
Frontiers in Health Informatics 

ISSN-Online: 2676-7104 

www.healthinformaticsjournal.com 

 

2024; Vol 13: Issue 2 Open Access 

 

569 | P a g e  

Study of Molecular Docking (Intraction and Connucation) of Drugs 

Metformin and Pioglitazone for Thyroid Dysfunction in Patients with 

Diabetes 
 

Idries Muhson Abeed Al-Mashkor1, Iqbal J. Al-assadi2, Hanan A. Al-Hazam3 
1,2.3Department of Chemistry, Faculty of Science, University of Basrah, Iraq  

E-mail : idris_m@utq.edu.iq 1, Iqbal.bader@uobasrah.edu.iq 2, hanan.radhy@uobasrah.edu.iq 3 

 

 Article Info A B S T R A C T 

 Article type: 

Research 

In this study, docking analysis and scores were obtained from the compounds 

against the receptor (insulin hormone). The yield of all ligands was given by 

energy values in kcal/mole. ligands show remarkable degrees of docking. The 

docking score of the target compounds was compared with the docking score 

of the drug (metformin and pioglitazone), which is used as an effective drug to 

treat diabetes, which showed higher docking scores. The interactions were the 

bond strength of the compounds. The strength of the compounds’ binding to 

the receptor was strong and close, and the results in (metformin and 

pioglitazone) showed that the best association with the protein and separate 

from it was the strongest association with compound (metformin and 

pioglitazone). With the protein, it was found to be strongly associated with the 

amino acid (LYS 75, PHE 106, LYS 40, ARG 67) and (NH1 ARG 18) bound to the 

functional group (Amine, hydroxide,) H-donor and pi-H of the H receptor, pi-

caten. compound metformin that binds strongly to the amino acid, and then 

the bonding strength of compound pioglitazone is less than the previous 

compound, and at the same time they have a good bond with the 

pharmaceutical compound (metformin and pioglitazone) and how the images 

of these compounds are presented through the figures taken from MOE 

program. 
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INTRODUCTION 

   Long regarded as the benchmark for determining the biological activity of compounds, High-Throughput 

Screening (HTS) consists of comparing extensive collections of chemical compounds to collections of molecular 

targets. The substantial expenses associated with establishing and maintaining these screening platforms render 

them seldom utilized in the pharmaceutical discovery sector [1]. Furthermore, the increasing prevalence of 

computational techniques, also known as "in silico approaches," can be readily explained by the rapid expansion 

of structural, chemical, and biological data pertaining to a wide range of therapeutic targets and the most recent 

advancements in computer technology. 

Over the past few decades, the utilization of artificial intelligence (AI), molecular modelling, and 

cheminformatics methodologies has increased significantly [2–6]. Presently, in silico methodologies enable the 

expeditious virtual screening of a substantial quantity of compounds, thereby reducing the initial expenditures 

associated with the identification of potential drug candidates and augmenting the likelihood of discovering the 

necessary medications. Presently, a plethora of molecular modelling techniques exist to aid in the progress of 

drug development. The vast majority of these techniques can be classified into one of two categories: ligand-

based or structure-based methodologies 
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Structure-based approaches enable the prioritization of molecule databases based on the structural and 

electrical compatibility of ligands with targets [7]. These approaches operate under the assumption that one 

possesses knowledge of the three-dimensional structure of an intriguing target. In this regard, molecular 

docking [7] is one of the most well-known and efficient structure-based in silico methods for predicting the 

interactions that occur between molecules and biological targets. A scoring function is commonly employed to 

estimate the complementarity of a ligand with a receptor subsequent to predicting its molecular orientation [7]; 

this is the means by which the procedure is concluded.  

Since its inception in the mid-1970s, the docking procedure has demonstrated its utility in elucidating the 

interactions between chemical compounds and their molecular targets, in addition to facilitating the discovery 

and development of novel pharmaceuticals. In reality, an increasing number of studies are employing molecular 

docking to identify the crucial structural elements necessary for ligands to interact effectively with receptors [7–

21]. Furthermore, the development of docking techniques that are more precise is underway. In the early 1980s, 

Kuntz et al. conducted one of the pioneering and most significant investigations in the fields of drug discovery 

and biology by employing a computer technique to analyze docking. The geometric feasibility of ligand and 

receptor alignments for the home-myoglobin/metmyoglobin and thyroxine/prealbumin structures was 

investigated in this study [13]. While not the initial study to employ docking to predict potential molecular 

complex configurations [9], it was the first to present a more straightforward function for characterizing protein-

ligand interactions, consisting solely of "hard sphere repulsions" and "hydrogen bonding" [9,11,12,22]. The 

authors' conceptualization of the receptor as a rigid body featuring "pockets" at the site of binding also 

represented a novel approach. It is worth noting that the methodology employed in this study successfully 

identified protein conformations that hold promise for future energy refinement and design. Additionally, the 

predicted structures closely resembled those of X-ray complexes that have been previously published. Ligands 

that are novel [13]. Subsequent to its inception, molecular docking has witnessed substantial progress, including 

the implementation of flexible computation algorithms [21, 23–26]. Furthermore, it was progressively 

implemented in the advancement and refinement of molecules that held promise for therapeutic uses. An 

example of this can be observed in the research conducted by Ring et al. [27], wherein they utilized docking and 

other structure-based drug design methods to identify novel non-peptidic inhibitors of cysteine and serine 

protease enzymes. 

 The results of this research provided additional evidence for the utility of computer-aided methods in drug 

design that utilize molecular structures to generate lead compounds [27].  

Due to the potential of this methodology, additional endeavours are being undertaken to improve docking 

algorithms and overcome their intrinsic limitations [28–30]. Significant limitations associated with docking 

methods encompass the reliance on estimated scoring functions, which may produce results that fail to 

correspond with true binding affinities, as well as a restricted sample size for pose prediction encompassing 

both ligand and receptor conformations [31, 32]. When designing medications, docking can only be applied to 

biological targets whose crystal structures are known. There have been numerous approaches taken to resolve 

this latter constraint. In the absence of three-dimensional structures, homology models can be constructed using 

structural templates that possess sequences that are extremely similar. Moreover, in order to validate and 

enhance the in silico simulated complexes, it is possible to combine these methods with molecular dynamics 

(MD) [33–35].  

Nevertheless, the current progress in crystal structure determination and structural biology will undoubtedly 

mitigate this issue by consistently increasing the availability of ligand-target complexes generated 

experimentally [36–39]. Utilising in silico methods, including molecular dynamics, the conformational space of 

the targets, ligands, and ligand-target combinations under investigation has also been exhaustively investigated.  

Stricter virtual screening procedures and the fine-tuning of docking results are more sophisticated approaches 

that more accurately represent the dynamic behaviour of ligand-target complexes and enhance docking results. 

These post-docking refining and rescoring techniques are highly advantageous in the field of drug discovery due 

to the fact that they typically increase the success rate of virtual screening campaigns and establish more robust 

connections with experimental data. There have been numerous publications that examine the function and 
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applications of docking in the discovery and design of new medications. It is essential to keep in mind that since 

the invention of docking, its applications and purposes have evolved. Initially developed to investigate molecular 

recognition between large and small compounds, docking is now applied to a vast array of pharmacological 

applications. 

 Moreover, docking facilitates the comprehension of the interrelationships among multiple molecular targets 

associated with a specific disease, a critical aspect of modern drug development and polypharmacology at large.  

As a result of advancements in docking algorithms and the accessibility of publicly available ligand and target 

data, the application of this methodology has expanded to facilitate the discovery of new drugs. An illustration of 

this can be seen in the ease with which large-scale screening protocols can now incorporate docking due to its 

enhanced speed and predictive capability. These protocols aim to identify various factors, such as potential 

negative drug reactions, ligands with unique chemical structures that exhibit activity against specific targets or 

desired sets of targets, and protein binding sites for putative ligand binding. This analysis will examine the 

contribution that docking techniques make to drug discovery initiatives. Innovative drug design strategies, 

including target identification, polypharmacology, drug repurposing, and adverse drug response prediction, will 

be highlighted in particular. 

It has been established that current docking-based rational design techniques hold great promise for drug 

discovery [3,5,7,18,47,49,50,63]. As previously stated, anchoring is subject to inherent limitations that restrict its 

capacity for prediction. Docking, which was previously employed as an independent approach in drug design, is 

now frequently incorporated into pipelines alongside ligand-based, structure-based, and artificial intelligence 

(AI) methodologies (Figure 2) [50, 64]. An important limitation of the structure-based approach is mitigated 

through the implementation of this integration. 

 As its initial purpose envisaged, docking is utilized in the drug development environment to validate ligand 

activity towards a specific target and to conduct structure-based virtual screening campaigns. In addition, target 

complementarity groups can potentially be identified through the utilization of docking techniques, which 

involve target fishing and profiling. A subset of these groups might be associated with unforeseen adverse effects 

of medications (off-targets prediction). Moreover, docking is currently being employed to identify ligands that 

can simultaneously bind to multiple receptors (polypharmacology) and to discover novel applications for 

compounds whose safety profiles are well-established (drug repositioning). 

Advancements in docking algorithms and the accessibility of publicly available ligand and target data have 

significantly expanded the potential applications of docking methods in the field of pharmaceutical development. 

As an illustration, mooring has been integrated into screening protocols for large-scale operations due to its 

enhanced speed and predictive capabilities. The purpose of these protocols is to identify potential adverse drug 

reactions (ADRs) [62], novel molecular targets of known ligands [54], protein binding sites suitable for ligand 

binding [61], ligands with novel chemotypes that exhibit activity against a specific target or a desired set of 

targets [55], and potential ligands that bind to novel adversity [62].  

In this study, we will investigate the potential utility of docking techniques in drug discovery tasks, focusing on 

novel approaches to drug design including polypharmacology, target identification, drug repurposing, and 

prediction of adverse drug reactions.  

For computer-aided structure-based drug design, it is critical to comprehend the targeted protein structure in 

order to calculate the interaction energies between various compounds [43–46]. Utilizing a structural database 

comprising crystallised target proteins can serve as a fundamental basis for the development of energy-efficient 

and selective compounds that bound to the target [47–57]. A more comprehensive term to describe this 

approach is Virtual High-Throughput Screening [58–65]. It involves the utilisation of computer-based screening 

methods to evaluate a substantial collection of chemically similar compounds for a specific biological activity. 

Virtual high-throughput screening may manifest in various forms, including strategies and techniques based on 

chemicals.  

The lead optimization process during pharmaceutical development necessitates the utilization of computational 

tools, which offer significant cost advantages. This includes techniques such as similarity search, which selects 

compounds based on anticipated biological activity using models such as pharmacophore mapping or 
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Quantitative Structure-Activity Relationship (QSAR). In addition, virtual docking is employed to transfer 

compounds to a specific protein target. The utilization of computational techniques during the hit-to-lead 

optimization phase aids in the reduction of the quantity of compounds that need to be produced and assessed in 

vitro [66-74].[75-79]. 

 

 

 

                         Fig. 1. Computer aided drug design model (CADD) 

 

 
Fig. 2. Drug design structure 

            Structure - Based Drug Design (SBDD) 

             Ligand -   Based Drug Design  (LBDD)   
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THE PREVALENCE AND INCIDENCE OF THYROID DYSFUNCTION IN PATIENTS WITH DIABETES 

Background 

   Thyroid disorders are generally acknowledged within the populace [1]. 2.8% of men and 7.5% of women of all 

ages had abnormally high levels of thyroid stimulating hormone (TSH), according to a study conducted in 

Whickham, United Kingdom [2]. A similar pattern was observed at a statewide health fair, where aberrant TSH 

levels were detected in 11.7% of attendees, per the Colorado Thyroid Disease Prevalence Study [3]. An increased 

risk of thyroid dysfunction is associated with advancing age [4–8]. Over the course of two decades, the 

Whickham study discovered that the mean annual occurrence of idiopathic hypothyroidism was 4%. Conversely, 

cases of thyroid antibodies were 27% more prevalent annually among women [2]. Additionally, there may be 

ethnic variations in prevalence, with Indians exhibiting 15–30% higher rates.  

Thyroid abnormalities, the most prevalent autoimmune disorders among individuals with diabetes, affect twelve 

to twenty-four percent of patients diagnosed with type 1 diabetes (T1DM) and three to six percent of patients 

diagnosed with type 2 diabetes (T2DM) [13–16]. Regular thyroid dysfunction screening is recommended in light 

of the data suggesting a greater incidence of thyroid dysfunction among individuals with type (1) diabetes 

mellitus and type (2) diabetes mellitus [13, 14].  

Nonetheless, prevalence statistics were utilized in the formulation of thyroid screening guidelines. A prospective 

study found that the annual incidence of patients with abnormal thyroid function was a mere 1%.  

Illness of the 2nd type of diabetes mellitus (T2DM) is a chronic metabolic disorder caused by dysfunctional 

pancreatic beta cells and peripheral insulin resistance.      It is estimated that 9.1% of the global population, or 

415 million individuals, are afflicted with this disease. Both genetic and lifestyle factors contribute to the 

development of type 2 diabetes,              a complex disease. Recent research suggests that individuals with 

prediabetes or low thyroid hormone levels, even when they fall within the normal reference range, may have an 

increased susceptibility to type 2 diabetes.  

Similar to diabetes, thyroid dysfunction arises from disturbances in the secretion of hormones. The Colorado 

Thyroid Disease Prevalence study revealed that 2.2% of the participants exhibited hypothyroid-stimulating 

hormone (TSH) levels, whereas 9.5% of the individuals tested positive for excessive TSH. The thyroid hormone 

axis consists of thyroxine (T4), triiodothyronine (T3), and thyroid-stimulating hormone (TSH); all three are vital 

for maintaining thyroid function. Potential consequences of these hormonal imbalances include hyperactivity 

(hyperthyroidism) or metabolic underactivity.  

Hypothyroidism, in other words. Subclinical or clinical classifications are assigned to the disorder, clinical being 

the more common, contingent upon the severity of the imbalance. TSH levels that deviate from the norm (normal 

T4 concentration) are frequent indicators of subclinical thyroid disease. There is not always a correlation 

between T4 levels and the presence or absence of symptoms. Despite its benign manifestation, subclinical 

thyroid dysfunction has been shown to have significant clinical implications.  

associated with a variety of complications, including cardiovascular disease (CVD) [25, 27], type 1 diabetes in 

adolescents [27], and chronic renal disease [26].  

A multitude of studies have established a correlation between type 2 diabetes and thyroid dysfunction [28–29]. 

Research suggests that there might be a reciprocal relationship between thyroid issues and diabetes [30, 31].  

The Third National Health and Nutrition Examination Survey (NHANES III),                        a significant cross-

sectional survey, revealed that 1.3% of 17,353 individuals in the United States had hyperthyroidism and 4.6% 

had hypothyroidism [32]. In addition, NHANES III identified a greater  

 

Those diagnosed with diabetes had a higher incidence of thyroid dysfunction compared to those without the 

condition.  

Research has demonstrated that thyroid hormone regulates both the function of the pancreas and the 

carbohydrate metabolism [33].  

However, diabetes has the potential to impact thyroid function in a variety of ways.  

For example, research has shown that diabetes can impact the manner in which thyrotropin-releasing hormone 
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(TSH) reacts with TSH; this can lead to hypothyroidism and a subsequent reduction in T3 levels [34]. Lower T3 

concentrations have been suggested as the result of a reduced quantity of  

Extensive research has been conducted on the correlation between hyperglycemia-induced reversible deiodinase 

activity reduction and hepatic thyroxine levels and the conversion of T4 to T3 in diabetes [35]. A short-term 

excess of T3 may induce insulin resistance, which may subsequently contribute to the development of T2DM, 

according to some studies [36, 37].  

However, the relationship between thyroid hormone levels and the risk of type 2 diabetes remains controversial 

due to inconclusive findings in human studies. While certain studies have failed to establish a statistically 

significant correlation, others have posited that elevated levels of thyroid-stimulating hormone (TSH) and 

decreased levels of free thyroxine exert a positive impact on insulin resistance and hyperglycemia [38–39, 40]. As 

a result, it is evident that a comprehensive assessment of the correlation among TSH, free thyroxine, and T2DM is 

necessary. In addition, the dose-response relationship between thyroid hormone levels and the risk of 

developing type 2 diabetes mellitus has been the subject of few studies [41–42]. To date, the majority of analyses  

have focused on determining the effects of baseline TSH and free thyroxine levels on the risk of developing 

T2DM.  

 

RESULTS AND DISCUSSION 

  Docking Analysis, the docking scores were obtained from compounds  

withe against (insulin Hormone) receptor. The yield of all ligands was given by energy values in kcal/mole as 

appeared in Table 1. Some ligands show great docking scores. Docking score of the compounds targeted was 

compared with the score of the drug (metformin and pioglitazone ) which is used as a potent drug for the 

treatment of diabetes show higher docking scores. The interactions were the strength of the association of 

vehicles 

The interactions were the strength of the association of vehicles with the future is strong and close  The results 

showed in Tables (1) and (2 ) that the best correlation with protein and separated from  was that the strongest 

correlation of the  compound (1),(2), with the protein  was found to be strongly linked with amino acidity (LYS 

75,PHE 106,LYS 40, ARG 67)  and  (NH1    ARG  18 )was associated with the functional group (Amin, hydroxide,) 

H-donor And pi-H of H-acceptor, pi-cation 

Then followed by the compound (1) is strongly bound with the amino acid and then the bonding strength of the 

compound (2) comes less than the previous compound and at the same time they have a good correlation with 

the drug compound (1,2) and how the images of these compounds are shown through the forms taken from the 

program MOE Which shows its association with (ligand) in the figures. 

 

Table (1) compounds (1,2) 

NO. Name of the  compounds structure 

1 metformin 

 

2 pioglitazone 
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Table (2) Calculate the energies 1,2 and (insulin) with protein. 

 

 
connucation of insulin with metformin  more stabile 

                   
Intraction the metformin with insulin more stable         connucation of insulin with metformin less stabile 

 

          
 

 

Intraction the metformin with insulin less stable           connucation of insulin with metformin and glucose  more 

stabile 

 

Compound Docking Score   E (Kcal/ 

mole) 

Amino acid interaction 

 

function group 

interaction 

1 -4.504 
LYS 75,PHE 106, 

LYS 40, ARG 67 
Amine, hydroxide 

2 -10.223     NH1    ARG  18 Amine, hydroxide 
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 Intraction  of insulin with metformin and glucose  more stabile    connucation of insulin with metformin and 

glucose  less stabile 

 

 

                          
Intraction  of insulin with metformin and glucose  less stabile   connucation of insulin with metformin-thyroxin  

more  stabile 

  

                                         
connucation of insulin with metformin-thyroxin  less  stabile       connucation of insulin with metformin-thyroxin  

more  stabile 

 
connucation of insulin with metformin-ttiiodinthroxin  more  stabile 
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Intraction metformin-thyroxin less  more stable 

 

 
Intraction metformin-triiodothyronine less stable 

 

 
Intraction metformin-thyroxin more stable 
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intrction metformin-thyroxin less  stable 

 

 

 
 

connucation of insulin with pioglitazone more  stabile 
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connucation of insulin with pioglitazone less  stabile 

 

 
connucation of insulin with pioglitazone -glucose more stabile 

 

 
connucation of insulin with pioglitazone -glucose less stabile 
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connucation of insulin with pioglitazone -thyroxin more  stabile 

 

 
connucation of insulin with pioglitazone -thyroxin less  stabile 

 

 
connucation of insulin with pioglitazone -triiodothyronine more  stabile 
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connucation of insulin with pioglitazone -triiodothyronine more  stabile 

 

 
Intraction pioglitazone of the insulin 

 

 
 

Intraction pioglitazone-glucose more stable 
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Intraction pioglitazone-thyroxin more stable 

 

 
Intraction pioglitazone-triiodothyronine more stable 
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Table (3) :The results and study from docking of Drugs with Insulin hormone. 

 

Drugs S score 

Kcal/mol

e 

RMSD Atom of 

compound 

Atom of 

receptor 

Involved 

Receptor 

residues 

Type of 

interactio

n 

bond 

Distanc

e 

(A) 

E(kcal/mole

) 

metformin 

 

 

 

Pioglitazone 

 

 

 

Pioglitazone 

and glucose 

 

 

 

Metformin 

and glucose 

 

-5.07 

 

 

 

6.52 

 

 

 

7.15 

 

 

 

 

5.39 

2.08 

 

 

 

2.53 

 

 

 

2.21 

 

 

 

 

2.22 

N-2 

N-6 

 

 

S-31 

6-ring 

 

 

N-1 

NE2 14 

NE2  14 

OE1   17 

 

O-29 

O-33 

OE1 

OE1 

 

 

O 

6-ring 

 

 

O 

OE1 

OD1 

OH 

 

O 

O 

GLU 21 

GLU 21 

 

 

LEU 17 

TYR 16 

 

 

ILE 2 

GLN 15 

ASN 18 

TYR 19 

 

TYR  26 

TYR   26 

H-donor 

H-donor 

 

 

H-donor 

Pi-pi 

 

 

H-donor 

H-donor 

H-donor 

H-

acceptor 

 

H-donor 

H-donor 

3.331 

3.04 

 

 

11.01 

5.43 

 

3.00 

2.85 

2.95 

2.66 

2.92 

2.93 

-1.4 

-4.5 

 

 

-0.6 

-0.0 

 

-1.2 

-3.4 

-1.6 

-3.3 

-2.6 

-1.0 

 

 

 

Table (4) :The results and study from docking of Drugs and Thyroid hormones with Insulin hormone. 

 

Drugs S score 

Kcal/mol

e 

RMSD Atom of 

compound 

Atom of 

receptor 

Involved 

Receptor 

residues 

Type of 

interaction 

bond 

Distanc

e 

(A) 

E(kcal/mole) 

Metformin and 

thyroxin 

 

 

-6.03 

 

 

 

2.35 

 

 

 

N-16 

I-40 

N-18 

 

O 

O 

NH2 

 

CYS 

ALA 

ARG 

 

H-donor 

H-donor 

H-acceptor 

 

2.99 

3.84 

3.30 

 

-2.4 

-1.1 

-2.4 
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Metformin 

and 

triiodothyronine 

 

 

Pioglitazone and 

thyroxin 

 

 

 

Pioglitazone and 

triiodothyronine 

 

 

 

 

 

 

-6.32 

 

 

 

 

-6.69 

 

 

 

 

 

 

-6.97 

 

 

 

 

2.24 

 

 

 

 

2.32 

 

 

 

 

2.53 

 

S-31 

6-ring 

 

 

I-31 

N-21 

 

 

N-46 

O-79 

S-31 

 

 

N-46 

N-46 

6-ring 

 

O 

6-ring 

 

 

OG1 

OH 

 

 

OE2 

O 

N 

 

 

OE2 

OE2 

6-ring 

 

LEU 17 

TYR 16 

 

 

THR 

TYR 

 

 

GLU 21 

PHE 24 

PHE 24 

 

 

GLU 

GLU 

TYR 

 

H-donor 

Pi-pi 

 

 

H-donor 

H-acceptor 

 

 

H-donor 

H-donor 

H-acceptor 

 

 

H-donor 

Ionic 

Pi-pi 

 

11.01 

5.43 

 

3.75 

2.94 

 

2.66 

3.20 

3.22 

3.42 

 

 

3.01 

3.01 

3.99 

 

-0.6 

-0.0 

 

-0.7 

-0.4 

 

-3.3 

-0.9 

-1.4 

-2.6 

 

 

-5.9 

-4.4 

-0.0 

 

 

CONCLUSIONS 

In this research, the Docking process was performed to computer-reveal the strength of the association between 

compounds and proteins using the (MOE) program. The theoretical association process was performed for the 

compounds listed in the table. Two compounds from the literature that previously showed effectiveness as a 

treatment for diabetes were studied to find out the best compound from them in terms of binding to the amino 

acids of the insulin hormone, and thus nominate the best activator to insulin and increase its sensitivity to enter 

the cells. The results showed that (Metformin and Blackraz) have effectiveness and preference through their 

binding energy with insulin. The amino acids that were linked to the mentioned drugs are responsible for 

increasing the effectiveness of these compounds, as the best compounds showed strong binding with these acids. 

Through this study, we show the mechanism of the effectiveness of these drugs in terms of their binding and 

increasing the sensitivity of both compounds. 
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