid Search and Random Search improve generalization, reduce overfitting, and ensure model 
performance on new/unseen data. 
 
Key Findings: 
• Reinforcement Learning Model: Hyperparameter tuning for the RL model produced a 4% increase in 

accuracy and a 7% decrease in overfitting.  
• Deep Learning Model: Random Search led to a 5% increase in accuracy and a 6% improvement in 

generalizing the model across different data sets.  
• Hybrid Model: The combination of Grid Search and Random Search produced the most optimal 

configuration that increased accuracy by 6% while decreasing complexity by 8% which allowed for a 
faster computation rate without losing accuracy. 

 
Table 5: Optimization Model Hyperparameter Tuning Results 

Model Tuning 
Method 

Optimal 
Hyperparameters 

Accuracy 
(%) 

Overfitting 
Reduction 

(%) 

Computational 
Time (s) 

RL Model Grid 
Search 

Learning Rate: 
0.001, Batch Size: 
32 

89.4 7 5.6 

DL Model Random 
Search 

Learning Rate: 
0.0005, Epochs: 50 91.2 6 12.3 

Hybrid 
Model 

Grid + 
Random 
Search 

Learning Rate: 
0.0008, Epochs: 60, 
Hidden Layers: 4 

92.5 8 8.2 

 
 
The results for hyperparameter tuning of the models can be found in the table above. The hybrid model 
achieved the highest accuracy of 92.5% and most improvement in overfitting of 8%, largely due to the 
combination of Grid and Random Search. Following that, the RL model achieved 89.4% accuracy with a 7% 
improvement in overfitting, and the DL model reached the highest accuracy of 91.2% and a 6% improvement 
in generalization. 
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Real-World Deployment Considerations 
Privacy, Interoperability, and Regulatory Compliance 
Utilizing the developed optimization models in real-world smart grid systems involves multiple challenges 
that must be addressed. These are: 
• Privacy: When using smart grid data, especially in homes, it is extremely important to keep 

consumers' sensitive data private. Federated learning and encryption of data could be useful to 
achieve this objective. Effective use of models to optimize energy consumption should be paired 
with adequate privacy procedures to protect personal data. 

• Interoperability: Smart grids contain heterogeneous systems, sensors, and devices. The challenge is 
to ensure that the framework developed can connect to existing systems, especially legacy systems, 
and sensors. The model has to be flexible, and able to integrate with various sensors, hardware, and 
software, used in smart grids. 

• Regulatory compliance: Smart grid systems often face various regulations, such as related to energy 
use, data, and stability of the grid. The optimization models must comply with local and international 
regulations. This means understanding energy policy, emissions regulations, and data protection. 

Solutions addressing deployment are important to address these challenges while maintaining the 
effectiveness of the energy optimization models in the grid. 
 
Table 6: Comparison of Real-World Deployment Challenges 

Challenge Description Proposed Solution 

Privacy 
Protecting privacy for 
consumer data while 
maximizing energy use. 

Execution of federated 
learning and sophisticated 
encryption methods. 

Interoperability 

Maintaining alignment 
between the developed 
model and the existing 
infrastructure and 
devices in the grid 
system. 

Creation of a flexible API 
and middleware level for 
legacy system integration.  

Regulatory 
Compliance 

Conforming to 
applicable local and 
international energy 
regulations, data 
protection policies, and 
environmental 
practices. 

Regular audits for 
regulatory compliance and 
integration to energy 
compliance databases. 

 
The table below summarizes the main difficulties in implementing the models within real-world settings and 
identifies an approach for each problem. To address Privacy, federated learning and encryption are used to 
protect data while performing optimization. To address interoperability, an API layer will be proposed to 
support integration and an audit process will be proposed to support regulatory compliance with energy 
policies. 



www.healthinformaticsjournal.com Frontiers in Health InformaticsISSN-Online: 
2676-7104 
2025; Vol 14: Issue 2 Open Access 

3075 

 

 

5. Discussion and Conclusions 
This research shows us that optimization using data, especially through a hybrid reinforcement learning (RL) 
and deep-neural network (DNN) structure can greatly improve the management of energy consumption in 
smart grids. Providing predictive capability with control that transfers learning in real-time optimizes 
efficiency, improves costs, and reduces carbon emissions for residences, business, and industry. For global 
energy policy makers, this research shows the necessity of investing in digital intelligence for grid 
management along with traditional infrastructure investment. Relative to the current literature, the specific 
contributions we make extend the state of the art in several meaningful ways. Biswas et al. (2024) has pointed 
out that AI provides many opportunities to optimize energy production and distribution, yet challenges 
remain regarding scalability and adaptability. Our hybrid RL-DNN framework specifically addresses the 
scalability and adaptability concerns: RL enables real-time adaptability, whereas DNN delivers high accuracy 
in forecasting, even under volatile conditions. Similarly, Biswas et al. (2024, 2025) identified a broad range 
of AI approaches, but also highlighted that development has little or no applicability to practice. In our 
approach, we couple learning and control in real-time, which makes it more appropriate for operational scale 
implementations instead of being left in simulation studies. Our findings are in line with research by Rojek 
et al. (2025) who emphasized the contribution of artificial intelligence to accelerate decarbonization strategies 
by enhancing forecasting and grid management. We affirm this view, but take it further by illustrating how 
predictive accuracy can be put to work in real-time demand response actions, and diminish reliance on fossil 
fuel based peak generation. Similarly, studies like Pushpavalli et al. (2024), and Karrothu et al. (2024), 
illustrated how deep learning models such as LSTMs have forecasting potential. Their results strengthened 
the case for data-driven forecasting and forecasting powered by technology, however our results provide 
evidence that combining predictive and prescriptive principles generates greater results than predictive alone, 
particularly in smoothing load profiles and integrating renewables more effectively. 
From a policy perspective, there are three relevant implications. First, a hybrid system strengthens support 
for carbon reduction commitments. The hybrid system will reduce peak loads and allow demand to match 
renewable generation for measurable emissions reductions. This aligns with international commitments in 
agreements like the Paris Agreement, where load flexibility is increasingly considered a complementary 
value to renewable deployment. Second, results draw attention to the potential for real-time demand response 
programs. Existing programs are often delayed or performed by hand, but an AI controller reacts in seconds, 
which allows a policymaker to design more responsive pricing schemes or emergency plans. Third, the 
framework enhanced renewable energy generation nexus with reduced curtailment and flexibility to rely on 
intermittency that maximizes the value of solar and wind investments. Yet, challenges related to deployment 
are still present. Interoperability is a key concern given that smart grids include numerous devices, 
communication protocols, and legacy systems. The lack of standards can hinder optimal functioning of AI-
based controller. For this reason, policymakers should prioritize international standardization for 
interoperability and encourage the development of middleware platforms that can provide interoperability 
across heterogeneous systems. Another major consideration is privacy. The data optimization framework 
relies on using fine-grained data, and could raise risks of information access and loss of trust among 
consumers. Federated learning and edge computing provide a path forward by allowing private data to remain 
local while still permitting system-level optimization. Cooperation from policymakers through regulations 
and incentives for privacy-preserving alternatives could be beneficial. 
 
An additional critical concern pertains to computational efficiency. Deep learning models are routinely 
faulted for high computational expense during application and limited potential for real-time implementation. 
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We show that hybrid RL-DNN computational cost provides a reasonable balance with network accuracies 
above 91 percent. From a policy perspective, these findings suggest that advanced AI approaches that focus 
on energy issues can be scaled successfully without generating excessive operating expense. The research 
findings also strengthen the case for ongoing investment in energy-specific AI approaches that balance 
accuracy, scaling, and computational efficiency. 
Aside from technical issues, this research has wider strategic considerations. International energy transitions 
call for a double-pronged strategy: to increase renewable capacity and to improve demand-side management 
at the same time. The evidence provided here indicates that AI-based optimization can support these efforts 
in the second prong, developing smarter, more flexible grids that permit larger renewable shares. This could 
address the need for infrastructure expansion, which will be costly, as well as create greater resilience to 
shocks such as sudden demand increases and renewable variability. To international policymakers, digital 
interventions, like those outlined here, present a low-cost way to reinforce the physical grid. 
However, the difference between simulation-based results and deployment in the real world must be 
recognized. While our framework appears promising in simulations and trials, a wider-cast deployment will 
require utility, regulator, and technology provider collaboration. Regulatory sandboxes, as well as 
international pilot projects, might facilitate taking the next step toward these broader implementation efforts, 
and would enable such models, like ours, to be deployed in varying conditions while managing risk. This is 
similar to what other sectors have done to responsibly scale up AI, which is to do so in phases and via adaptive 
regulation. 
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