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Introduction: A form of malignant tumour known as lymphoma originated in 
lymphoid hematopoietic organs. Because the physical characteristics of the 
many lymphoma classes are similar, accurately diagnosing lymphomas is one 
of the most difficult tasks. Hence, an efficient classification of lymphoma plays 
a very important role in order to provide patients with prompt care. The 
purpose of this work is to evaluate the performance of pre-trained 
Convolutional Neural Networks (CNNs) in the multiclass categorization of 
lymphomas.  

Objectives: Classification of Non-Hodgkin lymphomas by adopting pre-
trained CNN architectures like ResNet50, VGG16, InceptionV3 and 
DenseNet201 are adopted. Utilize several pre-processing techniques for 
denoising, rescaling, and enriching the input images, including gaussian filter, 
min-max normalisation, and data augmentation. Perform a detailed 
performance analysis of the proposed work with existing models.  

Methods: This research uses the different CNN architectures such as VGG16, 
DenseNet201, InceptionV3 to classify the lymphoma. In pre-processing, the 
gaussian filter is used to denoise and smoothen the images, min-max 
normalization is used to rescale the images and the data augmentation is used 
for solving the data imbalance issue. Transfer Learning and Fine-Tuning is 
done which improves the overall performance of the model.  

Results: This study makes use of the multi cancer dataset from Kaggle. The 
performance of these pre-trained CNN models is evaluated using accuracy, 
precision, recall, and the F-measure. Based on simulation findings, 
DenseNet201 outperforms VGG16 and InceptionV3 with an accuracy of 
99.90%. Furthermore, FFNN-ResNet50 and HPC are two current studies that 
are used to compare ResNet50 and DenseNet201. ResNet50-DenseNet201 
has a high accuracy of 99.90% compared to FFNN-ResNet50 and HPC. 
 
Conclusions: Several CNN architectures, including VGG16, InceptionV3 and 
DenseNet201 are employed in this study to categorize lymphomas. Several 
NHL classifications, including FL, CLL, and MCL, are classified using the pre-
trained CNN architecture. The gaussian filter, which aids in smoothing the 
pictures, is used to eliminate noise from the histopathology images. The pixel 
limits are then scaled using min-max normalization to increase pixel 
intensity, and data augmentation is employed to prevent data imbalance 
problems. Improved categorization is achieved by the ResNet50 by extracting 
multi-scale characteristics from the images. Based on the simulation findings, 
it is evident that DenseNet201, which incorporates ResNet50 features, 
outperforms VGG16 and InceptionV3 due to the intricate interactions 
between data that dense connectivity enables. Furthermore, ResNet50-
DenseNet201 performs better than FFNN-ResNet50 and HPC. In comparison 
to FFNN-ResNet50 and HPC, ResNet50-DenseNet201 has a high accuracy of 
99.90%. 
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INTRODUCTION 

The term Non-Hodgkin lymphoma (NHL) refers to a 
broad category of lymphoid cancers that originate 
from natural killer cells, T cells, or B cells. It is 
distinguished by a range of genetic anomalies, 
different histopathological characteristics with 
heterogeneous clinical traits. Precise NHL subtype 
identification is essential for patient management, 
therapy planning, and prognosis. Conventional 
approaches to NHL categorization mainly depend on 
immunophenotyping, genetic profiling, and 
histopathological analysis. Although these techniques 
are useful, they are time-consuming, subjective, and 
may be vulnerable to inter-observer variability. The 
application of deep learning and other advanced 
machine learning approaches to automate and 
improve NHL categorization accuracy has garnered 
increasing attention in recent years. 

This is the third most common cancer in children and 
the most common hematologic malignancy [1] [2]. 
The epidemiological characteristics of lymphoma, 
such as the proportion, age of onset, and sex ratio, vary 
according to racial, social, and environmental factors 
[3]. Hodgkin lymphoma (HL) and non-Hodgkin 
lymphoma (NHL) are the two main categories for 
lymphoma [4]. While reactive hyperplasia, 
inflammation, and TB are caused by benign lesions, 
lymphomas and metastases are significant malignant 
lesions [5]. NHL is a cancer of the lymphoid system 
that commonly extends to distant organs [7]. The 
primary classifications of NHL are Follicular 
Lymphoma (FL), Mantle Cell Lymphoma (MCL), and 
Chronic Lymphocytic Leukemia (CLL) [8]. NHL is a 
broad term for malignant tumors with a fast pace of 
growth.There are approximately 70 subclasses of 
malignant lymphomas, and pathologists identify the 
subclass based on a set of invasively collected 
microscopic pictures from the patient in order to 
choose the best course of treatment [12]. Typically, 
the tissue stained with hematoxylin-eosin (H&E) is 
used by pathologists to identify lymphomas. When 
attempting to classify the type of lymphoma, this 
procedure is challenging and time-consuming [13].  
Somaratne, U.V et al. [16] presented the Generative 

Adversarial Networks (GAN) for generating the 

synthetic Whole Slide Image (WSI) patches. The 

distinction between target and non-target WSI 

patches was made using CNN. The created CNN could 

only classify the FL; multiclass classification was 

necessary for an accurate diagnosis.  

Ammar Ammar et.al. [17] used InceptionResNetV2 
model. The method works by splitting the images into 
patches, classifying each patch using a deep learning 
model and achieved 87.0% three-class classification 
accuracy. 

The transfer learning was presented by Soltane, S. et 
al. [18] to help pathologists classify lymphomas. Here, 
transfer learning was used to create the Residual 
Neural Networks and ResNet50 for the purpose of 
identifying and classifying the lymphoma. However, a 
large number of images needed for these transfer 
learning techniques to boost categorization abilities 
farther. 

Two distinct methods were used by Al-Mekhlafi, Z.G. 

et al. [19] for the histology images, DenseNet-121 and 

ResNet-50. Additionally, the Feed-Forward Neural 

Network (FFNN) classifier was used to complete the 

classification. The combination of FFNN, along 

with ResNet-50 and Densenet201 produced 

better classification results. 

The new method [20] presented by Somaratne, U.V., 
Wong, K.W., Parry, J. et al. minimizes the requirement 
for tagged data while handling interstice differences. 
In order to reduce the number of labels needed and 
enhance efficacy, a GAN-based approach has been 
presented to solve the one-class data problem. The 
research demonstrates that, when applied to the data 
from the new site, the suggested GAN-based method 
performs noticeably better. It is possible to improve 
the suggested method while using less computer 
power. 

The Fractal Neural Network (FNN), which uses CNN 

and fractal geometry to identify histology pictures, 

was introduced by Roberto, G.F. et al. [21]. The fractal 

characteristics were extracted from the histology 

pictures and rearranged to create the artificial RGB 

feature image. Next, the input and its pertinent fake 

picture were used to classify the CNN ensemble. An 

image's qualities can be described by integrating 

different fractal metrics to provide a set of features. In 

order to improve the categorization even further, the 

constructed FNN has to take the deep features into 

account. 

The Faster Region-Convolutional Neural Network 

(Faster R-CNN) was created by Sheng, B. et al. [22] in 

order to classify lymphoma cells. Along with the 

lymphocyte cells, color images of blast cells were 

added to assess the Faster R-CNN's robustness and 

dependability. To effectively classify lymphomas, the 

subclasses of the disease had to be taken into account.  

OBJECTIVES 

a) Classification of Non-Hodgkin lymphomas by 
adopting pre-trained CNN architectures like 
ResNet50, VGG16, InceptionV3 and DenseNet201. 
2)Utilize several pre-processing techniques for 
denoising, rescaling, and enriching the input images, 
including gaussian filter, min-max normalisation, and 
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data augmentation. C)Study a detailed performance 
analysis of the proposed work with existing models 
like FFNN-ResNet50 and HPC. 

METHODS 

This study analyses the Non-Hodgkin lymphoma 
classification using a variety of pre-trained CNNs, 
including ResNet50, InceptionV3, VGG16, 
DenseNet201. This study examines four distinct 
processes: 1) acquiring the dataset; 2) pre-processing; 
3) extracting features; and 4) classification. The 
ResNet50 extracts the features from the pre-
processed images which used to discard the issue of 
vanishing gradient is illustrated in the Figure 1. 

 

Fig 1. Block diagram of CNN models for the classification of 

Lymphoma 

Dataset acquisition  
This study makes use of the Multi cancer dataset from 
Kaggle to investigate the histopathology images. 
There are fifteen thousand photos in the Multi Cancer 
dataset, which is divided into three classes: FL, CLL, 
and MCL. The JPEG format is used to save the 512x512 
photos that make up the collection. 
 
Data pre-processing 

The images from the dataset are preprocessed using 
Gaussian filter, min-max normalization and data 
augmentation processes.  
 
In image processing, Gaussian filters are frequently 
used to reduce noise in image while keeping crucial 
details. A Gaussian function is used to convolve the 
image in order to apply Gaussian filters. This function 
emphasizes pixels closer to the center of the kernel 
more than those at its edges. This results in a 
smoothing effect that reduces high-frequency noise, 
like salt-and-pepper noise or Gaussian noise, while 
preserving the image's edges and clarity. 
 

 

Fig 2. Sample images from the dataset 

Gaussian filter of the pixel (𝑖, 𝑗) uses 2 dimensional 
Gaussian distribution as shown in equation (1). 

𝐺(𝑖, 𝑗) =
1

2𝜋𝜎2
𝑒
−𝑖2+𝑗2

2𝜎2                       (1) 

Where, standard deviation is denoted as 𝜎 and the 
filtered image is denoted as 𝐺.Min-Max normalization 
is a quick and efficient method for rescaling pixel 
values to a desired range in image preprocessing. It 
preserves the associations between pixels' relative 
intensities, which is essential for the clarity of the 
image and its visual perception. The pixel intensity of 
the filtered images are enhanced by scaling the pixel 
limits using the min-max normalization as shown in 
equation (2). 

𝐺′ = (𝐺 − 𝑚𝑖𝑛)
𝑛𝑒𝑤𝑚𝑎𝑥−𝑛𝑒𝑤𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
+ 𝑛𝑒𝑤𝑚𝑖𝑛    (2) 

Where, 𝐺′ is scaled output; maximum and minimum of 
filtered image is denoted as 𝑚𝑎𝑥 and 𝑚𝑖𝑛; 𝑛𝑒𝑤𝑚𝑖𝑛 
and 𝑛𝑒𝑤𝑚𝑎𝑥 are scaled image’s intensity values. 

Data augmentation is a preprocessing approach that 
applies random changes to preexisting images to 
artificially improve the diversity of training data. This 
enables deep learning models, such as ResNet50, 
which are prone to overfitting when trained on small 
amounts of data, become more resilient and more 
broadly applicable. 

The data augmentation is done through the operations 
of rotation, horizontal flipping and zooming for scaled 
images. The preprocessed image is given as input to 
ResNet50 to perform feature extraction. Data 
augmentation helps prevent the model from 
memorizing specific examples and instead focuses on 
learning generalizable features. 
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Feature extraction using ResNet50 

ResNet50 is a powerful image classification model 
that can be trained on large datasets and achieve 
state-of-the-art results, without having to suffer from 
the problem of vanishing gradients. In this phase, the 
pre-trained deep residual neural network i.e., 
ResNet50 [24] is used to extract the multi scale 
features.  

 

Fig 3. Step-by-Step process 

Max pooling layers, which decrease the spatial 
dimensions of the feature maps while maintaining the 
most significant features, appear after the 
convolutional layers. ResNet facilitates the direct path 
between input and output by guiding the transitional 
weight levels, supporting the network layers for 
learning from the identity function. Figure 3 shows the 
architecture of ResNet50 based feature extraction.  

 

Fig 4. Architecture of ResNet50 based feature extraction 

A residual block in ResNet50 consists of two main 

paths: the identity mapping path and the residual 

mapping path,therefore the final output of ResNet is 

expressed in equation (3).  

                                            𝑦 = 𝐹(𝑥) + 𝑥                                   (3) 

Where, 𝑥 is input, 𝑦 is output and residual mapping is 

denoted as 𝐹(𝑥). 

The architecture of ResNet50 is depicted in Figure 4, 
and it first performs the convolutional operation on 
the input. There are 50 Conv2D procedures in the 
ResNet50 architecture. Moreover, the features of the 
preceding layer are summarized at the end of 
ResNet50 using the Fully Connected (FC) layer. 
Whereas the previous convolution and pooling 
operations are seen as the feature extraction process, 
the FC layer is thought of as feature weighting. The 
nonlinear combinations of improved attributes 
produced by the Conv layer can be observed by the FC 
layer.  
 

Utilizing pretrained CNN models for classification 

In this stage, the pre-trained CNN models such as 
VGG16, InceptionV3, DenseNet201 are used to 
analyze the multi class Lymphoma classification. The 
typical architecture of CNN is shown in the Figure 5. 

CNN's ability to learn from its own features and its 
ability to classify images more accurately than other 
methods makes it the best choice for image-based 
categorization. The input, convolution, pooling, fully 
connected, and classification output layers are used in 
the design of the CNN. Convolution layer, the core 
layer of CNN, incorporates a small-size filters that 
encompasses the entire input. Completing the dot 
product between the input and filter guarantees the 
convolution process. The filter is stepped in the 
following position because the dot product is included 
through the filter. 

Thus, a whole input is processed in convolution 

process. The convolution (𝑧) among the filter vector 

and input (𝑝) and is expressed in equation (4).  

                       𝑧𝑗
𝑙 = 𝜑(𝑝𝑗

𝑙−1 × 𝑤𝑖𝑗
(1)𝑙 + 𝑏𝑗

(1)𝑙)                  (4) 

Where, 𝜑 denotes the sigmoid activation function; 
bias value of 𝑙th layer and 𝑗th node is denoted as 𝑏𝑗

𝑙  

and weight between the node 𝑖 and 𝑗 is denoted as 

𝑤𝑖𝑗
(1)𝑙 . Subsequently, the pooling layer carries out the 

maximum pooling procedure, in which the maximum 
pooling filter provides the maximum value for every 
region. In FC, every neuron at a subsequent layer is 
connected to every other neuron from the layer before 
it. The FC process is expressed in equation (5).  

                  𝐹𝐶𝑗
𝑙 = 𝜑(𝑧𝑗

𝑙−1 × 𝑤𝑖𝑗
(2)𝑙 + 𝑏𝑗

(2)𝑙)                      (5) 

Where, weight and bias value of FC layer are denoted 

as 𝑤𝑖𝑗
(2)𝑙  and 𝑏𝑗

(2)𝑙  respectively. 

Every neuron in the FC layer is coupled to an input 
obtained from the preceding layer. As a result, the FC 
layer has a significant number of training parameters. 
However, generating a very modest activation is how 
the deep learning in the FC layer is achieved. By 
generating sparsity, the activity of neurons is 
restricted, assisting in preventing the overfitting 
problem in CNN. Furthermore, the softmax function is 
used to calculate the probability distribution of an 
event via several events. Using softmax, the 
probability of every target is calculated for every 
target class.  

 

Fig 5. Architecture of CNN 
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The specific information about the pre-trained CNN 

models used in this research are detailed as follows: 

VGG16 

The ImageNet dataset is typically used to train the 

VGG-16 network. Even with minimal datasets, the 

VGG-16 provides higher classification because of its 

extensive training. This VGG-16 features a tiny 3x3 

receptive field and 16 convolution (Conv) layers. It has 

five Max pooling layers in all, the largest of which is a 

2x2 Max pooling layer. The VGG-16 employs three 

Fully Connected (FC) layers, with the softmax 

classifier serving as the last layer, following Max 

pooling. It also uses the ReLu activation for all hidden 

layers.  

InceptionV3 

One of the pre-trained models - Inception V3, is 

created using Convolution layers with various kernel 

sizes, pooling strategies, and dimensionality 

reductions. The various convolution filtering 

techniques utilized in the Inception V3 feature max 

and average pooling layers in addition to convolution 

sizes of 1×1, 3×3, and 5×5. Additionally, adding batch 

normalization and dropout improves the effectiveness 

of the model as well. To complete the prediction, it 

also uses an additional classifier and factored 

convolution. 

DenseNet201 

Several salient features set DenseNet-201 apart from 

other pretrained CNN models in the image 

classification domain. Because of its dense 

connectivity pattern, which guarantees that every 

layer receives direct inputs from every layer before it, 

the network is able to reuse features. In addition to 

improving parameter efficiency by eliminating 

pointless computations, this also helps to improve 

gradient flow during training, which solves the 

vanishing gradient issue that is frequently present in 

deeper networks. In comparison to models such as 

ResNet or Inception networks, DenseNet-201 is 

computationally lighter without compromising 

performance because to its compactness, which is the 

result of its efficient parameter usage. Furthermore, 

for a variety of datasets, the dense connections 

function as a type of implicit regularization, enhancing 

generalization and lowering overfitting. DenseNet-

201 has proven to be a reliable performer across a 

range of benchmarks, frequently attaining cutting-

edge outcomes in image classification assignments 

like ImageNet. Its proficiency in handling intricate 

visual identification tasks is largely attributed to its 

adept use of feature propagation.   
 

RESULTS 

This section contains information about the various 

analyses that are used to calculate the results of pre-

trained CNNs. Using Anaconda Navigator, a Python 

programming language, a multi-class lymphoma 

classification is constructed. The multi-cancer dataset 

is used to evaluate pre-trained CNNs, while the 70:30 

ratio is taken into account during the training and 

testing phases.This Lymphoma classification is 

analyzed using Accuracy, Precision, Recall and F-score 

which is expressed in equations (6) to (9). 

                 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
× 100                (6)                              

                 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100                              (7)                     

                 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                                     (8) 

                 𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                         (9) 

Where, true positive and true negative are 
represented as 𝑇𝑃 and 𝑇𝑁 respectively. On the other 
hand, false positive and false negative are represented 
as 𝐹𝑃 and 𝐹𝑁 respectively. 

Performance analysis 

This study considers three different pre-trained 

models such as VGG16, InceptionV3 and 

DenseNet201. The accuracy and loss graph for these 

pre-trained models are shown in the Figures 6 and 7 

respectively. The AlexNet has the higher fluctuations 

between the training and validation accuracy whereas 

Densenet201 has the less fluctuations between the 

accuracies.  

 
(a) 

   

          (b) 



Frontiers in Health Informatics 

ISSN-Online: 2676-7104 

www.healthinformaticsjournal.com 

 

2024; Vol 13: Issue 2 Open Access 

 

378 | P a g e  

 

     (c) 

Fig 6. Training and Validation accuracy, a) VGG16, b) InceptionV3, 

c) DenseNet201 

 

             (a) 

        

                (b)           

 

(c) 

Fig 7. Training and Validation Loss, a) VGG16, b) InceptionV3, c) 

DenseNet201 

Moreover, the performance of each pre-trained CNN 
for 25 epochs are shown in the Table 2. The graphical 
comparison of different Pre-trained CNN models is 

shown in the Figure 8. The outcomes depicts that 
classification accuracy is 90.00%, 82.56% and 99.90% 

for VGG16, InceptionV3 and DenseNet201 
respectively. This analysis clears that DenseNet201 
achieves improved classification when compared to 
the VGG16 and InceptionV3. DenseNet201's dense 
connection is utilized to extract the intricate 
associations in the data that enhance categorization. 

Table 2. Analysis of different Pre-trained CNN models 

Models Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F-
Score 
(%) 

VGG16 90.00 90.00 90.00 90.00 
InceptionV3 82.56 84.54 82.06 83.28 

DenseNet201 99.90 99.90 99.90 99.90 

 

 

Fig 8. Graph for different Pre-trained CNN models 

The confusion matrix for the Pre-trained CNN models 

is shown in the Figure 9.  

 

 
 

(a) 
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(b)  

 
(c) 

Fig 9. Confusion matrix, a) VGG16, b) InceptionV3, c)DenseNet201 

Additionally, as indicated in Table 3, K-fold validation 
is used to examine the pre-trained CNN models. K 
folds 1, 3, and 5 were taken into consideration for this 
study. Predictive techniques are typically assessed 
using the K-fold validation. It is evident from the 
analysis that the pre-trained models performed better 
when the fold value was 5. 

Table 3. Analysis of Pre-trained CNN models using K-fold validation 

K-

Fol

d 

Classifiers Accura

cy (%) 

Precisi

on (%) 

Recall 

(%) 

F-

Score 

(%) 

K=1 VGG16 88.64 89.02 89.24 89.12 

InceptionV3 80.64 82.58 82.96 82.77 

DenseNet201 97.58 97.60 97.40 97.49 

K=3 VGG16 91.33 89.84 89.48 89.66 

InceptionV3 81.42 82.84 82.62 82.73 

DenseNet201 98.88 97.80 98.28 98.04 

K=5 VGG16 90.00 90.00 90.00 90.00 

InceptionV3 82.56 84.54 82.06 83.28 

DenseNet201 99.90 99.90 99.90 99.90 

 

DISCUSSION 

Comparative analysis 

The existing methods such as HPC [17] and FFNN-

ResNet50 [19] are used to compare the VGG16, 

InceptionV3 and DenseNet201. These CNN models are 

operated along with the ResNet50 feature extraction. 

The comparative analysis of ResNet50-DenseNet201 

with HPC [17] and FFNN- ResNet50 [19] is shown in 

the Table 4. Further, the accuracy comparison is 

illustrated in the Figure 10. This comparison cleared 

that ResNet50-DenseNet201 has better classification 

performance than the HPC [17] and FFNN-ResNet50 

[19]. The multi scale features from the ResNet50 and 

complex relationships among the data obtained by 

DenseNet201 are used to enhance the lymphoma 

classification. 

Table 4. Comparative analysis of ResNet50-DenseNet201 

Models Accuracy 
(%) 

Preci
sion 
(%) 

Recall 
(%) 

F-
Score 
(%) 

HPC [17] 97.60 NR NR NR 
FFNN- 

ResNet50 
[19] 

 99.4 99.7 99.5 99.5 

ResNet50-
VGG16 

90.00 90.00 90.00 90.00 

ResNet50-
InceptionV3 

82.56 84.54 82.06 83.28 

ResNet50-
Densenet201 

99.90 99.90 99.90 99.90 

 

 

Fig 10. Accuracy comparison 
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CONCLUSION 

Several CNN architectures, including VGG16, 
InceptionV3 and DenseNet201  are employed in this 
study to categorize lymphomas. Several NHL 
classifications, including FL, CLL, and MCL, are 
classified using the pre-trained CNN architecture. The 
gaussian filter, which aids in smoothing the pictures, 
is used to eliminate noise from the histopathology 
images. The pixel limits are then scaled using min-max 
normalization to increase pixel intensity, and data 
augmentation is employed to prevent data imbalance 
problems. Improved categorization is achieved by the 
ResNet50 by extracting multi-scale characteristics 
from the images. Based on the simulation findings, it 
is evident that DenseNet201, which incorporates 
ResNet50 features, outperforms VGG16 and 
InceptionV3 due to the intricate interactions between 
data that dense connectivity enables. Furthermore, 
ResNet50-DenseNet201 performs better than FFNN-
ResNet50 and HPC. In comparison to FFNN-ResNet50 

and HPC, ResNet50-DenseNet201 has a high accuracy 
of 99.90%. 
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