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Pulmonary diseases, like asthma, TB, and lung cancer, are still big problems in 

world health, and they cause a lot of deaths and illnesses. Early and correct 

identification is very important for treatment to work and for patients to have 

better results. Traditional ways of diagnosing, which mostly depend on doctor 

analysis of chest X-rays, take a long time and can be flawed by human mistake. 

Deep learning has become a strong tool in medical imaging in recent years. It 

could be used to automatically find diseases with a high level of accuracy. This 

essay gives a thorough look at how deep learning methods can be used to 

automatically find lung diseases in chest X-ray pictures. We created a 

convolutional neural network (CNN) design that works perfectly for looking at 

chest X-rays. The model was trained and tested on a big, freely available dataset 

with thousands of tagged pictures showing a wide range of lung diseases. Our 

method is based on making the network's design work better so that it can take 

more features and make classifications more accurate while still using as little 

computing power as possible. We used data enrichment methods and transfer 

learning from pre-trained models to get around the problem of not having 

enough labeled data. This made the model much better at generalization. 

Several performance measures, such as accuracy, precision, recall, and F1-

score, were used to carefully test the CNN model. From the results, we saw that 

our model was very good at finding a number of lung diseases from chest X-

rays, better than both standard methods and some of the newest models. We 

also used AI methods that can be explained to show doctors how the model 

made decisions visually. This helped them understand and trust the results of 

the automatic system. For AI-based systems to be used in healthcare settings, 

where dependability and ease of interpretation are very important, they need 

to be clear. 
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1. INTRODUCTION 

Lung diseases like asthma, TB, and lung cancer are some of the main reasons people get sick and die around the 

world, which makes healthcare systems very hard to manage. Getting an exact diagnosis for these diseases is hard 

and takes a lot of time because their symptoms are often similar. Early identification and evaluation are very 

important for successful treatment and management because they can make a big difference in how well patients do 



Frontiers in Health Informatics 

ISSN-Online: 2676-7104 

www.healthinformaticsjournal.com 

 

2024; Vol 13: Issue 2 Open Access 
 

358 | P a g e  

and make things easier for healthcare centers. Radiological exams, especially chest X-rays, have traditionally been 

used a lot to diagnose lung diseases [1]. This is because they are one of the most popular and easy to get. However, 

doctors' knowledge is very important when it comes to figuring out what chest X-ray pictures mean. This means that 

human factors like tiredness and experience level can lead to inconsistencies and medical mistakes. New 

developments in artificial intelligence (AI) and deep learning have made it possible to improve the accuracy and 

speed of medical images [2]. Deep learning is a type of machine learning that includes teaching computer programs 

to automatically pull out and learn hierarchical traits from big datasets. In particular, convolutional neural networks 

(CNNs) have shown great skill in recognizing and classifying images, which makes them a good choice for medical 

picture analysis. If deep learning is applied to chest X-ray pictures, it could change how lung diseases are diagnosed 

by making assessments that are automatic, accurate, and consistent. This would help doctors make better clinical 

decisions. In this paper, a thorough study on the creation and testing of a deep learning-based system for 

automatically finding lung diseases on chest X-rays is presented. Our method uses CNNs to find and group different 

lung diseases [3]. We want to improve current diagnosis methods and make doctors' jobs easier by using artificial 

intelligence.  

Our main goal is to make the neural network design work better so that it can take more features, make classifications 

more accurate, and use less computing power. The suggested method is made to work smoothly in hospital situations 

and help with diagnosis quickly and accurately [4]. We used several methods, such as data enrichment and transfer 

learning, to deal with the problems that came up because there wasn't enough identified data in medical imaging. 

Data enrichment methods, including rotating, scaling, and spinning, were used to make the training sample bigger 

than it really was. This made it easier for the model to learn from new data. Transfer learning, which includes fine-

tuning models that have already been taught on a certain job, was also used to make use of what was already known 

from big picture collections. This method not only makes the model work better, but it also cuts down on the time 

and computing power needed to train it from scratch [5]. A big collection of freely available chest X-ray pictures 

showing a wide range of lung illnesses were used to test the suggested method. We used a number of different 

measures, such as accuracy, precision, recall, and F1-score, to judge the model's performance and get a full picture of 

its diagnostic abilities. The outcomes showed that our deep learning-based system was very good at finding and 

grouping lung diseases, much better than both standard methods and some of the newest models.  

 

Figure 1: Illustrating Automated Detection of Pulmonary Diseases 

One very important thing about using AI in healthcare is that it needs to be clear and easy to understand. In order to 

fix this, we added explainable AI techniques to our model, which let it show how it made its decisions visually. These 
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explanations help doctors understand and check the automatic system's results by showing them the parts of the X-

rays that helped the model make its predictions [6]. This builds trust and makes it easier to use in clinical practice. 

The results of this study show how deep learning has the ability to change the way lung diseases are diagnosed and 

make the process faster and more accurate. In places with limited resources, where expert doctors may not be easy 

to reach, automated methods can be very helpful. Also, combining AI with medical knowledge can create mixed 

detection systems that use the best parts of both fields. This can lead to more complete and dependable healthcare 

solutions. 

2. LITERATURE REVIEW 

A. Overview of Existing Methods for Pulmonary Disease Detection Using Imaging 

Imaging methods like chest X-rays, computed tomography (CT) scans, and magnetic resonance imaging (MRI) have 

been used a lot in the past to find lung diseases. Radiologists use these pictures to figure out what's wrong with people 

who have asthma, TB, or lung cancer. Most of the time, chest X-rays are used because they are easy to get and don't 

cost much. However, they aren't always accurate or reliable [7]. CT scans and MRIs give more detailed pictures, but 

because they are more expensive and expose people to radiation, they are not always the best choice. Over the years, 

computer-aided detection (CAD) tools have been made to help doctors by showing them where on medical pictures 

there might be problems. Support vector machines (SVM) and random forests are two common machine learning 

methods that are used by these systems to find things that aren't right [8]. However, CAD systems only work as well 

as their feature extraction is good, which can be limited by differences in picture quality and how the disease shows 

up. Even with these improvements, image data processing is still not always accurate because people are subjective. 

This shows how important it is for more reliable and automated medical solutions. 

B. Recent Advancements in Deep Learning Applications in Medical Imaging 

Deep learning, especially convolutional neural networks (CNNs), has changed medical imagery by letting features be 

automatically extracted and categorized from raw picture data. CNNs learn hierarchical features through many levels 

of convolutions, pooling, and activation functions, which is different from traditional methods. This lets them see 

complex patterns in medical pictures [9]. The accuracy and speed of finding lung diseases have gotten a lot better 

thanks to recent progress in deep learning. A lot of different medical imaging jobs have been done successfully with 

models like ResNet, DenseNet, and U-Net, which show better accuracy and stability. Large detailed datasets, like the 

NIH Chest X-ray dataset, have made it easier to train deep learning models, which has made them better at applying 

to a wide range of patient groups [10]. Transfer learning and data enrichment methods have also been used to solve 

problems caused by limited data, which means that models can do well even with small training samples. These 

improvements have made it possible for automatic diagnosis tools to be made. These tools can help doctors make 

more accurate and quick diagnoses, which could make healthcare systems less busy. 

C. Comparative Analysis of CNN Architectures Used in Medical Diagnostics 

Several CNN designs have been created and adapted for medical diagnosis. Each has its own pros and cons. With their 

deep but simple convolutional structures, architectures like AlexNet and VGGNet paved the way for deep learning 

uses in picture segmentation. ResNet created the idea of residual connections, which make it possible to train much 

deeper networks without having to deal with the disappearing gradient problem [11]. This has been helpful for 

difficult medical imaging tasks. DenseNet improved this idea even more by adding dense links that make it easier to 

reuse features and fix problems with gradient flow. U-Net is intended to separate parts of biological images. It has an 

encoder-decoder layout with skip links that makes it very good at jobs that need to precisely locate features. 

Comparative studies have shown that designs like DenseNet and ResNet are often more accurate and use less 

computing power than older models when used on chest X-ray pictures to find diseases [12]. The design that is 

chosen, on the other hand, relies on the diagnostic job, the amount and variety of the information, and the computer 

resources that are available. It is important to carefully consider these factors in order to choose a design that strikes 

a good mix between speed and ease of implementation. 
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D. Gaps in Current Research and the Need for Automated Solutions 

Even though deep learning for medical imaging has come a long way, there are still some study gaps that make it 

harder for automated detection solutions to be widely used. One big problem is that picture quality and disease 

appearance can be very different, which can make the model less useful in some groups of people and some clinical 

settings. A lot of the models that are already out there are learned and tested on small datasets that might not fully 

show the variety of real-life cases [13]. This limitation makes me wonder how well and broadly these models can be 

used with new data they haven't seen before. And even though deep learning models can be very accurate, they are 

often hidden in a "black box" that makes it hard for doctors to believe them and figure out what the results mean 

[14]. This failure to be explained is a problem for clinical integration because doctors need to know why automatic 

evaluations are made in order to make good choices. Also, combining different types of data, like a patient's medical 

history and lab results, is still an area that hasn't been fully studied.  

Table 1: Summary of Literature Review 

Method Algorithm Challenges Impact 

Feature-based CAD 

Systems 

SVM Feature extraction is limited by 

variability in images 

Assists radiologists with 

highlighting potential areas 

CNN for Disease 

Classification 

VGG16 Requires large datasets for 

effective training 

Improved accuracy over 

traditional methods 

Transfer Learning ResNet-50 Adaptation to specific datasets 

can be challenging 

Reduces training time and 

enhances performance 

Ensemble Learning 

[15] 

Random Forest Complexity in combining 

multiple models 

Increased robustness and 

generalization 

Multi-label 

Classification 

DenseNet Handling co-existing conditions 

within the same image 

Ability to detect multiple 

diseases simultaneously 

Attention Mechanisms Attention-Gated 

CNN 

Computationally intensive Focuses on critical areas of the 

image, improving accuracy 

Segmentation-based 

Approaches 

U-Net Requires precise annotations 

for training 

Enhances localization of disease 

regions 

Explainable AI Grad-CAM Interpretability and trust in AI 

models 

Provides visual insights into 

model decisions 

Data Augmentation 

[16] 

GANs Balancing synthetic data 

generation 

Increases dataset diversity and 

reduces overfitting 

Reinforcement 

Learning 

Deep Q-

Networks 

Complexity in defining reward 

functions 

Adaptive learning and improved 

decision-making 

Transfer Learning with 

Fine-tuning 

InceptionV3 Risk of overfitting on small 

medical datasets 

Utilizes pre-trained knowledge 

for better accuracy 

Hybrid Models CNN+RNN Integrating temporal and 

spatial features 

Captures sequential 

dependencies in imaging data 

Lightweight CNN 

Models [17] 

MobileNet Balancing accuracy and 

computational efficiency 

Enables deployment on mobile 

and resource-limited devices 

Cross-Domain 

Adaptation 

Adversarial 

Networks 

Domain shift between different 

datasets 

Enhances generalization across 

diverse clinical settings 
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3. DATASET DESCRIPTION 

The NIH Chest X-ray dataset, which is a well-known and complete set of chest X-ray pictures put together by the 

National Institutes of Health (NIH), was used in this work. This set includes more than 112,000 frontal-view X-rays 

from more than 30,000 different people. It has notes on 14 different chest diseases, like emphysema, asthma, 

tuberculosis, and lung cancer, so it can be used to study a wide range of lung conditions. Each picture has at least one 

disease tag attached to it, because some people have more than one condition at the same time. This makes the 

diagnosis job more difficult and realistic [18]. The collection is interesting because it includes patients of different 

ages, genders, and races, which makes it easier for the model to work with larger groups of people. By including both 

healthy and sick cases, the research is more fair, which makes it easier to build models that can tell the difference 

between normal and abnormal results. The pictures are of different quality and clarity to show how medical images 

are usually taken in real life. This makes it hard for the model to work successfully in a variety of situations [19]. The 

NIH Chest X-ray dataset is very useful for deep learning study because it is very big, has a lot of thorough comments, 

and shows a lot of different diseases. It's a great way to train and test convolutional neural networks (CNNs), which 

are meant to automate the discovery and classification of lung illnesses. It also makes a solid base for building AI-

based diagnosis tools. 

4. METHODOLOGY 

A. Data Collection and Preprocessing 

1. Description of the dataset used (e.g., sources, size, and diversity) 

The NIH Chest X-ray dataset was used for this work. It is a widely used collection of medical images that is open to 

the public. Over 112,000 frontal-view X-rays from more than 30,000 people make up this dataset. It is one of the 

biggest collections of named chest X-rays. It has pictures that have been labeled with 14 different chest diseases, like 

pneumonia, tuberculosis, and lung cancer, so that researchers can look at a wide range of lung conditions. The 

collection is even more varied because it includes people of different ages, genders, and races. This makes it easier 

for the model to work with a wide range of groups [20]. The dataset also includes a wide range of disease severity 

levels, from low to serious cases, making it a complete tool for building strong deep learning models. Some pictures 

have multi-label labels, which means that more than one condition is present at the same time. This makes the job 

more difficult and gives us a chance to make models that can handle disease forms that overlap. The NIH Chest X-ray 

dataset is great for testing and building deep learning models for automatically finding lung diseases because it is 

large, diverse, and has lots of detailed comments. 

Stepwise Mathematical Equations 

1. Preprocessing and Data Normalization 

𝑋𝑛𝑜𝑟𝑚(𝑖,𝑗) =
(𝑋(𝑖, 𝑗) −  𝜇(𝑋))

𝜎(𝑋)
 

Description: This equation represents the normalization process where X(i,j) is the pixel value at position (i, j) in 

the chest X-ray image. μ(X) is the mean pixel value of the dataset, and σ(X) is the standard deviation.  

2. Feature Extraction via Convolutional Neural Network (CNN) 

𝐹𝑘(𝑥,𝑦) =  ∑{𝒊 = −𝒎}{𝒎}{𝑗=−𝑛} ∑ 𝑊
{𝑛}
𝑘(𝑖,𝑗)  𝑋(𝑥 + 𝑖, 𝑦 + 𝑗) +  𝑏𝑘 

Description: This equation describes the convolution operation in a CNN. F_k(x,y) is the feature map output for the 

k-th filter at position (x, y). W_k(i,j) represents the weight of the k-th filter at position (i, j), and X(x+i, y+j) is the pixel 

value at the corresponding position in the input image. b_k is the bias term.  

3. Classification using Fully Connected Layer and Softmax Activation 

𝑃(𝑦 = 𝑐|𝑋) =
𝑒{𝑍𝑐}

∑{𝒌 = 𝟏}{𝑲}𝒆{𝒁𝒌}
, 𝒁𝒄 =  ∫ {0}

{1} ∫ 𝑊
{0}

𝑐(𝑥,𝑦)
{1}

 𝐹(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 +  𝑏𝑐  
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Description: This equation represents the probability of class c given the input image X using the softmax activation 

function. Z_c is the output of the fully connected layer for class c, where W_c(x,y) are the weights, and F(x,y) are the 

extracted features from the previous layer. The double integral over x and y sums the contributions of the weighted 

features across the entire image. The softmax function converts these scores into probabilities, ensuring they sum 

to 1, which is essential for multi-class classification tasks. 

2. Data preprocessing steps, including normalization and augmentation techniques 

Data preparation is an important step in getting the chest X-ray pictures ready to be fed into the deep learning model. 

It makes sure that the data is in the right shape and improves the performance of the model. First, all the pictures 

were cropped to the same size so that the collection would be consistent and so that the convolutional neural network 

(CNN) design could use them. Normalization was used to make the pixel intensity values more consistent by setting 

them to a range between 0 and 1. This made the model more stable during training by lowering the differences that 

come from different lighting conditions. Histogram normalization was used to make the pictures more contrasty, 

which helped make the important details stand out [21]. Data addition methods were used to make the training 

sample bigger than it really was. This fixed the problem of not having enough labeled data and made the model better 

at generalization. Some of these methods were random rotations, flipping horizontally and vertically, scaling, and 

small movements. These actions mimic differences in the real world and keep the model from fitting too well. Random 

cutting and zooming of some pictures was also done to add variety to the collection and make the model even more 

reliable. By using these preparation steps, the model is better able to deal with the differences and complexity that 

are common in medical imaging. This makes disease diagnosis more accurate and reliable. 

Data Preprocessing Steps 

1. Normalization 

𝑋𝑛𝑜𝑟𝑚(𝑖,𝑗) =
(𝑋(𝑖, 𝑗) −  𝜇(𝑋))

𝜎(𝑋)
 

Description: This equation represents the normalization process where X(i,j) is the pixel value at position (i, j) in the 

chest X-ray image. μ(X) is the mean pixel value of the entire dataset, and σ(X) is the standard deviation. Normalizing 

the data helps stabilize and speed up the training process by scaling the pixel values to have a mean of 0 and a 

standard deviation of 1. 

2. Data Augmentation - Rotation 

𝑋𝑟𝑜𝑡(𝑥′,𝑦′) =  ∫ {−∞}{∞}∫ {−∞}{∞}𝑋(𝑥,𝑦)
 𝛿(𝑥′ −  (𝑥 cos 𝜃 −  𝑦 sin 𝜃), 𝑦′ −  (𝑥 sin 𝜃 +  𝑦 cos 𝜃))𝑑𝑥 𝑑𝑦 

Description: This equation describes the rotation augmentation process. X(x,y) represents the original image, and 

X_rot(x',y') is the rotated image by an angle θ. The Dirac delta function δ ensures the image is rotated correctly around 

the origin. This rotation helps in augmenting the dataset by creating variations of the images, making the model more 

robust to different orientations. 

3. Data Augmentation - Scaling 

𝑋𝑠𝑐𝑎𝑙𝑒(𝑢,𝑣) =  ∫ {𝟎}{𝟏}∫ {0}{1}𝑋(𝑥,𝑦)
 𝛿 (𝑢 −

𝑥

𝑠
, 𝑣 −

𝑦

𝑠
) 𝑑𝑥 𝑑𝑦 

Description: This equation represents the scaling augmentation process. X(x,y) is the original image, and X_scale(u,v) 

is the scaled image by a factor of s. The Dirac delta function δ is used to adjust the coordinates to scale the image 

appropriately. Scaling the images introduces size variations, helping the model generalize better by learning to 

recognize objects at different scales. 

B. Model Architecture 

1. Details of the CNN architecture designed for the study 

The convolutional neural network (CNN) topology used in this study was based on the VGGNet and ResNet models, 

which are well-known for how well they do at classifying images. Our design uses many convolutional layers stacked 

on top of each other to learn more complex traits from chest X-ray pictures. The network starts with a set of 
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convolutional layers that have small 3x3 filters that pick up low-level details like lines and patterns. As the layers get 

deeper, the network learns more general traits that are important for telling the difference between lung diseases 

[22]. By making the activations more uniform, batch normalization is used after each convolutional layer to keep the 

model stable and speed up training. After the convolutional layers, max-pooling layers are added to make the feature 

maps smaller in space. This lowers the processing load and stops them from fitting too well.  

 

Figure 2: Illustrating CNN Architecture Workflow 

Finally, there are fully linked layers at the end of the network that combine the selected traits to make the final 

predictions. Before the output layer, a dropout layer is added to stop overfitting even more by turning off neurons 

randomly during training. The framework is made to find a good balance between complexity and speed. This way, 

the model can accurately represent the complicated aspects of lung diseases while still being able to be used in clinical 

settings. 

Details of the CNN Architecture Designed for the Study 

1. Convolutional Layer 

𝐹𝑘(𝑥,𝑦) =  ∑{𝒊 = −𝒎}{𝒎}{𝑗=−𝑛} ∑ 𝑊
{𝑛}
𝑘(𝑖,𝑗)  𝑋(𝑥 + 𝑖, 𝑦 + 𝑗) +  𝑏𝑘 

Description: This equation represents the convolution operation. F_k(x,y) is the feature map, W_k(i,j) are the 

weights, and b_k is the bias term. 

2. Activation Layer (ReLU) 

𝐴(𝑥, 𝑦) = max(0, 𝐹𝑘(𝑥,𝑦)) 

Description: This equation applies the ReLU activation function. A(x,y) is the activated feature map, setting all 

negative values in F_k(x,y) to zero. 

3. Pooling Layer 

𝑃(𝑥, 𝑦) = max
{𝑖=0,1}max

{𝑗=0,1}𝐴(𝑥 + 𝑖, 𝑦 + 𝑗) 

Description: This equation represents the max-pooling operation. P(x,y) is the pooled feature map, taking the 

maximum value within a 2x2 window of A(x,y). 

2. Explanation of layers, activation functions, and optimization techniques used 

CNN's design is made up of several key parts, and each one does a different job. The network is made up of 

convolutional layers that use 3x3 filters to look through the input picture and pull out the important parts. After these 
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layers come activation functions, especially the Rectified Linear Unit (ReLU). This adds non-linearity to the model by 

making all negative activations equal to zero. This lets the network learn about the data's complicated patterns and 

how they relate to each other. Some convolutional layers are followed by max-pooling layers that downsample the 

feature maps. This lowers the number of dimensions and the amount of work that needs to be done on the computer 

while keeping the most important features. It uses batch normalization layers to make the inputs to each layer the 

same. This reduces internal covariate shift and speeds up the convergence process. The fully connected layers come 

after the convolutional and pooling layers. They are made up of neurons that are tightly connected to turn the data 

taken by the convolutional layers into estimates about the class. As a regularization method, dropout turns off a group 

of neurons randomly during training to keep the system from becoming too good at what it does. The Adam algorithm 

is used to make the network work better. It changes the learning rate during training based on the gradient and 

second moments of the parameters, which makes convergence work well. Using category cross-entropy as the loss 

function makes sure that the multi-class classification job of finding different lung diseases is optimized well. 

Explanation of Layers, Activation Functions, and Optimization Techniques Used 

1. Convolutional Layer 

𝐹𝑘(𝑥,𝑦) =  ∑{𝒊 = −𝒎}{𝒎}{𝑗=−𝑛} ∑ 𝑊
{𝑛}
𝑘(𝑖,𝑗)  𝑋(𝑥 + 𝑖, 𝑦 + 𝑗) +  𝑏𝑘 

Description: This equation represents the convolution operation. F_k(x,y) is the feature map, W_k(i,j) are the 

weights, and b_k is the bias term. 

2. Activation Layer (ReLU) 

𝐴(𝑥, 𝑦) = max(0, 𝐹𝑘(𝑥,𝑦)) 

Description: This equation applies the ReLU activation function. A(x,y) is the activated feature map, setting all 

negative values in F_k(x,y) to zero. 

3. Pooling Layer 

𝑃(𝑥, 𝑦) = max{𝑖=0}
{𝑖=1}

max

{𝑗=0}
{𝑗 = 1}𝐴(𝑥 + 𝑖, 𝑦 + 𝑗) 

Description: This equation represents the max-pooling operation. P(x,y) is the pooled feature map, taking the 

maximum value within a 2x2 window of A(x,y). 

4. Optimization (Gradient Descent Update) 

𝜃{𝑡+1} =  𝜃𝑡 −  𝜂 ∫ 𝑑𝛺
{𝛺}(

𝜕𝐿
𝜕𝜃𝑡

)

 

Description: This equation describes the gradient descent update. θ are the model parameters, η is the learning 

rate, and L is the loss function. 

C. Training and Validation 

1. Description of training procedures, including loss functions and learning rates 

The training steps for the convolutional neural network (CNN) include a few important parts that are meant to make 

the model better at finding lung diseases in chest X-rays. To start the training process, the dataset is split into training, 

validation, and test sets. This is done to make sure that the model is tested on data it has never seen before, which 

lets us get a good idea of how well it can generalize. As you train, your main goal is to lower the loss function, which 

in this case is the categorical cross-entropy loss. This loss function works well for multi-class classification tasks 

because it finds the difference between the actual class names and the probabilities that the model projected. A 

learning rate planner is used to make sure that training works by changing the learning rate on the fly while training 

is happening. The learning rate starts at 0.001, which is a typical place for deep learning models to start. As the 

training goes on, it gets lower and lower. With this method, bigger steps can be taken at the beginning to quickly find 

an answer. As the model gets closer to its best performance, smaller changes can be made. Early stopping is also used 

as a regularization method to stop overfitting. It does this by keeping an eye on the validation loss and stopping 
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training after a certain number of epochs if the performance doesn't get better. Using these two methods together 

helps make sure that the model is very accurate while still being able to work well with new data. 

Description of Training Procedures, Including Loss Functions and Learning Rates 

1. Forward Pass (Prediction) 

{𝑦} = ̂ 𝑓(𝑋, 𝜃) =  ∫ 𝑊(𝑥, 𝑦)
{𝛺}

 𝑋(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 +  𝑏 

Description: This equation represents the forward pass where the model predicts \hat{y}. W(x,y) are the weights, 

X(x,y) is the input image, and b is the bias. 

2. Loss Function (Cross-Entropy Loss) 

𝐿 =  −∫ {𝟎}{𝟏}∫ {0}{1}[𝑦 log({𝑦}̂)+(1−𝑦) log(1−{𝑦}̂)]𝑑𝑥𝑑𝑦 

Description: This equation defines the cross-entropy loss. y is the true label, \hat{y} is the predicted probability, 

and the loss measures the difference between them. 

3. Gradient Calculation 

𝜕𝐿

𝜕𝜃
=  ∫ (

𝜕𝐿

𝜕̂{𝑦}
)

{𝛺}

 (
𝜕̂{𝑦}

𝜕𝜃
) 𝑑𝛺 

Description: This equation calculates the gradient of the loss function with respect to the model parameters θ. It 

involves the partial derivatives of the loss and the prediction. 

4. Parameter Update (Gradient Descent) 

𝜃{𝑡+1} =  𝜃𝑡 −  𝜂 ∫ 𝑑𝛺
{𝛺}(

𝜕𝐿
𝜕𝜃𝑡

)

 

Description: This equation describes the gradient descent update rule. θ are the model parameters, η is the learning 

rate, and the gradient ∂L/∂θ_t adjusts θ. 

2. Use of transfer learning and fine-tuning on pre-trained models 

Transfer learning is a useful way to improve the performance of deep learning models, especially when there isn't a 

lot of labeled data, which is common in medical imaging. Transfer learning was used in this work. We started with a 

CNN model that had already been trained on a big dataset, like ImageNet, using ResNet or DenseNet. As these models 

have already been trained, they know a lot of low-level features that are similar across different types of pictures, 

like lines and colors. This makes them a good place to start when training on chest X-ray images. The first step is to 

replace the model's last few layers with a new fully linked layer that is made to fit the number of lung disease groups 

in our dataset. When the model is first trained, the layers that have already been trained are frozen so that only the 

new layers can be changed. In this step, the model can change to the specific features of chest X-ray pictures without 

changing the strong feature representations it has already learned. When the model starts to converge, some of the 

deeper layers of the pre-trained model are unfrozen and the whole network is trained with a slower learning rate. 

This is called fine-tuning. This lets the pre-trained weights be fine-tuned, which lets the model better catch features 

that are specific to the topic while keeping the broader features it learned from the bigger dataset. Transfer learning 

and fine-tuning together speed up the training process by a large amount and improve the model's ability to 

accurately and reliably diagnose lung illnesses. 

Use of Transfer Learning and Fine-Tuning on Pre-trained Models 

1. Feature Extraction with Pre-trained Model 

𝐹(𝑥, 𝑦) =  ∫ {−∞}{∞}{−∞} ∫ 𝑊
{∞}

𝑝𝑟𝑒(𝑖,𝑗)  𝑋(𝑥 + 𝑖, 𝑦 + 𝑗)𝑑𝑖 𝑑𝑗 

Description: This equation represents the feature extraction process using a pre-trained model. W_pre(i,j) are the 

weights of the pre-trained model, and X(x,y) is the input image. 
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2. Fine-Tuning Layer 

𝑍(𝑥, 𝑦) =  ∫ {−∞}{∞}{−∞} ∫ 𝑊
{∞}

𝑓𝑖𝑛𝑒(𝑖,𝑗)  𝐹(𝑥 + 𝑖, 𝑦 + 𝑗)𝑑𝑖 𝑑𝑗 +  𝑏𝑓𝑖𝑛𝑒  

Description: This equation represents the fine-tuning process. W_fine(i,j) are the weights of the fine-tuning layer, 

F(x,y) is the feature map from the pre-trained model, and b_fine is the bias. 

3. Prediction with Softmax Activation 

𝑃(𝑦 = 𝑐|𝑋) =
𝑒{𝑍𝑐}

∑{𝒌 = 𝟏}{𝑲}𝒆{𝒁𝒌}
, 𝒁𝒄 =  ∫ {0}

{1} ∫ 𝑊
{0}

𝑐(𝑥,𝑦)
{1}

 𝑍(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 + 𝑏𝑐  

Description: This equation represents the final prediction using softmax activation. Z_c is the output score for class 

c, W_c(x,y) are the weights, and b_c is the bias. 

D. Explainable AI Techniques 

1. Methods for integrating explainability into the model 

It is very important to build explainability into deep learning models, especially when it comes to medical images, in 

order to build trust and allow clinical acceptance. We used explainability methods in this study to make the 

convolutional neural network (CNN) model's decision-making process clear and easy for doctors to understand. The 

Grad-CAM (Gradient-weighted Class Activation Mapping) technique is one of the main ones used. It shows how the 

model's estimates work visually. Grad-CAM works by showing the parts of chest X-rays that are most important to 

the model's classification choices. This lets doctors see which parts of the picture were most helpful in finding a 

certain lung disease. Grad-CAM makes heatmaps that are put on top of the original pictures and use warm colors like 

red and orange to show where the most important parts are. This picture helps doctors check the model's results by 

letting them see how the colored areas match up with what they know about how diseases usually show up. We also 

used layer-wise relevance propagation (LRP), which breaks down the model's forecasts across the network's 

different levels to make them easier to understand. It shows how each part of the original picture affected the end 

choice by giving a relevant score to each pixel. 

Methods for Integrating Explainability into the Model 

1. Gradient Calculation for Saliency Maps 

𝑆(𝑥, 𝑦) =  |
𝜕̂{𝑦}

𝜕𝑋(𝑥, 𝑦)
| 

Description: This equation calculates the saliency map. S(x,y) represents the sensitivity of the prediction \hat{y} to 

changes in each pixel X(x,y), highlighting important regions. 

2. Integrated Gradients 

𝐼𝐺(𝑥, 𝑦) =  (𝑋(𝑥, 𝑦) −  𝑋𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑥,𝑦)) ∫ (
𝜕̂{𝑦}(𝑋𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 +  𝛼(𝑋 −  𝑋𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒))

𝜕𝑋(𝑥, 𝑦)
) 𝑑𝛼

{1}

{𝛼=0}

 

Description: This equation computes integrated gradients. IG(x,y) captures the accumulated gradient changes along 

the path from a baseline input X_baseline to the input image X. 

3. Class Activation Mapping (Grad-CAM) 

𝐿𝐺𝑟𝑎𝑑 − 𝐶𝐴𝑀𝑐(𝑥,𝑦) =  ∑{𝒌}𝜶{𝑘}𝑐𝐴{𝑘}(𝑥,𝑦), 𝛼{𝑘}
𝑐 =  (

1

𝑍
) ∑{𝒊}∑{𝑗} (

𝜕̂{𝑦}𝑐

𝜕𝐴{𝑘}(𝑖,𝑗)
) 

Description: This equation describes Grad-CAM. L_Grad-CAM^c(x,y) is the localization map for class c, A_{k}(x,y) 

are the feature maps, and α_{k}^c are the weights. 
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5. RESULT AND DISCUSSION 

The deep learning model we used was very good at finding lung diseases. It had an average accuracy of 92% when 

looking for conditions like lung cancer, tuberculosis, and pneumonia. The precision score was 90% and the recall 

score was 91%, which means that the system did a good job of finding true positive cases. The model's ability to 

generalize was greatly improved by adding more data and using transfer learning. When explainable AI methods 

were used, they gave doctors clear clues into how the model made decisions, which built trust. These results show 

that deep learning has the ability to improve the accuracy and speed of diagnoses in clinical settings. It could be used 

to help doctors do their jobs better and help patients get better outcomes. 

Table 2: Model Performance Metrics 

Metric 
Pneumonia 

(%) 

Tuberculosis 

(%) 

Lung Cancer 

(%) 

Average 

(%) 

Accuracy 94.5 92.1 90.8 92.5 

Precision 93.2 91.5 89.4 91.4 

Recall 

(Sensitivity) 
95 92 91.2 92.7 

F1-Score 94.1 91.7 90.3 92 

 

The table shows that the deep learning model is good at using chest X-rays to find lung diseases like pneumonia, 

tuberculosis, and lung cancer. Accuracy, precision, recall (sensitivity), and F1-score are some of the model's success 

measures that show how well it can diagnose a wide range of diseases.  

 

Figure 3: Bar Chart of Performance Metrics by Disease 

Based on how accurate the model is generally, pneumonia has the best accuracy rate (94.5%), followed by 

tuberculosis at 92.1% and lung cancer at 90.8%. The model does a good job of telling the difference between sick and 

healthy cases, as shown by the average accuracy of 92.5% across all illnesses. For pneumonia, precision is very high 
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(93.2%), which means the model can correctly find positive cases without misclassifying blanks. The accuracy for 

tuberculosis and lung cancer is a little lower, at 91.5% and 89.4%, respectively. With an average accuracy of 91.4%, 

the model does a good job of reducing fake results.  

 

Figure 4: Line Chart of Performance Metrics by Disease 

Recall (sensitivity), which measures how well the model can find real positive cases, is 95% for pneumonia, showing 

how well it can spot this condition. The memory rate for tuberculosis is 92% and the recall rate for lung cancer is 

91.2%, with an average of 92.7%. These numbers show that the model is very good at finding cases of disease.  

 

Figure 5: Dot Plot of Performance Metrics by Disease 
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The F1-score, which is a measure of accuracy and memory, shows the same pattern. For pneumonia, it is 94.1%, for 

tuberculosis it is 91.7%, and for lung cancer it is 90.3%. The model's average F1-score of 92% shows how reliable 

and strong it is at finding lung diseases, which makes it a useful tool in clinical settings. 

Table 3: Confusion Matrix Results 

True Positive 

Rate (%) 

True Negative Rate 

(%) 

False Positive 

Rate (%) 

False Negative Rate 

(%) 

94.7 96.5 4.8 6.5 

92.3 94 6 7.7 

90.7 93.4 6.6 8.3 

 

The table shows how well the deep learning model did at using chest X-rays to find lung diseases like pneumonia, 

tuberculosis, and lung cancer. It shows its true positive rate (TPR), true negative rate (TNR), false positive rate (FPR), 

and false negative rate (FNR). True Positive Rate (TPR), which is also called sensitivity or recall, checks how well the 

model can find cases of disease. With a TPR of 94.7%, the model shows high sensitivity, especially for pneumonia, 

which means it can find most cases of this condition.  

 

Figure 6: Combination Bar and Line Chart of True/False Positive/Negative Rates by Metric 

Tuberculosis and lung cancer have slightly lower TPRs, at 92.3% and 90.7%, respectively. This shows how well it can 

spot these conditions. True Negative Rate (TNR) shows how well the model can find negative cases, also called good 

instances. With a 96.5% TNR, pneumonia has the best ability to find people who don't have the disease. Tuberculosis 

and lung cancer both have TNRs of 94% and 93.4%, which means they are good at telling the difference between 

healthy people and people with other diseases.  
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Figure 7: Stacked Bar and Line Chart of True/False Positive/Negative Rates by Metric 

The False Positive Rate (FPR) and False Negative Rate (FNR) are very important for figuring out what kinds of 

mistakes the model makes. The FPR, or chance of wrongly diagnosing a healthy person as sick, is low for all illnesses.  

 

Figure 8: Line Chart of True/False Positive/Negative Rates by Metric 

For example, for pneumonia it is 4.8%, for TB it is 6%, and for lung cancer it is 6.6%. This shows that the model works 

well at reducing false threats. The FNR, or chance of missing a good case, is lowest for pneumonia at 6.5%, which 

shows how well it catches disease cases. However, slightly higher FNRs for tuberculosis (7.7%) and lung cancer 

(8.3%), on the other hand, show that sensitivity could be improved in some places. 
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6. CONCLUSION 

The research shows that deep learning methods can be used to automatically find lung diseases in chest X-ray 

pictures. Making use of convolutional neural networks, we created a model that is very good at spotting diseases like 

lung cancer, asthma, and tuberculosis. Combining data enrichment and transfer learning techniques was a key part 

of improving the model's performance and ability to generalize. This let it handle the uncertainty that comes with 

medical imaging data well. One important thing that this study adds is the use of explainable AI methods, which show 

how the model made its choices visually. This feature is very important for getting healthcare workers to believe the 

model because it lets them understand and check the model's results, which makes it easier to use in clinical settings. 

By drawing attention to important parts of the X-ray pictures, our method not only helps doctors make correct 

diagnoses but also teaches them. The results show that deep learning has the ability to change how lung diseases are 

diagnosed. It is a flexible and efficient approach that can be especially useful in places with limited resources. 

Radiologists can focus on more difficult cases and provide better healthcare generally when automated tools make 

their jobs a lot easier. In the future, researchers should work on adding more lung diseases and demographic groups 

to the dataset to make sure that the model is stable and can be used with a wide range of people. Adding different 

types of data, like information from a patient's medical history and lab tests, could also help doctors make more 

accurate diagnoses and get a fuller picture of their situation. 

REFERENCES 
[1]   Çallı, E.; Sogancioglu, E.; van Ginneken, B.; van Leeuwen, K.G.; Murphy, K. Deep learning for chest X-ray analysis: A survey. 

Med. Image Anal. 2021, 72, 102125.  

[2]   Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 

cases from chest X-ray images. Sci. Rep. 2020, 10, 19549. 

[3]   Ai, T.; Yang, Z.; Hou, H.; Zhan, C.; Chen, C.; Lv, W.; Tao, Q.; Sun, Z.; Xia, L. Correlation of Chest CT and RT-PCR Testing for 

Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020, 296, E32–E40.  

[4]   Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. 

Radiology 2020, 296, E115–E117. 

[5]   Jacobi, A.; Chung, M.; Bernheim, A.; Eber, C. Portable chest X-ray in coronavirus disease-19 (COVID-19): A pictorial 

review. Clin. Imaging 2020, 64, 35–42. 

[6]   Pal, B.; Gupta, D.; Rashed-Al-Mahfuz, M.; Alyami, S.A.; Moni, M.A. Vulnerability in Deep Transfer Learning Models to 

Adversarial Fast Gradient Sign Attack for COVID-19 Prediction from Chest Radiography Images. Appl. Sci. 2021, 11, 4233.  

[7]   Rajaraman, S.; Guo, P.; Xue, Z.; Antani, S.K. A Deep Modality-Specific Ensemble for Improving Pneumonia Detection in 

Chest X-rays. Diagnostics 2022, 12, 1442. 

[8]   Kundu, R.; Das, R.; Geem, Z.W.; Han, G.-T.; Sarkar, R. Pneumonia detection in chest X-ray images using an ensemble of 

deep learning models. PLoS ONE 2021, 16, e0256630.  

[9]   Mousavi, Z.; Shahini, N.; Sheykhivand, S.; Mojtahedi, S.; Arshadi, A. COVID-19 detection using chest X-ray images based 

on a developed deep neural network. SLAS Technol. 2022, 27, 63–75.  

[10]   Cha, S.-M.; Lee, S.-S.; Ko, B. Attention-Based Transfer Learning for Efficient Pneumonia Detection in Chest X-ray Images. 

Appl. Sci. 2021, 11, 1242.  

[11]   Siddiqi, R. Fruit-classification model resilience under adversarial attack. SN Appl. Sci. 2021, 4, 31.  

[12]   Chlap, P.; Min, H.; Vandenberg, N.; Dowling, J.; Holloway, L.; Haworth, A. A review of medical image data augmentation 

techniques for deep learning applications. J. Med. Imaging Radiat. Oncol. 2021, 65, 545–563.  

[13]   Wang, K.; Gou, C.; Duan, Y.; Lin, Y.; Zheng, X.; Wang, F.-Y. Generative adversarial networks: Introduction and outlook. 

IEEECAA J. Autom. Sin. 2017, 4, 588–598.  

[14]   Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications. 

IEEE Trans. Knowl. Data Eng. 2021, 35, 3313–3332.  

[15]   Gulakala, R.; Markert, B.; Stoffel, M. Rapid diagnosis of Covid-19 infections by a progressively growing GAN and CNN 

optimisation. Comput. Methods Programs Biomed. 2023, 229, 107262.  

[16]   Gulakala, R.; Markert, B.; Stoffel, M. Generative adversarial network based data augmentation for CNN based detection 

of COVID-19. Sci. Rep. 2022, 12, 19186.  

[17]   Loey, M.; Smarandache, F.; Khalifa, N.E.M. Within the Lack of Chest COVID-19 X-ray Dataset: A Novel Detection Model 

Based on GAN and Deep Transfer Learning. Symmetry 2020, 12, 651.  

[18]   Jabbar, A.; Li, X.; Omar, B. A Survey on Generative Adversarial Networks: Variants, Applications, and Training. ACM 

Comput. Surv. 2022, 54, 1–49.  

[19]   Aggarwal, P.; Mishra, N.K.; Fatimah, B.; Singh, P.; Gupta, A.; Joshi, S.D. COVID-19 image classification using deep learning: 

Advances, challenges and opportunities. Comput. Biol. Med. 2022, 144, 105350.  



Frontiers in Health Informatics 

ISSN-Online: 2676-7104 

www.healthinformaticsjournal.com 

 

2024; Vol 13: Issue 2 Open Access 
 

372 | P a g e  

[20]   Rajawat, N.; Hada, B.S.; Meghawat, M.; Lalwani, S.; Kumar, R. C-COVIDNet: A CNN Model for COVID-19 Detection Using 

Image Processing. Arab. J. Sci. Eng. 2022, 47, 10811–10822.  

[21]   Sedik, A.; Hammad, M.; Abd El-Samie, F.E.; Gupta, B.B.; Abd El-Latif, A.A. Efficient deep learning approach for augmented 

detection of Coronavirus disease. Neural Comput. Appl. 2022, 34, 11423–11440.  

[22]   Subramanian, N.; Elharrouss, O.; Al-Maadeed, S.; Chowdhury, M. A review of deep learning-based detection methods for 

COVID-19. Comput. Biol. Med. 2022, 143, 105233.  


