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Cardiovascular diseases (CVDs) are still the top cause of death in the world, so 

we need more improved ways to figure out who is at risk early on. Deep 

learning (DL) has appeared potential in this range, but its exactness depends 

on how well the hyperparameters and organize plan are tuned. This consider 

looks at how to move forward DL models for figuring out cardiovascular 

hazard by utilizing meta-heuristic optimization strategies. These strategies, 

which are based on common and developmental forms, give dependable ways 

to discover your way through the tremendous and complicated look spaces 

that come with setting hyperparameters and design. To induce the most 

excellent comes about from the DL show settings, we utilized a blend of 

hereditary calculations (GAs), molecule swarm optimization (PSO), and 

reenacted strengthening (SA). We needed to move forward the model's 

capacity to foresee and apply to other circumstances by utilizing these meta-

heuristic strategies. This would offer assistance us get around the issues with 

standard framework and irregular look strategies. The test utilized in this 

think about had a part of diverse clinical and statistic components, which 

made beyond any doubt that the hazard appraisal show was total. The results 

of our tests appeared that the models worked much way better, with the most 

excellent profound learning plans being able to recognize cardiovascular 

hazard with higher exactness, affectability, and exactness. The meta-heuristic 

strategies were able to discover the leading hyperparameters, which 

decreased overfitting and made the show more solid over distinctive 

populace bunches. The comparison too appeared that combining these 

methods worked way better than utilizing fair one optimization strategy. This 

appears how valuable multi-strategy approaches can be in DL advancement. 

This think about appears how meta-heuristic optimization can totally alter 

the precision of DL in figuring out cardiovascular hazard. We got way better 

anticipated execution by fine-tuning hyperparameters and plan. This made 

CVD risk classification more accurate and useful. More research needs to be 

done on how to use the model in real-life clinical settings and on finding more 

meta-heuristic methods to make the model even more accurate and stable. 
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1. INTRODUCTION 

Heart diseases and strokes kill millions of people every year, making them the top cause of death in the world. To 

stop these diseases from happening and lessen their effects, it is important to do an early and accurate risk 

assessment. Traditional ways of figuring out a person's cardiovascular risk depend on clinical knowledge and 

standard statistical models. These models work, but they're not always accurate enough for personalized patient 
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care. Profound learning (DL) has ended up a really valuable instrument in therapeutic determination in later a long 

time, permitting for more precise analyze and way better forecasts than ever some time recently. But the victory of 

DL models depends a parcel on how well the hyperparameters are tuned and how the arrange topologies are 

outlined [1]. Since this prepare is complicated and employments a parcel of computing control, it needs advanced 

tuning strategies to induce the leading comes about. Meta-heuristic optimization strategies, which are based on 

characteristic and developmental forms, offer a solid way to bargain with the troubles of fine-tuning DL models' 

hyperparameters and plan. A few of these strategies, like hereditary calculations (GAs), molecule swarm 

optimization (PSO), and reenacted tempering (SA), are great for investigating the tremendous look spaces that 

come with DL optimization. Propelled by the tempering handle in metals, simulated annealing uses a random 

method to look the space, permitting for incidental moves tough to induce out of nearby optima. Each of these 

meta-heuristic strategies has its claim benefits, and combining them can make optimization indeed superior [2]. 

We need to move forward DL models for figuring out cardiovascular chance in this consider by utilizing these meta-

heuristic optimization strategies. We need to induce superior precision and generalizability in our forecasts by 

carefully setting the hyperparameters and structures of our DL models. The dataset we utilized for our thinks about 

features a part of diverse clinical and statistic variables, such as the age and sex of the patients, their blood weight 

and cholesterol levels, whether they smoke, and whether they have a family history of CVDs. This huge set of 

information makes it conceivable to form a chance evaluation apparatus that takes under consideration numerous 

variables that influence heart wellbeing [3]. Our method employments a refining handle with a few steps. We begin 

by utilizing each meta-heuristic strategy on its own to discover the finest hyperparameter settings and network 

designs. Then, we utilize cross-validation to test the execution of these combinations to form beyond any doubt 

they are steady and maintain a strategic distance from overfitting. After that, we look into mixed optimization 

methods that utilize parts of GAs, PSOs, and SA to make our models indeed way better. With this strategy, the finest 

parts of each method are utilized together to create the look region more productively explored and way better 

answers found [4]. 

Meta-heuristic optimization makes DL models much way better at figuring out cardiovascular hazard, concurring to 

the comes about of our tests. Superior accuracy, sensitivity, and specificity are seen in optimized models, which 

make it conceivable to form more precise expectations of cardiovascular chance [22]. Our improved DL models 

make it possible for more effective and personalized patient care by making predictions that are more accurate and 

applicable to more situations. In the future, more research will be done on how to use these models in real-life 

clinical settings and on finding more meta-heuristic methods to make them even more reliable and effective. A big 

step forward in the fight against cardiovascular diseases is this study, which uses deep learning and meta-heuristic 

optimization to their fullest. 

2. RELATED WORK 

In later a long time, there has been a part of intrigued in utilizing profound learning (DL) to figure out the chance of 

heart illness. A parcel of inquire about has appeared that DL models may be way better at distinguishing 

cardiovascular maladies (CVDs) than standard measurable strategies. For case, convolutional neural systems 

(CNNs) and repetitive neural systems (RNNs) have been utilized by analysts to see at clinical information and 

imaging strategies and make exceptionally precise hazard forecasts [5, 6]. Indeed with these changes, the exactness 

of deep learning models still depends on picking the finest hyperparameters and arrange topologies, which is still 

difficult to do since the look space is so enormous and complicated. It has gotten to be clear that meta-heuristic 

optimization strategies are exceptionally valuable for fathoming the issues that come up when attempting to tune 

hyperparameters and move forward the plan of DL models [7]. This strategy has been utilized effectively to 

progress DL models for a number of restorative purposes, such as figuring out the chance of CVD [8, 9]. On the off 

chance that you see at how feathered creatures run and angle school, you'll be able get thoughts for another 

valuable meta-heuristic method utilized in DL optimization. PSO calculations move particles around within the look 

space based on their possess encounters and the experiences of their companions. This makes a difference them 

discover the most excellent answers [10]. Thinks about have appeared that PSO can effectively make strides the 

execution of hyperparameters in DL models, making them way better at making restorative analyze [11, 12]. 
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A random strategy is utilized to investigate the look region in recreated toughening (SA), which is just like the 

tempering prepare in metalworking. SA can get out of neighborhood optima and move toward worldwide optima 

[13] by letting it make a few tough moves. The victory of models in a number of therapeutic employments has been 

incredibly progressed utilizing this way to change DL plans and hyperparameters [14, 15]. To progress 

optimization performance indeed more, the blending of meta-heuristic strategies has too been looked into. By 

combining parts of GAs, PSOs, and SAs, the finest highlights of each can be utilized, making the look space 

investigation quicker and superior answers found. For occasion, blended optimization methods have been utilized 

on DL models to distinguish infections, and the comes about are superior than with person optimization strategies 

[16, 17]. Several studies have looked at how to combine meta-heuristic optimization strategies with DL models to 

figure out the risk of heart illness. Analysts have utilized GAs to make strides the precision and steadiness of CNN 

models for foreseeing CVD risk, resulting in huge picks up in show execution [18]. Within the same way, PSO has 

been utilized to fine-tune the hyperparameters of RNNs, which makes them superior at utilizing time-series clinical 

information to foresee cardiovascular occasions [19]. It has moreover been used to improve the execution of DL 

models for surveying CVD chance, showing that SA works to create models work superior [20]. 

Even though these thinks about appeared a few great comes about, more inquire about is required to completely 

get it how meta-heuristic optimization can be utilized to progress DL models for figuring out cardiovascular chance. 

More investigate has to be done on combining distinctive meta-heuristic strategies, testing how well they work on 

diverse sets of information, and making unused blended optimization techniques. Future consider ought to too see 

into how to utilize progressed DL models in genuine life and how they influence how well patients do. This study 

adds to what has already been done by looking at how GAs, PSO, and SA can be used to improve DL models for 

figuring out cardiovascular risk [20]. We want to improve the predictive accuracy and generalizability of our 

models by using these meta-heuristic methods. This will help make CVD risk screening tools that are more reliable 

and useful. Our results show that meta-heuristic optimization has the ability to completely change DL accuracy. 

This opens the door to better medical diagnosis and personalized patient care. The work that is already out there is 

a solid base for further research and new ideas in this area. Meta-heuristic methods can improve the accuracy and 

dependability of DL models by dealing with the problems of hyperparameter and design tuning [21]. This can lead 

to better patient results and more effective ways to avoid disease. To fully achieve the promise of DL in 

cardiovascular risk assessment, more study should be done to build on these recent progresses. This includes 

looking into new improvement methods and how they can be used in clinical settings. 

Table 1: Summary of related work in CVD Risk Analysis 

Method Key Finding Limitation Scope 

Genetic Algorithms 

(GAs) 

Improved accuracy in DL 

model hyperparameter 

optimization [7] 

High computational 

cost 

Applicable to various DL 

models for medical 

diagnostics [8] 

Particle Swarm 

Optimization (PSO) 

Enhanced DL model 

performance by optimizing 

hyperparameters [10] 

Convergence speed can 

be slow 

Effective in time-series 

clinical data analysis [11] 

Simulated Annealing 

(SA) 

Effective in escaping local 

optima in DL optimization 

[13] 

Requires careful 

parameter tuning 

Suitable for complex DL 

architecture optimization 

[14] 

Hybrid GA-PSO Combined strengths lead to 

superior DL model 

performance [16] 

Increased complexity in 

implementation 

Applicable to various disease 

prediction models [17] 

GA for CNNs Significant improvement in 

CNN accuracy for CVD risk 

prediction [18] 

Limited to specific DL 

architectures 

Focused on image-based risk 

assessment models [18] 

PSO for RNNs Enhanced predictive ability of 

RNNs for cardiovascular 

events [19] 

May not generalize well 

to all datasets 

Effective for sequential 

clinical data [19] 
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SA for DL Models Improved performance in CVD 

risk assessment models [20] 

Probabilistic nature can 

lead to variable results 

Suitable for complex medical 

diagnostic models [20] 

Hybrid GA-SA Achieved higher-quality 

solutions in DL optimization 

[16] 

Implementation 

complexity 

Applicable to diverse DL 

optimization tasks [17] 

PSO with 

Backpropagation 

Increased convergence speed 

and accuracy in DL models 

[11] 

May require extensive 

computational 

resources 

Effective in real-time data 

analysis [12] 

Hybrid PSO-SA Leveraged benefits of both 

methods for better DL model 

tuning [16] 

High implementation 

complexity 

Suitable for various DL 

applications [17] 

GAs for Ensemble DL 

Models 

Enhanced ensemble model 

performance for risk 

prediction [8] 

Computationally 

intensive 

Effective in improving 

robustness and accuracy [9] 

PSO for Multimodal 

Data Integration 

Improved integration of 

clinical and demographic data 

in DL models [11] 

May require large 

datasets to be effective 

Applicable to comprehensive 

risk assessment models [12] 

SA for Dynamic 

Hyperparameter 

Tuning 

Effective in dynamically tuning 

hyperparameters during 

training [14] 

Requires careful 

parameter control 

Suitable for adaptive DL 

models [15] 

Hybrid GA-PSO-SA Achieved best performance by 

combining all three techniques 

[16] 

Highly complex to 

implement 

Applicable to advanced DL 

optimization for precise 

medical diagnostics [17] 

 

3. DATASET DESCRIPTIONS 

With 70,000 persistent records, the Cardiovascular Malady (CVD) dataset on Kaggle may be a strong base for 

prescient modeling and chance appraisal. One objective variable that appears the nearness or need of 

cardiovascular infection is included in each record. These components incorporate age, sex, stature, weight, body 

mass file (BMI), systolic blood weight, diastolic blood weight, cholesterol levels, glucose levels, smoking status, 

liquor admissions, and physical work out. There are numerous things that influence the chance of cardiovascular 

malady (CVD), and these factors deliver us a full picture of all of them. Hazard factors include age, with more 

seasoned individuals having the next chance of getting CVD. Another figure is sexual orientation, since men and 

ladies have distinctive chance profiles. Body Mass Record (BMI) may be a degree of fat and a major chance calculate 

for cardiovascular illness. It is based on body stature and weight. Understanding hypertension, a huge cause of 

heart issues, requires taking both systolic and diastolic blood weight readings. In terms of metabolic wellbeing, 

cholesterol and glucose levels are natural components that are straightforwardly connected to cardiovascular 

hazard. 

4. METHODOLOGY 

A. Data Preprocessing 

For making precise and dependable profound learning models for evaluating cardiovascular chance, it is imperative 

to appropriately plan the information. The primary step is to clean the data, which suggests finding and managing 

with any lost numbers. Lost information can include blemishes and make the demonstrate less exact at making 

forecasts. Another vital step is to normalize the highlights. The dataset has numerous distinctive characteristics, 

each on a distinctive scale, like age, blood weight, and cholesterol values. Making these highlights typical, ordinarily 

by scaling them to a standard extend (like to 1) or making them have a cruel of and a standard deviation of 1, makes 

beyond any doubt that each highlight makes a difference the show learn in the same way. This step makes the 

demonstrate work way better and speed up the merging prepare. 
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Figure 1: Overview of proposed system architecture 

The data is at that point part into two sets: a preparing set and a testing set. This part, which is more often than not 

80/20, is exceptionally vital for checking how common the show is. The preparing set is utilized to educate the 

demonstrate what to do, and the testing set is utilized to see how well the demonstrate does on information it 

hasn't seen some time recently. This strategy, the outline outline in figure 1, makes beyond any doubt that the 

demonstrate can anticipate things that aren't within the preparing information, which makes it more solid in real-

world circumstances. We make a solid base for making profound learning models that can accurately degree 

cardiovascular chance by cleaning, normalizing, and sharing the information within the right way. This will in the 

long run lead to way better quiet comes about and personalized healthcare. 

B. Deep learning methods 

1. CNN 

Profound learning models called convolutional neural systems (CNNs) work truly well with image-based 

information. When they take in information, they utilize convolutional layers, which apply channels to discover 

diverse characteristics like lines, colors, and shapes. This makes CNNs exceptionally valuable for occupations like 

therapeutic imaging, where they can utilize checks or other visual information to discover patterns that may point 

to heart issues. CNNs also have sharing layers that make the data less multidimensional while keeping important 

traits and making the computations easier. Because they are set up in a hierarchy, they can learn to describe input 

data in more and more complicated ways. This makes them very useful for accurately and automatically assessing 

risk in cardiovascular health tests. 

1. Convolution Operation: 

   (𝐼 ∗  𝐾)(𝑖, 𝑗) =  𝛴 𝛴 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ∗  𝐾(𝑚, 𝑛) 

                    𝑚 = 0 𝑛 = 0 

                   𝑀 − 1 𝑁 − 1 

• where I is the input image, K is the convolution kernel, i and j are spatial coordinates, and M x N is the 

kernel size. 

2. ReLU Activation: 

   𝑓(𝑥) = max(0, 𝑥) 

• where f(x) is the ReLU activation function applied element-wise to the output of the convolution layer. 
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3. Pooling Operation (Max Pooling): 

   𝑃(𝑖, 𝑗) = max
{0 ≤ 𝑚 < 𝑝,}

𝐻(𝑠𝑖 +  𝑚, 𝑠𝑗 +  𝑛)     0 ≤  𝑛 <  𝑝 

• where H is the input to the pooling layer, P is the pooled output, s_i and s_j are the strides, and p is the 

pooling size. 

4. Fully Connected Layer: 

   𝑦𝑘 =  𝛴 𝑤{𝑘𝑖}𝑥𝑖
+ 𝑏𝑘 

• where y_k is the output of the k-th neuron, w_{ki} are the weights, x_i are the inputs, b_k is the bias, and N 

is the number of inputs. 

5. Softmax Function: 

   𝜎(𝑧)𝑗 =
𝑒{𝑧𝑗}

𝛴 𝑒{𝑧𝑘}
 

• where σ(z)_j is the probability of the j-th class, z_j is the input to the softmax function, and K is the total 

number of classes. 

6. Cross-Entropy Loss: 

   𝐿 =  −𝛴𝑦𝑐 log(ŷ𝑐) 

• where L is the loss, y_c is the true label (one-hot encoded), ŷ_c is the predicted probability for class c, and C 

is the number of classes. 

7. Backpropagation: 

   𝑤{𝑖𝑗}
{(𝑡+1)}

=  𝑤{𝑖𝑗}
{(𝑡)}

−  𝜂 (
𝜕𝐿

𝜕𝑤{𝑖𝑗}
) 

• where 𝑤{𝑖𝑗}
{(𝑡+1)}

is the updated weight, η is the learning rate, L is the loss function, and (
𝜕𝐿

𝜕𝑤{𝑖𝑗}
) is the gradient 

of the loss with respect to the weight. 

8. Batch Normalization: 

   ẋ{(𝑘)} =
(𝑥{(𝑘)} −  𝜇{(𝑘)})

√(𝜎{(𝑘)})2 +  𝜀
 

   𝑦{(𝑘)} =  𝛾{(𝑘)}ẋ{(𝑘)}
+  𝛽{(𝑘)} 

• where ẋ{(𝑘)} is the normalized value, 𝑥{(𝑘)} is the input, 𝜇{(𝑘)} and 𝜎{(𝑘)} are the batch mean and variance, ε is 

a small constant, 𝛾^{(𝑘)} and 𝛽{(𝑘)} are learned parameters for scaling and shifting. 

 

2. RNN 

Repetitive Neural Systems (RNNs) are a sort of profound learning plan that works well with consecutive 

information. This implies that they can be utilized to degree cardiovascular hazard utilizing time-series clinical 

information. RNNs keep in mind what they were bolstered some time recently by utilizing inside states to store that 

data. This lets them see designs and associations between times. This highlight is exceptionally imperative for 
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looking at quiet records, like how blood weight, cholesterol, and other crucial signs alter over time. Indeed in spite 

of the fact that RNNs are exceptionally valuable, they can have issues with vanishing angles. These issues can be 

settled by utilizing more progressed sorts like Long Short-Term Memory (LSTM) systems or Gated Repetitive Units 

(GRUs). These changes make it simpler for the demonstrate to memorize long-term connections, which makes 

cardiovascular hazard figures more exact. 

1. Input and Initial State: 

   ℎ0 =  0, 𝑥𝑡 ∈  𝑅𝑛∀ 𝑡 ∈  {1, 2, … , 𝑇} 

• where h_0 is the initial hidden state and x_t is the input at time step t. 

2. Hidden State Update: 

   ℎ𝑡 = tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎℎ{𝑡−1} +  𝑏ℎ) 

• where W_h and U_h are weight matrices, b_h is the bias, and tanh is the hyperbolic tangent activation 

function. 

3. Output Calculation: 

   𝑜𝑡 =  𝑊𝑜ℎ𝑡 + 𝑏𝑜  

• where W_o is the output weight matrix and b_o is the output bias. 

 

4. Loss Function (Cross-Entropy): 

   𝐿 =  −𝛴 𝛴 𝑦{𝑡,𝑐}log(ŷ{𝑡,𝑐}) 

• where y_{t,c} is the true label and ŷ_{t,c} is the predicted probability for class c at time step t. 

5. Gradient of Loss w.r.t. Output: 

   
𝜕𝐿

𝜕𝑜𝑡

=  ŷ𝑡 −  𝑦𝑡  

• where ŷ_t is the predicted output and y_t is the true output at time step t. 

6. Backpropagation Through Time (BPTT): 

   
𝜕𝐿

𝜕ℎ𝑡
=  (

𝜕𝐿

𝜕𝑜𝑡
) 𝑊𝑜 +  (

𝜕𝐿

𝜕ℎ{𝑡+1}
) 𝑈ℎ𝑡𝑎𝑛ℎ′(𝑊ℎ𝑥𝑡 + 𝑈ℎℎ{𝑡−1} +  𝑏ℎ).  

Gradient of Loss w.r.t. Weights: 

   
𝜕𝐿

𝜕𝑊ℎ

=  𝛴 (
𝜕𝐿

𝜕ℎ𝑡

) 𝑥𝑡
𝑇  

8. Gradient of Loss w.r.t. Hidden State Weights: 

  
 𝜕𝐿

𝜕𝑈ℎ

=  𝛴 (
𝜕𝐿

𝜕ℎ𝑡

) ℎ{𝑡−1}
𝑇  
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9. Gradient of Loss w.r.t. Bias: 

  
 𝜕𝐿

𝜕𝑏ℎ

=  𝛴 (
𝜕𝐿

𝜕ℎ𝑡

) 

10. Weight Update Rule (Gradient Descent): 

    𝑊ℎ
{(𝑘+1)}

=  𝑊ℎ
{(𝑘)}

−  𝜂 (
𝜕𝐿

𝜕𝑊ℎ

) 

• where η is the learning rate. 

11. Update Rule for Hidden State Weights: 

    𝑈ℎ
{(𝑘+1)}

=  𝑈ℎ
{(𝑘)}

−  𝜂 (
𝜕𝐿

𝜕𝑈ℎ

) 

12. Bias Update Rule: 

    𝑏ℎ
{(𝑘+1)}

=  𝑏ℎ
{(𝑘)}

−  𝜂 (
𝜕𝐿

𝜕𝑏ℎ

) 

3. Deep Belief Networks (DBNs) 

Deep Belief Networks (DBNs) are a sort of profound learning models that are made up of numerous layers of 

irregular, covered up factors, which are more often than not Limited Boltzmann Machines (RBMs). DBNs are made 

to memorize and collect highlights without being observed. There are numerous layers that work together, and 

each one learns to get it how the crude information is factually related to the others. The preparing prepare begins 

with pre-training on each layer and after that employments backpropagation to fine-tune. DBNs are particularly 

great at setting up profound systems, which makes a difference them get past issues like vanishing slants that 

happen in other profound learning models. They work well in numerous ranges, like picture acknowledgment, 

common dialect handling, and therapeutic observing, since they allow exact models of highlights that progress the 

precision of expectations. 

1. Energy Function of Restricted Boltzmann Machine (RBM): 

   E(v, h) = - Σ Σ v_i h_j w_{ij} - Σ b_i v_i - Σ c_j h_j 

• where v is the visible layer, h is the hidden layer, w_{ij} are the weights, b_i are the biases of the visible 

units, and c_j are the biases of the hidden units. 

2. Probability of Hidden Layer Given Visible Layer: 

   𝑃(ℎ_𝑗 =  1 | 𝑣)  =  𝜎(𝛴 𝑣_𝑖 𝑤_{𝑖𝑗}  +  𝑐_𝑗) 

where  

𝜎(𝑥) =  
1

(1 + 𝑒{−𝑥})
 is the sigmoid activation function. 

3. Probability of Visible Layer Given Hidden Layer: 

   𝑃(𝑣_𝑖 =  1 | ℎ)  =  𝜎(𝛴 ℎ_𝑗 𝑤_{𝑖𝑗}  +  𝑏_𝑖) 

4. Contrastive Divergence (CD) Algorithm for Training RBM: 

   𝛥𝑤{𝑖𝑗} =  𝜂 ( < 𝑣𝑖ℎ𝑗 >{𝑑𝑎𝑡𝑎} − < 𝑣𝑖ℎ𝑗 >{𝑟𝑒𝑐𝑜𝑛}) 
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5. Layer-Wise Pre-training of DBN: 

   𝑃(𝑣^{(𝑙)} | ℎ^{(𝑙)})  =  𝛱 𝜎(𝛴 ℎ_𝑗^{(𝑙)} 𝑤_{𝑖𝑗}^{(𝑙)}  +  𝑏_𝑖^{(𝑙)}) 

• where v^{(l)} and h^{(l)} are the visible and hidden units of the l-th layer. 

6. Fine-Tuning Using Backpropagation: 

   
𝜕𝐿

𝜕𝑤{𝑖𝑗}
=  ∫ ( 

𝜕𝐿

𝜕𝑎𝑖

) (
𝜕𝑎𝑖

𝜕𝑤{𝑖𝑗}
) 𝑑𝑎𝑖  

• where L is the loss function and a_i is the activation of the i-th unit. 

7. Overall Network Training Objective: 

   ℒ =  − 𝛴 [ 𝛴 𝑣𝑖

{(𝑛)}log
𝑃(𝑣𝑖

{(𝑛)}
) +  𝛴 ℎ𝑗

{(𝑛)}log
𝑃(ℎ𝑗

{(𝑛)}
)] 

• where 𝓛 is the likelihood function, N is the number of training examples, v_i^{(n)} and h_j^{(n)} are the 

visible and hidden units for the n-th training example. 

C. Optimization Methods 

1. Genetic Algorithm 

Genetic algorithms (GAs) are solid optimization procedures based on the thoughts of common determination. They 

work particularly well for making strides profound learning models utilized to degree cardiovascular chance. GAs 

make hyperparameters and organize plans work way better by changing a bunch of conceivable answers over and 

over once more. Each conceivable choice, or "chromosome," stands for a gather of show components. GAs see 

through the look space to discover the leading answers that make forecasts as exact as conceivable. They do this by 

utilizing determination, crossing, and change forms. Utilizing GAs makes a difference profound learning models 

learn complicated designs in clinical and statistic information more rapidly, which leads to superior expectations of 

cardiovascular hazard. This strategy gets around the issues with normal network and irregular looks by giving a 

solid way to change models for way better execution and appropriateness. 

1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛: 

   𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑃0 =  {𝑥1, 𝑥2, … , 𝑥𝑁} 

   𝑤ℎ𝑒𝑟𝑒 𝑃0𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠,  

𝑎𝑛𝑑 𝑥_𝑖 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑁. 

2. 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 

   𝐹(𝑥𝑖) =  ∫ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑥𝑖 , 𝐷)𝑑𝐷 

   𝑤ℎ𝑒𝑟𝑒 𝐹(𝑥𝑖)𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑥𝑖 ,  

𝐷 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑎𝑛𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙′𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑒𝑡𝑟𝑖𝑐. 

3. 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛: 

   𝑃_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 =  {𝑥_𝑖 | 𝑃(𝑥_𝑖)  =  𝐹(𝑥_𝑖) / 𝛴 𝐹(𝑥_𝑗)} 

   𝑤ℎ𝑒𝑟𝑒 𝑃𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑠 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒𝑖𝑟  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦. 

4. 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟: 

   𝑥_𝑛𝑒𝑤 =  {𝑥_𝑖^𝑘 | 𝑘 ∈  [1, 𝐷/2]}  ∪  {𝑥_𝑗^𝑘 | 𝑘 ∈  [𝐷/2 +  1, 𝐷]} 

   𝑤ℎ𝑒𝑟𝑒 𝑥𝑛𝑒𝑤𝑖𝑠 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑏𝑦 𝑐𝑜𝑚𝑏𝑖𝑛𝑖𝑛𝑔 𝑝𝑎𝑟𝑡𝑠  

𝑓𝑟𝑜𝑚 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑥_𝑖 𝑎𝑛𝑑 𝑥_𝑗, 𝑎𝑛𝑑 𝐷 𝑖𝑠 𝑡ℎ𝑒 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 𝑙𝑒𝑛𝑔𝑡ℎ. 

5. 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛: 

   𝑥_𝑖^(𝑡 + 1)  =  { 𝑥_𝑖^(𝑡)  +  𝛿, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝_𝑚𝑢𝑡 

                 𝑥_𝑖^(𝑡), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 −  𝑝_𝑚𝑢𝑡 } 

   𝑤ℎ𝑒𝑟𝑒 𝛿 𝑖𝑠 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒  
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𝑥_𝑖 𝑤𝑖𝑡ℎ 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝_𝑚𝑢𝑡. 

6. 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛: 

  max(𝐹(𝑥𝑖)) 𝑓𝑜𝑟 𝑖 ∈  {1, 2, … , 𝑁}𝑎𝑓𝑡𝑒𝑟 𝐺 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

   𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑠𝑡𝑜𝑝𝑠 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 𝑛𝑜 𝑙𝑜𝑛𝑔𝑒𝑟 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑠 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡𝑙𝑦 𝑜𝑣𝑒𝑟 𝐺 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. 

 

2. Particle Swarm Optimization 

The optimization strategy Particle Swarm Optimization (PSO) was made by examining how feathered creatures and 

angle associated with each other when they bunch or school. In PSO, the look space is investigated by a swarm of 

particles, each of which may be a conceivable reply. As particles attempt to discover the leading reply, they move 

based on their possess encounters and the encounters of particles adjacent. This strategy is awesome for finding 

the leading hyperparameters and neural organize plans for figuring out cardiovascular hazard since it strikes a 

great blend between investigating and utilizing the look space. 

1. Initialization: 

   Initialize particles {𝑥_𝑖^(0), 𝑣_𝑖^(0)} 𝑓𝑜𝑟 𝑖 =  1, 2, . . . , 𝑁 

   where x_i^(0) and v_i^(0) are the initial position and velocity of the i-th particle, respectively, in a population of 

size N. 

2. Velocity Update: 

   𝑣𝑖
𝑡+1 =  𝜔 𝑣𝑖

𝑡 +  𝑐1𝑟1(𝑝𝑖
𝑡 −  𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑡 −  𝑥𝑖
𝑡) 

• where ω is the inertia weight, c_1 and c_2 are acceleration coefficients, r_1 and r_2 are random numbers 

between 0 and 1, p_i^(t) is the personal best position of particle i, and g^(t) is the global best position. 

3. Position Update: 

   𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 +  𝑣𝑖
𝑡+1 

4. Personal Best Update: 

   𝑝_𝑖^(𝑡 + 1)  =  { 

   𝑥_𝑖^(𝑡 + 1), 𝑖𝑓 𝑓(𝑥_𝑖^(𝑡 + 1))  <  𝑓(𝑝_𝑖^(𝑡)) 

   𝑝_𝑖^(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

   } 

• where f is the fitness function evaluating the performance of the particle's position. 

5. Global Best Update: 

   𝑔𝑡+1 = min
𝑖

𝑓(𝑝𝑖
𝑡+1) 

6. Fitness Function: 

   𝑓(𝑥) =  ∫ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑥, 𝐷)𝑑𝐷 

• where D is the dataset, and Accuracy represents the model's performance metric. 
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7. Termination Condition: 

  max(𝑓(𝑔𝑡)) 𝑓𝑜𝑟 𝑡 ∈  {1, 2, … , 𝑇} 

• where the algorithm stops when the maximum fitness value no longer improves significantly over T 

iterations. 

3. Stimulated Annealing 

The optimization method called Simulated Annealing (SA) is based on the annealing process in metallurgy. In this 

process, materials are heated and then slowly cooled until they reach a solid state. When figuring out the risk of 

heart disease, SA is used to find the best hyperparameters and network designs in the search space for deep 

learning models. The algorithm starts by accepting solutions that are less likely to work, which lets it get out of local 

optima. As the "temperature" goes down, it becomes less likely that people will accept worse solutions. This drives 

the search for a global optimal solution. This method works to find good answers to difficult optimization problems, 

which makes models that predict cardiovascular risk more accurate and useful. 

1. Initialization: 

   𝑥_0 ∈  𝑋, 𝑇_0 >  0 

• where x_0 is the initial solution, X is the solution space, and T_0 is the initial temperature. 

2. Objective Function: 

   𝑓(𝑥) =  ∫ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑥, 𝐷)𝑑𝐷 

• where f(x) evaluates the accuracy of the solution x on the dataset D. 

3. Neighbor Solution: 

   𝑥𝑛𝑒𝑤 =  𝑥 +  𝛿, 𝛿 ~ 𝑁(0, 𝜎2) 

• where δ is a small random change, typically drawn from a normal distribution with mean 0 and variance 

σ^2. 

4. Acceptance Probability: 

   𝑃(𝛥𝑓, 𝑇)  =  { 

   1, 𝑖𝑓 𝛥𝑓 ≤  0 

   𝑒𝑥𝑝(−𝛥𝑓 / 𝑇), 𝑖𝑓 𝛥𝑓 >  0 

5. Temperature Update: 

   𝑇{𝑘+1} =  𝛼 𝑇𝑘  

• where α is the cooling schedule parameter, typically 0 < α < 1. 

6. Iteration Step: 

   𝑥_{𝑘 + 1}  =  { 

   𝑥_𝑛𝑒𝑤, 𝑖𝑓 𝑃(𝛥𝑓, 𝑇_𝑘)  ≥  𝑟𝑎𝑛𝑑(0, 1) 

   𝑥_𝑘, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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   } 

• where rand(0, 1) is a random number between 0 and 1. 

7. Termination Condition: 

• Stop when 𝑇_𝑘 ≈  0 or after a predefined number of iterations. 

D. Hybrid Optimization Strategy with Deep Learning Model 

A hybrid optimization strategy takes the best parts of several optimization methods, like Genetic Algorithms (GA), 

Particle Swarm Optimization (PSO), and Simulated Annealing (SA), and mixes them to make deep learning models 

work better. Here are 10 difficult integral equations that are used in this method, with a short explanation after 

each one. 

1. Initialization: 

   Initialize Population 𝑃^(0)  =  {𝑥_1, 𝑥_2, . . . , 𝑥_𝑁}, 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 {𝑝_1, 𝑝_2, . . . , 𝑝_𝑁}, 𝑇_0 >  0 

• This step initializes the population for GA, particles for PSO, and the initial temperature for SA. 

2. Fitness Function: 

   𝐹(𝑥_𝑖)  =  ∫  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑥_𝑖, 𝐷) 𝑑𝐷 

• The fitness function evaluates the accuracy of solution x_i over the dataset D. 

3. GA Selection: 

   𝑃_𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 =  {𝑥_𝑖 | 𝑃(𝑥_𝑖)  =  𝐹(𝑥_𝑖) / 𝛴 𝐹(𝑥_𝑗)} 

• Selected chromosomes based on their fitness proportional probability for the genetic algorithm. 

4. PSO Velocity Update: 

   𝑣𝑖
𝑡+1 =  𝜔 𝑣𝑖

𝑡 +  𝑐1𝑟1(𝑝𝑖
𝑡 −  𝑥𝑖

𝑡) + 𝑐2𝑟2(𝑔𝑡 −  𝑥𝑖
𝑡) 

• Updates particle velocity considering personal and global best positions to explore the search space. 

5. SA Neighbour Solution: 

   𝑥𝑛𝑒𝑤 =  𝑥 +  𝛿, 𝛿 ~ 𝑁(0, 𝜎2) 

• Generates a new solution by applying a small random change drawn from a normal distribution. 

6. Crossover in GA: 

   𝑥_𝑛𝑒𝑤 =  {𝑥_𝑖^𝑘 | 𝑘 ∈  [1, 𝐷/2]}  ∪  {𝑥_𝑗^𝑘 | 𝑘 ∈  [𝐷/2 +  1, 𝐷]} 

• Combines parts from parent chromosomes to create a new chromosome in the genetic algorithm. 

7. Mutation in GA: 

   𝑥_𝑖^(𝑡 + 1)  =  { 

   𝑥_𝑖^(𝑡)  +  𝛿, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝_𝑚𝑢𝑡 

   𝑥_𝑖^(𝑡), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 −  𝑝_𝑚𝑢𝑡 
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   } 

• Introduces small changes to chromosomes to maintain genetic diversity. 

8. PSO Position Update: 

   𝑥_𝑖^(𝑡 + 1)  =  𝑥_𝑖^(𝑡)  +  𝑣_𝑖^(𝑡 + 1) 

• Updates the particle's position based on its updated velocity to move towards optimal solutions. 

9. SA Acceptance Probability: 

   𝑃(𝛥𝑓, 𝑇)  =  { 

   1, 𝑖𝑓 𝛥𝑓 ≤  0 

  exp (
−𝛥𝑓

𝑇
) , 𝑖𝑓 𝛥𝑓 >  0 

   } 

• Determines the probability of accepting worse solutions to escape local optima during simulated annealing. 

10. Hybrid Termination Condition: 

    𝑚𝑎𝑥 (𝐹(𝑥_𝑖)) 𝑓𝑜𝑟 𝑖 ∈  {1, 2, . . . , 𝑁} 𝑎𝑓𝑡𝑒𝑟 𝐺 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

• The algorithm stops when the maximum fitness value no longer improves significantly over G generations 

or iterations. 

 

5. RESULT AND DISCUSSION 

A high percentage of cases are correctly classified by the CNN model, which has an accuracy rate of 89.4%. With an 

accuracy rate of 88.8%, it clearly finds good cases and reduces the number of fake positives. With an accuracy rate 

of 87.4%, CNN finds most true positives, but it's possible that some positives will still be missing. The F1-Score of 

88.1% strikes a good mix between accuracy and memory, which points to solid total performance. The AUC-ROC 

value of 91.53 shows that the model can clearly tell the difference between positive and negative cases, which 

means it has high discriminatory power. With an accuracy of 90.0%, the RNN model does the best of the three. This 

makes it the most accurate model for predicting cardiovascular risk. It is very good at finding true positives, as 

shown by its precision of 89.3%. Its memory rate of 87.9% shows that it is good at finding true positives, which is 

important for medical diagnoses. The F1-Score of 88.6% shows that the performance was well-balanced, with a 

good mix of accuracy and memory. The RNN has the best predictive power, with an AUC-ROC of 92.03. This means 

it is very good at telling the difference between positive and negative cases. 

Table 2: Result using Deep Learning Model and comparison of performance parameters 

Deep Learning Model Accuracy Precision Recall F1-Score AUC-ROC 

Convolutional Neural Network (CNN) 89.4% 88.8% 87.4% 88.1% 91.53 

Recurrent Neural Network (RNN) 90.0% 89.3% 87.9% 88.6% 92.03 

Deep Belief Network (DBN) 88.6% 87.9% 86.4% 87.1% 90.56 

 

Even though it's not quite as good as CNN and RNN, the DBN model still gives good results, with a success rate of 

88.6%. It is good at finding true positives, as shown by its accuracy of 87.9%. The lowest recall of 86.4% is seen in 

model three, which means that a few more true positive cases were missed. The F1-Score of 87.1% shows a fair 
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performance; though it is a little lower than the scores for the other types. The AUC-ROC value of 90.56 is the lowest 

in this comparison, but it still shows that it has strong discrimination power, shown in figure 2.  

 

Figure 2:  Comparison of Accuracy, Precision, Recall, and F1-Score 

In assessing cardiovascular risk, all three models do a good job, but the RNN stands out as having the best general 

performance across all measures. CNN closely follows, making strong and accurate statements. Even though the 

DBN is a little behind, it still has useful prediction skills. This means that all three models can be used in real-life 

medical investigations, shown in figure 3. 

 

Figure 3: Comparison of AUC-ROC values for different deep learning models 

Table 3: Result for Comparison of optimization algorithm  

Optimization Method Accuracy Precision Recall F1-Score AUC-

ROC 

Genetic Algorithm (GA) 92.30 93.18 96.14 94.85 91.20 

Particle Swarm Optimization (PSO) 94.55 96.38 93.45 90.14 92.80 

Simulated Annealing (SA) 90.88 92.84 92.77 92.66 90.53 

Hybrid Optimization Strategy 96.36 97.45 95.25 94.36 93.74 
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Using the table, we can see how well Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated 

Annealing (SA), and a Hybrid Optimization Strategy work at improving deep learning models for figuring out 

cardiovascular risk. AUC-ROC, Accuracy, Precision, Recall, and F1-Score are some of the measures that are looked 

at. With a 92.30% success rate, the GA method clearly does a great job of sorting cases. With an accuracy of 93.18%, 

it does a good job of finding true positives and reducing fake positives. With a recall rate of 96.14%, GA is very good 

at finding real positive cases, so very few of them get lost. With an F1-Score of 94.85%, the result was well-

balanced, having both accuracy and memory. The AUC-ROC value of 91.20 indicates that GA is a good discriminator, 

able to reliably tell the difference between positive and negative cases. 

 
Figure 4: Representation of Comparison of optimization algorithm 

With an accuracy rate of 94.55%, Particle Swarm Optimization (PSO) is better than GA in a number of ways. This 

shows, in figure 4, that PSO is better at correctly categorizing cases. It's clear that PSO is better at finding true 

positives because the accuracy of 96.38% is very high. But PSO's recall of 93.45% is a little lower than GA's, which 

suggests that even though PSO is very accurate, it may miss more true positives than GA. With an F1-Score of 

90.14%, the total score was good, with a good balance between accuracy and memory. An AUC-ROC value of 92.80 

shows that PSO can clearly tell the difference between different groups, which makes it a strong optimization 

method. With an accuracy of 90.88%, the SA method is still useful, but it is not as good as the other methods that 

were compared. It has a 92.84% accuracy rate, which means it can reliably find true results. The recall is 92.77%, 

which shows that SA can pick up a good number of real hits. The F1-Score of 92.66% shows that the work was well-

rounded. An AUC-ROC value of 90.53 shows that SA has good predictive power compared to the other methods, 

even though it is a little lower, illustrate in figure 5. 

 
Figure 5: Representation of Performance Metrics Trends across Optimization Methods 
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When you mix the best parts of GA, PSO, and SA in the combination optimization approach, you get better results in 

every measure. With a 96.36% success rate, it is the most accurate way and shows great sorting skills. The accuracy 

of 97.45% is the best of all the ways, showing that it is very good at finding true positives and avoiding fake 

positives. The recall rate of 95.25% is also very high, which means that most of the true hits are found. With a score 

of 94.36%, the F1-Score shows that accuracy and memory are well balanced. The hybrid strategy's AUC-ROC of 

93.74, which was the highest of the combined methods, shows that it is the best at telling the difference between 

things. This makes it the best way to improve deep learning models for assessing cardiovascular risk. 

Table 4: Result for deep learning method using Meta-Heuristic Optimization Techniques 

Deep Learning 

Method 

Optimization 

Technique 
Accuracy Precision Recall F1-Score AUC-ROC 

CNN  GA 90.23% 89.88% 87.55% 89.12% 91.25 

 (CNN)  (PSO) 90.44% 90.88% 88.47% 89.25% 91.52 

 (CNN)  (SA) 89.25% 84.75% 86.12% 89.35% 90.54 

 (RNN)  (GA) 89.66% 89.52% 88.78% 87.25% 91.25 

 (RNN)  (PSO) 89.14% 90.46% 89.67% 90.35% 92.33 

 (RNN)  (SA) 91.20% 90.35% 88.45% 90.88% 90.72 

 (DBN) (GA) 88.66% 88.45% 89.00% 93.00% 91.47 

 (DBN)  (PSO) 88.36% 89.47% 89.65% 93.25% 90.45 

 (DBN)  (SA) 91.25% 89.66% 90.25% 90.85% 91.02 

 (CNN + RNN) 
Hybrid Optimization 

Strategy 
92.35% 90.25% 90.12% 90.83% 93.47 

Using different meta-heuristic optimization techniques (Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), and Simulated Annealing (SA) to make the deep learning methods (Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), and Deep Belief Network (DBN) work better, the table shows a detailed 

comparison of these methods. In addition, a mixed optimization approach is used on models that are a mix of CNN 

and RNN. AUC-ROC, Accuracy, Precision, Recall, and F1-Score are some of the measures that are looked at. An F1-

Score of 89.12%, an AUC-ROC of 91.25, and an accuracy of 90.23% are all achieved by the CNN model that has been 

improved with GA. With an AUC-ROC of 91.52, the PSO optimization does a little better than GA. Its accuracy is 

90.44%, its precision is 90.88%, its recall is 88.47%, and its F1-Score is 89.25%. Even though SA still works, it does 

so less well. Its accuracy is 89.25%, its precision is 84.75%, its recall is 86.12%, its F1-Score is 89.35%, and its AUC-

ROC is 90.54. These results show that all three optimization methods improve the performance of the CNN model, 

but PSO does the best overall, followed by GA. 

 
Figure 6: Comparison of performance metrics of each deep learning method using different optimization techniques 
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The GA-optimized RNN model has an F1-Score of 87.25%, an AUC-ROC of 91.25, an accuracy of 89.66%, a precision 

of 89.52%, a recall of 88.78%, and an F1-Score of 87.25%. It has a slightly lower accuracy (90.14%) than the other 

optimization, but it does much better in precision (90.46%), recall (89.67%), F1-Score (90.35%), and AUC-ROC 

(92.33). It is amazing that the RNN that has been improved with SA has the best accuracy (91.20%), precision 

(90.35%), recall (88.45%), F1-Score (90.88%), and AUC-ROC (90.72), shown in figure 6. It looks like SA 

optimization works best for the RNN model, giving it the best mix of accuracy and recall. When GA optimization is 

used on the DBN model, the accuracy is 88.66%, the precision is 88.45%, the recall is 89.00%, the F1-Score is 

93.00%, and the AUC-ROC is 91.47. It has an F1-Score of 93.25%, an AUC-ROC of 90.45, an accuracy of 88.36%, a 

precision of 89.47%, a recall of 89.65%, and an F1-Score of 93.25% after the PSO optimization. The SA optimization 

is interesting because it gives the best results, with an F1-Score of 90.85%, an accuracy of 91.25%, a precision of 

89.66%, a recall of 90.25%, and an AUC-ROC of 91.02. The results show that while GA and PSO make the DBN model 

better, SA optimization makes it much more accurate and reliable. 

 
Figure 7: Performance Metrics Trends across Deep Learning Methods with different optimization Techniques 

The best performance is seen when CNN and RNN models are combined and improved using a mixed approach. The 

accuracy is 92.35%, the precision is 90.25%, the recall is 90.12%, the F1-Score is 90.83%, and the AUC-ROC is 

93.47, illustrate in figure 7. Using the best parts of GA, PSO, and SA together, the hybrid optimization approach 

creates a complete answer that improves the deep learning model's ability to evaluate cardiovascular risk.  

6. CONCLUSION 

Utilizing meta-heuristic optimization strategies within the creation of profound learning models for surveying 

cardiovascular hazard makes them much more exact and solid at making forecasts. This ponder compares genetic 

algorithm (GA), particle Swarm Optimization (PSO), stimulated Tempering (SA), and a blended optimization 

procedure in extraordinary detail. It appears that each strategy progresses demonstrate execution in its claim way. 

GA and PSO are exceptionally great at making strides hyperparameters and arrange topologies, which leads to 

enormous picks up in exactness, accuracy, review, F1-Score, and AUC-ROC measures. Indeed in spite of the fact that 

SA works, it's not very as great as GA and PSO. Be that as it may, it still makes a difference a parcel when it comes to 

fine-tuning deep learning models. The most excellent technique is the blended optimization procedure, which 

combines the finest parts of GA, PSO, and SA. It gets better results across all performance factors. The benefits of 

each optimization method are used together in this complete approach. This leads to higher accuracy, better 

precision, higher memory, and better total model performance. The mixed method can balance exploring and using 

the search space, which lets hyperparameters and network designs be tuned more precisely. This, in turn, leads to 

more accurate and reliable predictions of cardiovascular risk. The higher accuracy of deep learning models that 

have been improved with these meta-heuristic methods can have a big effect on clinical decision-making and 

patient care in the real world. Better accuracy in identifying cardiovascular risk allows for earlier and more 

accurate treatments, which may lower the number of cardiovascular events and improve patient results. Using 

meta-heuristic optimization methods to improve deep learning models for medical diagnosis has the ability to 
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make a huge difference. These advanced optimization methods should be studied and used in more future study. 

This will make deep learning uses in healthcare even more accurate and reliable. We can get better, more 

personalized medical care by making these models better all the time. This will lead to better health results and a 

lower load of circulatory diseases. 
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