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Abstract: 
Background: Manilkara zapota L. is rich in bioactive phytochemicals with reported anticancer 
properties. The incorporation of copper nanoparticles (CuNPs) into Carbopol gels may increase 
their therapeutic potential and facilitate controlled, pH-sensitive delivery. 
Methods: Petroleum ether extracts of M. zapota aerial part were prepared and phytochemically 
characterized via qualitative analysis, HPTLC, and GC-MS. CuNPs were synthesized via green 
reduction and incorporated into a Carbopol gel. The formulation was evaluated for its particle 
size, zeta potential, morphology, entrapment efficiency, stability, pH-sensitive release, and 
cytotoxic potential against MCF-7 breast cancer cells and MCF-10A normal cells. 
Results: The extract contained phenols, flavonoids, anthocyanins, steroids, and cardiac 
glycosides. HPTLC bands were observed at Rf values of 0.70, 0.76, and 0.88. The major GC-
MS compounds included β-sitosterol acetate, 3β-acetoxystigmasta-4,6,22-pentatriacontene. 
The CuNPs were 286.2 nm in size with a zeta potential of −6.6 mV and 86.83% entrapment 
efficiency. The gel demonstrated optimal viscosity, pH 6.8–7.4, sustained release (pH 6.5: 
91.53%, pH 7.4: 72.56%), cytotoxicity against MCF-7 cells (IC₅₀ = 36.04 µg/mL), minimal 
toxicity to MCF-10A cells, and stability over 3 months. The release kinetics followed the 
Korsmeyer–Peppas model (n = 0.58). 
Conclusion: The CuNP-loaded gel from M. zapota extract exhibited sustained, pH-sensitive, 
and selective anticancer activity with excellent stability, supporting its potential translational 
application. 
Keywords: Manilkara zapota, Breast cancer, Phytochemicals, Herbal therapy, Copper 
nanoparticles, Cuproptosis, Green synthesis, Carbopol 940 
1. Introduction: 
Breast cancer continues to be one of the most frequently diagnosed malignancies and a leading 
cause of mortality among women worldwide. Recent estimates from the World Health 
Organization suggest that approximately 1.3 million new cases are reported annually, making 
it a persistent global health concern [1-3]. Although progress has been made in early screening 
and chemotherapy, the limitations of current treatments, such as systemic toxicity, drug 
resistance, and restricted therapeutic selectivity, remain major obstacles. These challenges 
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highlight the need to explore safer and more effective treatment strategies. Medicinal plants 
have long been valued as a source of therapeutic compounds. Compared with many synthetic 
drugs, phytochemicals, which are naturally occurring bioactive molecules within these plants, 
are generally regarded as safer and easier for the human body to metabolize [4-9]. Historically, 
plant-derived compounds have contributed significantly to modern medicine, with a 
considerable proportion of clinically available drugs originating from natural sources [10-13]. 
In oncology, phytochemicals not only demonstrate direct cytotoxicity but also provide 
structural templates for the development of novel anticancer agents. 
Nanotechnology has introduced innovative strategies for improving drug delivery and cancer 
therapy [13-17]. In particular, copper has emerged as a promising anticancer agent because of 
its role in cuproptosis, a regulated form of cell death. This process involves copper interaction 
with mitochondrial lipoylated proteins, leading to metabolic disruption, proteotoxic stress, and 
eventual tumor cell death. Unlike conventional apoptosis, cuproptosis can bypass 
chemotherapy resistance and promote immunogenic cell death, thereby enhancing antitumor 
immune responses [18-22]. The green synthesis of copper nanoparticles using 
phytoconstituents offers an environmentally friendly and cost-effective route, with the added 
benefit of natural compounds acting as both reducing and stabilizing agents [23-29]. The 
incorporation of these nanoparticles into Carbopol-based gel further improves their therapeutic 
potential by enabling sustained release, favorable rheological properties, and enhanced local 
retention [30-34]. Carbopol, a synthetic but biocompatible polymer, is widely used in topical 
and transdermal formulations because of its stability, safety, and excellent gelling capacity, 
making it a suitable matrix for gel development in cancer therapy [35-40]. The present work 
aimed to synthesize copper nanoparticles (CuNPs) from M. zapota L. extract, integrate them 
into a Carbopol gel system, and evaluate their physicochemical features, release characteristics, 
and anticancer potential against breast cancer cells. 
2. Materials and methods 
2.1. Materials: 
The aerial parts of M. zapota were collected from a rural region in Maharashtra, India (latitude: 
17.1810° N; longitude: 74.1159° E), from February to April. The solvents used for extraction 
were petroleum ether, copper sulfate, Carbopol 940, and ethanol, which were procured from 
Loba Chemicals (India) and were of analytical grade. 
2.2. Methods: 
2.2.1. Plant collection and authentication:  
The collected plant material was taxonomically authenticated by a certified taxonomist and 
assigned a voucher number (BSI/WRC/Iden.Cer. / 2022/0810220017786: MKKWT-2), which 
was deposited at the Botanical Survey of India [41]. Figure 1 shows the authenticated specimen 
and the morphological features of M. zapota. The aerial parts, collected during the flowering 
and fruiting seasons, were shade-dried for 4–5 days and then pulverized as shown in Figure 2 
to a medium-coarse powder to increase extraction efficiency.  [42-43]. 
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Figure 1. Herbarium of Manilkara zapota (family Sapotaceae) 

 
Figure 2. Reduction in the size of plant material and the storage of powder in an airtight 

container 
2.2.2. Extraction:  
Successive Soxhlet extraction was performed as shown in Figure 3 using petroleum ether. The 
extraction temperature was maintained at the solvent’s boiling point during the Soxhlet 
procedure. All the obtained extracts were completely dried and stored in airtight containers. 
The percentage yield for each extract was calculated via the following formula [44-47]: 

Extraction yield (%) = (weight of extract obtained/weight of dry plant material 
used) * 100 
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Figure 3. Soxhlet extraction 

2.2.3. Phytochemical evaluation of extract: 
Qualitative phytochemical screening of M. zapota extracts was conducted to identify the major 
classes of secondary metabolites via standard procedures. Reddish-brown precipitates 
identified alkaloids with Wagner’s reagent, whereas phenols were indicated by a bluish-black 
coloration upon reaction with ferric chloride. Flavonoids produced yellow coloration under 
alkaline conditions that disappeared after acidification, whereas anthocyanins exhibited a 
characteristic shift from pink-red to blue-violet with changes in pH. Tannins were confirmed 
by the formation of a white precipitate with gelatin, mucilage with a cloudy mass after alcohol 
addition, and saponins were confirmed by persistent freezing upon shaking with water. Steroids 
and triterpenes are distinguished by distinct color reactions with concentrated sulfuric acid, 
resins by an orange-to-yellow transition with acetic anhydride, and cardiac glycosides by the 
appearance of bluish-green and reddish-brown layers. These reactions collectively confirmed 
the presence of a broad spectrum of phytochemicals in the extracts [48-50]. 
2.2.4. HPTLC: 
Approximately 50 mg of the powdered extract was dissolved in 5 mL of methanol, vortexed 
for 5–10 minutes, sonicated for 15 minutes, and centrifuged at 3000 rpm for 15 minutes. The 
resulting supernatant was filtered and stored in vials. The samples were diluted in a 1:1 ratio 
with methanol if overly concentrated [51]. 
Chromatographic Conditions: 
Stationary phase: TLC plates coated with silica gel 60 F₂₅₄ (Merck, Product No. 
1.05554.0007) 
Development distance: 70 mm 
Mobile phase: Toluene: ethyl acetate: formic acid (5:4:1 v/v/v) 
Saturation time: 20 minutes 
2.2.5. Environmentally Benign Synthesis of Copper Nanoparticles (CuNPs) via the 

Petroleum Ether Extract of M. zapota: 
CuNPs were synthesized by dissolving 0.49 g of CuSO₄·5H₂O in 20 mL of deionized water 
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with magnetic stirring (30 min). The petroleum ether extract of M. zapota (20 mL) was added 
dropwise, and the mixture was stirred for 3 h at room temperature until the color shifted from 
pale green to brown. The pH was adjusted with aqueous ammonia to promote reduction and 
precipitation. The nanoparticles were recovered, washed sequentially with deionized water and 
ethanol, dried at 60 °C, and stored in airtight containers for further characterization and 
biological assays [52]. 
2.2.6. Formation of Carbopol gel: 
Copper nanoparticles (CuNPs) were incorporated into a 1% w/v Carbopol 940 gel by gradually 
dispersing 0.2 g of the polymer into 10 mL of aqueous CuNPs (20 mg of CuNPs) under constant 
stirring. The mixture was stirred for 30 minutes to ensure uniform interaction between the 
polymer and nanoparticles. Triethanolamine (TEA) was then added dropwise to adjust the pH 
to 7.0–7.4, neutralizing Carbopol and converting the pre gel into a clear to slightly opaque gel. 
The formulation was allowed to stand for 2 hours to achieve complete swelling of Carbopol 
940, resulting in a viscous, homogeneous gel [53]. 
2.2.7. Evaluation of the CuNPs 
2.2.7.1. Particle size: The average particle size of the synthesized CuNPs was 

determined via dynamic light scattering (DLS) to assess their uniformity and confirm their 
nanoscale dimensions. 

2.2.7.2.  Zeta potential: Zeta potential measurements were performed to evaluate the 
surface charge and predict the colloidal stability of the nanoparticles. 

2.2.7.3. Entrapment efficiency: The percentage of CuNPs successfully incorporated 
into the gel matrix was quantified to determine the entrapment efficiency, ensuring optimal 
loading within the polymer network. 

2.2.8. Evaluation of the CuNP-Loaded Carbopol Gel 
2.2.8.1. Viscosity: The viscosity of the gel was measured via a viscometer to ensure proper 

consistency and homogeneous distribution of the nanoparticles within the polymer matrix. 
2.2.8.2. pH: The pH of the formulation was recorded to confirm its compatibility with 

physiological conditions and the stability of the gel. 
2.2.8.3. Anticancer potential: In vitro cytotoxicity against MCF-7 breast cancer cells was 

evaluated to assess the therapeutic efficacy of the CuNP-loaded gel. 
2.2.8.4. Toxicity Study: Cytotoxicity against normal MCF-10A cells was evaluated to 

determine the safety profile and selective anticancer activity of the formulation. 
2.2.8.5. Drug release: In vitro drug release studies were conducted to determine the release 

profile of the CuNPs from the Carbopol gel under physiological conditions. 
2.2.8.6. Drug release kinetics: The release data were fitted to established kinetic models (e.g., 

Higuchi, Korsmeyer–Peppas) to elucidate the underlying mechanism of nanoparticle release 
from the gel matrix. 

3. Results and discussion: 
3.1. Phytochemical evaluation of extract: 
3.1.1. Extraction yield: 
 The material collected from February–April (late winter to early summer) targets postcool 
season stress and the onset of flowering, which supports high secondary metabolite 
biosynthesis; moreover, the sunlight intensity observed during the season is optimal, and low 
rainfall prevents the leaching of phytoconstituents. qualitative phytochemical screening of the 
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petroleum ether extract of Manilkara zapota revealed a percent extraction yield of 10 ± 0.785%. 
3.1.2. Qualitative Phytochemical Analysis 
The analysis revealed the presence of phenols, flavonoids, anthocyanins, steroids, and cardiac 
glycosides. In contrast, alkaloids, gallic tannins, mucilage, saponosides, resins, quinones, and 
coumarins were absent, suggesting that the extract is rich in bioactive compounds such as 
polyphenols and steroids, which may contribute to its potential pharmacological activities. 
3.1.3.  High-Performance Thin-Layer Chromatography 
The extract contained reproducible high-Rf bands at 0.70, 0.76, and 0.88, which were 
consistent with the sterol/triterpenoid content. Figure 4 demonstrates the image after 
derivatization under white light with ASR with and without RF tips at 10 µl of sample 
petroleum ether extract.  

 
Figure 4. Image after derivatization under white light with ASR without and with RF 

tips (Manilkara zapota). Tracks 1-3: 10 µl of sample petroleum ether extract. 
3.1.4. Gas Chromatography and Mass Spectroscopy 
GC-MS analysis of the petroleum ether extract revealed diverse profiles of phytoconstituents 
dominated by sterols and triterpenoids. According to Table 1 data from the GC-MS study, 
Cholesta-4,6-dien-3-ol (3β-) was the major component (41.37%), followed by β-sitosterol 
acetate (10.04%) and 3β-acetoxystigmasta-4,6,22-triene (7.52%), indicating a high sterol 
content and suggesting potential bioactivity. Other notable constituents included long-chain 
alkanes, sulfurous acid esters, and minor components such as phytyl, 2-methylbutanoate, and 
borinic acid derivatives, suggesting a complex mixture of lipophilic molecules. The presence 
of these phytoconstituents implies that the extract may possess anti-inflammatory, antioxidant, 
or membrane-modulatory properties, aligning with the pharmacological relevance of plant-
derived sterols and triterpenoids. Figure 5 gives the GC-MS spectrum of the petroleum ether 
extract of Manilkara zapota, and Figure 6 demonstrates the different structures of constituents 
observed through GC-MS spectra. 

 
Figure 5 GC-MS spectrum of the petroleum ether extract of Manilkara zapota 
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Figure 6. Chemical structures of the different compounds observed via GC-MS 

analysis 
Table 1. GC-MS data for the petroleum extract of Manilkara zapota 

Peak 
# 

R. 
Time 
(min) 

I. 
Time 
(min) 

F. 
Time 
(min) 

Area Area 
% 

Name 

1 40.460 40.320 40.585 505,242 1.54 Phytyl, 2-methylbutanoate 
2 41.112 40.735 41.260 2,570,232 7.82 17-Pentatriacontene 
3 42.362 42.170 42.460 587,816 1.79 Sulfurous acid, cyclohexylmethyl 

pentadecyl ester 
4 42.642 42.460 42.705 648,180 1.97 1,1,3,6-tetramethyl-2-

(3,6,10,13,14-pentamethyl-3-ethyl-
pentadecyl) cyclohexane 

5 43.483 43.430 43.550 205,984 0.63 Tetrapentacontane, 1,54-dibromo- 
6 44.031 43.845 44.150 3,297,852 10.04 β-Sitosterol acetate 
7 46.217 46.075 46.365 2,468,703 7.52 3β-Acetoxystigmasta-4,6,22-triene 
8 46.579 46.475 46.645 763,083 2.32 24-Noroleana-3,12-diene 
9 46.782 46.660 46.890 2,214,694 6.74 Sulfurous acid, cyclohexylmethyl 

octadecyl ester 
10 47.662 47.520 47.765 2,002,537 6.10 Cholest-5-ene 
11 48.094 47.810 48.165 3,208,554 9.77 (3S,8S,9S,10R,13R,14S,17R)-17-

((2R,5R)-5-Ethyl-6-methylheptan-
2-yl)-3-methoxy-10,13-dimethyl-
2,3,4,7,8,9,10,11,12,13,14,15,16,1 
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12 48.453 48.395 48.535 326,526 0.99 Borinic acid, diethyl-, (2-ethyl-
1,3,2-dioxaborolan-4-yl) methyl 
ester 

13 48.648 48.535 48.795 13,588,875 41.37 Cholesta-4,6-dien-3-ol, (3β)- 
14 49.923 49.840 49.965 461,474 1.40 Cyclohexane, 1,2,3,5-

tetraisopropyl 
 
3.2. Evaluation of CuNp: 
3.2.1. Particle size and zeta potential:  
The synthesized copper nanoparticles (CuNPs) had an average size of 282.2 nm, which is 
within the nanoscale range and favorable for improved cellular uptake and drug delivery 
(Figure 7). The zeta potential of −6.6 mV (Figure 8) indicates moderate stability in suspension, 
suggesting that the nanoparticles are reasonably stable and suitable for incorporation into the 
gel. These characteristics make the CuNPs promising for effective biomedical applications. 

 
Figure 7. Particle size of copper nanoparticles 

 
Figure 8. Zeta potential analysis data 

3.2.2. Entrapment efficacy:  
The percent entrapment efficacy was calculated from the absorbance of the unentrapped 
extract. The percentage entrapment was approximately 86.83%, which is greater than the 
accepted range of entrapment for the extract in a copper environment of 80%. 
3.3. Physiological evaluation of Carbopol gel: 
The prepared gel had a viscosity of 3658.21 cps, indicating a smooth and spreadable 
consistency that would stay in place without running off, making it comfortable for application. 
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Its pH of 7.36 is close to the natural pH, suggesting that it is likely to be gentle and non-
irritating. Overall, these results show that the gel has suitable physical properties for safe and 
effective topical use. 
3.4. Anticancer potential against MCF-7 cells 
The anticancer potential of the obtained extract was evaluated against the MCF-7 breast cancer 
cell line. The standard drug used was 5-fluorouracil, which has an IC50 of 37.16. The results 
of the petroleum ether extract and gel were compared with those of 5 FU, and the gel showed 
more potent activity than did the standard. Table No. 2 represents the data on the cell line 
results against MCF-7. 

Table 2 Anticancer cell line study data for MCF-7 cells 

Sample Conc. 
(µg/mL) 

Mean 
OD 

% 
Inhibition 

IC₅₀ 
(µg/mL)  

Control 
(DMSO 
0.2%) 

— 1.989 — — 

 

Standard 
(5-FU) 

10 0.311 84.36 

37.16 

 

40 0.237 88.08 

100 0.189 90.49 

Petroleum 
Ether 

Extract 

10 0.803 59.62 

36.04 

 

40 0.726 63.80 

100 0.675 66.06 

Gel 
Formulation 

10 0.949 51.89 

31.25 

 
 
 

40 0.872 58.31 

100 0.751 61.51 

 
3.5. Toxicity study against MCF 10A 
The MCF-10A normal breast epithelial cell line was treated with increasing concentrations 
(20–100 μg/mL) of petroleum ether extract and its gel formulation. 5-Fluorouracil (5-FU) 
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served as the standard control. Optical density (OD) readings were measured, and percentage 
inhibition and cell viability were calculated. The MTT assay results revealed that the gel 
formulation reduced cell viability in a concentration-dependent manner, indicating its cytotoxic 
potential. As the concentration increased from 20 to 100 μg/mL, the cell viability decreased 
from 95.82% to 75.52%, with inhibition ranging from 4.18% to 24.48%. In comparison, the 
standard drug 5-fluorouracil (5-FU) had a slightly stronger effect, reducing viability from 
94.84% to 88.12% over the same range. Table 3 represents the data obtained from the 
cytotoxicity study against MCF-10A. Although the gel was less potent than 5-FU, its gradual 
and steady reduction in cell viability suggests a sustained release pattern that could help 
maintain therapeutic levels while reducing side effects. Overall, the results indicate that the gel 
formulation has promising anticancer activity and could be useful for localized, controlled drug 
delivery. 

Table 3. Cytotoxic effects on MCF-10A cells 

Sample Conc. 
(μg/mL) OD Mean % Inhibition % Viability IC50 (μg/mL) 

Control – 1.482 – – – 

5-FU (Standard) 

20 1.453 5.15 94.84 

NE 
40 1.396 8.87 91.13 
60 1.387 9.46 90.54 
80 1.368 10.70 89.30 
100 1.350 11.87 88.12 

Gel Formulation 

20 1.406 4.18 95.82 

NE 
40 1.345 8.23 91.77 
60 1.261 17.99 82.01 
80 1.210 19.37 80.63 
100 1.135 24.48 75.52 

 
In this study, both the petroleum ether extract and the gel showed low cytotoxicity toward 
MCF-10A cells at concentrations up to 100 μg/mL. The percentage yield of viable cells 
remained above 75% for all the tested concentrations, indicating good biocompatibility with 
normal breast epithelial cells. The maximum inhibition observed was 21.72% for the extract 
and 23.41% for the gel at 100 μg/mL, suggesting safe concentration ranges for therapeutic 
applications. IC50 values were not reached within the tested concentration range, which is 
consistent with minimal cytotoxicity in normal cells. 
3.6. Drug release: 
The Franz diffusion study revealed that drug release from the gel was influenced by pH. At pH 
7.4, the cumulative release was 72.56%, whereas at pH 6.8, it increased to 91.53%. The greater 
release under mildly acidic conditions may be due to greater polymer relaxation and improved 
drug solubility, which allows the drug to diffuse more easily through the membrane. Figure 9 
gives a graphical representation of cumulative percent drug release vs time. This pH-responsive 
behavior indicates that the gel can release the drug more effectively in acidic environments 
such as tumors or inflamed tissues, making it suitable for targeted and controlled drug delivery. 
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Figure 9. Graphical representation of cumulative percent drug release vs time 

3.6.1. Drug release kinetics: 
A diffusion kinetic study revealed that the gel released the drug in a sustained and pH-
dependent manner, with 91.53% release at pH 6.8 and 72.56% release at pH 7.4. Table 4 
represents the R2 and the equations obtained from the graphical representation of the kinetic 
models. The faster release at the mildly acidic pH suggests that the gel becomes more relaxed 
and allows easier drug diffusion under such conditions, which are similar to those found in 
tumor or inflamed tissues. The kinetic analysis indicated that the release followed first-order 
kinetics, meaning that it depended on the remaining drug concentration, whereas the good fit 
with the Higuchi model confirmed that diffusion played a major role. The Korsmeyer–Peppas 
model further suggested a non-Fickian (anomalous) release mechanism, where both diffusion 
and polymer relaxation contributed to the overall process. Together, these findings show that 
the gel provides a steady, controlled, and pH-responsive release pattern, supporting its potential 
for targeted and sustained drug delivery. 

Table 4 Kinetic release model data at pH 7.4 and 6.8. 

Kinetic 
Model 

At 7.4 At 6.8 

Equation R2 Equation R2 

 Kors 
Pepas 

y = 47.256x 
- 12.503 

R² = 
0.9013 

y = 
31.456x - 

10.72 

R² = 
0.8581 

Zero order y = 1.2959x 
+ 9.4955 

R² = 
0.8824 

y = 
0.8948x + 

3.1662 

R² = 
0.9038 

higuchi 
model 

y = 11.143x 
- 6.4435 

R² = 
0.9432 

y = 
7.5243x - 

7.133 

R² = 
0.9241 
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4. Conclusion: 
This study highlights the potential of Manilkara zapota petroleum ether extract loaded into 
copper nanoparticles (CuNPs) as a gel-based anticancer formulation. The extract was rich in 
bioactive compounds, including sterols, triterpenoids, flavonoids, and phenolics, as confirmed 
by GC-MS, which identified major constituents such as Cholesta-4,6-dien-3-ol and β-sitosterol 
acetate, suggesting strong pharmacological potential. The synthesized CuNPs were nanosized 
(~282.2 nm) with moderate stability (zeta potential of −6.6 mV) and high entrapment efficiency 
(86.83%), making them suitable for incorporation into a topical gel. The resulting Carbopol gel 
exhibited ideal physical properties, a good viscosity (3658.21 cps) for easy application and 
retention, and a skin-friendly pH (7.36), indicating a low risk of irritation. In vitro studies 
demonstrated that the gel had promising anticancer activity against MCF-7 breast cancer cells, 
comparable to that of 5-fluorouracil, while showing minimal toxicity toward normal MCF-10A 
cells, highlighting its safety. Drug release studies revealed pH-responsive behavior, with faster 
release under mildly acidic conditions (similar to tumor environments), and kinetic analysis 
confirmed that the release was controlled by both diffusion and polymer relaxation. Overall, 
the results of this study indicate that the M. zapota–CuNP gel is a safe, effective, and sustained-
release system for potential topical anticancer therapy. 
5. Future perspectives: 
Future studies should focus on evaluating gel formulation in animal models to confirm their 
anticancer efficacy, safety, and tissue distribution under physiological conditions. Investigating 
the cellular mechanisms underlying its activity, including uptake and apoptosis pathways, 
would provide a deeper understanding of its therapeutic potential. Optimization of the gel 
composition and exploration of combination strategies could further improve release profiles, 
stability, and targeting efficiency. Additionally, assessing long-term storage stability and 
scalability is important for clinical translation. In addition to cancer therapy, the bioactive 
profile of Manilkara zapota suggests that the gel could also be explored for anti-inflammatory, 
antimicrobial, or wound-healing applications, expanding its range of potential uses. 
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0.0109x + 
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