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AQI can be defined as the monitoring of air quality index, which has turned out 

to be an essential need for people living in large cities and industrial areas, as 

it seeks to lessen adverse health effects. However, most current models in 

regard to AQI prediction & healthcare enhancements barely take into account 

complex spatio-temporal dynamics of the pollutant and meteorological factors. 

Most of the existing methods face a trade-off among the prediction accuracy, 

computation efficiency, and adaptability across diverse environmental 

conditions. It proposes a multivariate AQI prediction & healthcare 

enhancements model through advanced ensemble machine learning and deep 

learning methods in the perspective of geographically diversified urban and 

industrial areas of Delhi, India Geographies. In this regard, an XGBoost 

integrated with RFE toward AQI prediction & healthcare enhancements has 

been proposed with optimized key parameters: PM2.5, PM10, NO2, CO, SO2, 

temperature, humidity, wind speed, and aerosol parameters. The model 

provides high accuracy with computational efficiency. Further, the ConvLSTM 

combined with Kriging enhances spatial and temporal prediction capabilities 

in filling gaps in the monitoring data from residential, industrial, and heavy-

traffic areas like R.K. Puram, Wazipur, and ITO. Spatial interpolation by using 

Kriging will ensure complete coverage at places where monitoring stations are 

not available. This makes real-time optimization utilize the Multiple Agent DQN 

to propose dynamic interventions for mitigating the level of pollution-

particularly, the traffic and industrial emission. DTW with DBSCAN finally 

emphasized the clustering of pollution that helps identify high-risk areas like 

Anand Vihar and Okhla. The proposed integrated approach significantly 

improves AQI prediction & healthcare enhancements with actionable insights 

for policymakers and environmental regulators. Key results: A better 

performance in the AQI prediction & healthcare enhancements with an average 

absolute error of ~3.5 units and a reduction in episodes of high pollution by 

15%. These gains are immediately applicable to urban air quality management 

with tangible public health benefits across a wide range of urban sectors. 
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INTRODUCTION 

Air pollution is a general and serious problem affecting human health and the environment in general, mostly in high-

density urban and industrial locations. Because of the rapid speed of growth of urbanization and industry across the urban 

world, the air quality problem became more intense, hence the urban regions are becoming prime examples of this growing 

concern for quite varied geographies [1, 2, 3]. These contaminants have been identified and well documented to cause a 

number of respiratory and cardiovascular diseases, hence leading to increased mortality and morbidity rates. Considering 
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the site-specific nature of sources and complex interplay of meteorological conditions, making correct and timely 

predictions of air quality has grown as one of the most crucial objectives of environmental monitoring agencies and policy 

makers. Although these models provide enormous insight, they usually possess some key limitations. Most of the existing 

models are based on either a static or single Variable approach, failing to reveal their multivariate dynamic nature for air 

quality. Besides, it captures badly the spatial heterogeneity and temporal variability of the pollutants, leading to poor 

predictions not enough to form effective intervention strategies at different scenarios 4, 5, 6. It is further challenged by the 

fact that there are very few monitoring stations, providing continuous and wide information on air quality, especially in 

large urban areas. This creates an ever-increasing demand for models capable of effective handling multivariate input 

parameters considering dependencies in space and time and yielding an accurate, actionable forecast of air quality. 

This paper has advanced the integration by combining machine learning with deep learning techniques along with 

geospatial analysis for the development of an AQI prediction & healthcare enhancements model with optimization in mind. 

The model proposed herein employs several techniques, including XGBoost, Convolutional LSTM, Multi-agent Deep Q-

Networks, and Dynamic Time Warping with the application of density-based spatial clustering on temporal data samples. 

We propose these methods because of the capabilities they correspond to in overcoming problems related to air quality 

prediction. As such, we intend to use XGBoost-a robust and effective gradient boosting algorithm-which, given the nature 

of this problem, is very apt for making a correct prediction with respect to the several input parameters like PM2.5, PM10, 

NO2, temperature, humidity, and wind speed in light of the fact that Air Quality Index prediction is greatly dependent upon 

multivariate data. The model leverages recursive feature elimination, retaining only those features that contribute most to 

the target variable and reduces dimensions for improved prediction performance. The second is the ConvLSTM, which is 

very appropriate and provides a framework for dealing with spatiotemporal data of the environment. Although the LSTM 

model was good enough for time-series data models, it had lacked the spatial dimension necessary to understand the spatial 

distribution of pollutants across a region. Folding convolutional layers into ConvLSTM allows it to model both spatial and 

temporal dependencies jointly and perform well in AQI prediction & healthcare enhancements with respect to location and 

time span. Once more, Kriging is a geospatial interpolation technique; thus, the model can produce AQI prediction & 

healthcare enhancements even for areas with no samples of monitoring data. That gives the full overview in terms of air 

quality in urban and industrial areas. 

Optimization of pollutant levels is a major task in real-time air quality management. Based on the hypothesis, the proposed 

framework integrates Multiple Agent Deep Q-Networks in order to extend the multi-agent RL approach by enabling the 

agents to interact with the environment in order to learn optimal policies that reduce AQI. Each agent learns through a 

reward system about the actions taken by representatives for various sectors, like traffic management or industrial 

regulation, which have resulted in pollutant level reductions. Because this allows dynamic, real-time intervention strategies, 

such techniques find broad application in high-pollution event management at areas characterized by heavy flow of traffic 

and industry. The Dynamic Time Warping and DBSCAN clustering method for the employment of detection and analysis 

make quite a formidable approach in regional patterns of pollution. DTW is an algorithm for measuring similarity in time 

series data to contrast among different regions. It can work in tandem with DBSCAN, another density-based method for 

partitioning the region into areas of high pollution patterns. In this way, the combined technique can identify the disjointed 

clusters of similar pollution-patterned regions along with outliers. This may include industrial zones that always have 

higher pollutant levels. Such clustering-based analysis would provide very valuable insights into the regional pollution 

behaviors and allow the targeting of intervention in the cases of pollution hotspots. The present study will project AQI 

analysis for most places in Delhi, residential areas like R.K. Puram, Ashok Vihar, and NSIT Dwarka, or major industrial 

areas such as Wazipur, Okhla, and Bawana, or high-traffic areas such as Pusa and ITO, or even places of mixed-use 

development such as Jawaharlal Stadium and Major Dhyan Chand Stadium. The model will finally be able to give 

consistently correct predictions of AQI and suggest optimized policy guidelines for air quality improvement considering 

diverse environment conditions with regard to both the temporal and spatial elements. The proposed integrated approach 

in this study would hence result in giant strides in the state of AQI prediction & healthcare enhancements and management. 

Therefore, the proposed model bridges the important gap with significantly enhanced spatial coverage, predictive accuracy, 

and real-time optimization capacity by hosting advanced paradigms in machine learning, deep learning, and geospatial 
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analysis. These would, in turn, potentially help in the quest for more efficient air quality management strategies that better 

reduce levels of pollution and improve consequences on public health at both urban and industrial areas. 

MOTIVATION & CONTRIBUTIONS 

This study is motivated by increasing performance in air quality monitoring and management studies, especially in rapidly 

urbanizing or industrializing regions. The city records very high levels of pollution; due to this, there are growing severe 

health and environmental challenges simply because the air quality remains bad. Traditional AQI prediction & healthcare 

enhancements models fall short in representing this complication of the involved problem of air pollution, especially in 

terms of dynamics of pollutants, spatial variability, and optimization of real-time aspects for pollution control. Furthermore, 

monitoring stations sparsely located over big areas of geography increase the challenges for appropriate and correct air 

quality forecasts. Air pollution has gradually aggravated, especially over metropolitan cities, and hence, there has been a 

felt need to devise models that appropriately predict AQI and timely intervention to mitigate its impact for different 

scenarios. 

This current work opens a door for large contributions within the field of air quality management through the introduction 

of an integrated model that will amalgamate several advanced machine learning and deep learning techniques. The 

framework will further provide leverage to the strengths of XGBoost with RFE, ConvLSTM with Kriging, Multiple Agent 

DQN, and techniques like DTW with DBSCAN to enhance AQI prediction & healthcare enhancements with real-time 

optimization strategies. The proposed model overcomes the lacuna in the existing approaches through their judicious 

selection of methods for improving accuracy both in spatial and temporal AQI prediction & healthcare enhancements. This 

framework further proposes a completely new approach involving multiple agent reinforcement learning that may enable 

various sectors dynamically to cooperate with each other for AQI prediction & healthcare enhancements efficiency, such 

as traffic management and industrial regulation. Kriging and clustering analysis further allow the model to capture spatial 

patterns of pollution behaviors with a view to providing an all-rounded understanding. It is envisaged that this work will 

lead to an improvement in the forecast of air quality, support real-time interventions, and deliver actionable information to 

policymakers and environmental regulators in dealing more effectively with air pollution for the sustainable benefit of 

human health and the environment. 

LITERATURE REVIEW 

Overview of the existing methods provides an overall picture of state-of-the-art approaches, technologies, and models in 

air quality prediction, monitoring, and management. These papers cover a wide landscape of methodologies, ranging from 

machine learning and deep learning models to sensor calibration techniques and reinforcement learning applications. The 

pool of research shared is diverse, with a deep look at the different approaches being employed in an attempt to deal with 

the increasing challenge of air pollution in urban and industrial settings. A dominant trend that cuts across the majority of 

the reviewed literature is the increasing reliance on ML and DL models in predictive air quality tasks. Papers such as Liu 

et al. [1] and Farhadi et al. [2], for their part, emphasized the efficiency of different advanced ML algorithms in increasing 

the accuracy of air quality forecasts, such as a genetic algorithm-based extreme learning machine and hybrid models. These 

function well with big datasets and learn complex nonlinear relationships that may exist between the pollutants and the 

environmental factors. However, most of these works share one limitation: their requirement for large and well-structured 

datasets for appropriate training and inability to generalize in real environments when a few or sparse data samples are 

available. Moreover, models that rely extensively on regression-like techniques, such as those illustrated by Al-Eidi et al. 

[3], show a general weakness when modeling pollutant non-linearity and non-stationary behaviors, thus leading to poor 

performance under real-world conditions. Various papers have proffered deep learning approaches to transcend the 

limitations of these traditional ML models. For example, Chatterjee et al.  proposed a deep learning method using LSTMs 

combined with heuristic techniques for making long-term air quality forecasts. These deep models have received much 

attention due to their superior performance in extracting temporal dependencies from the data. As noted by Mehrabi et al. 

[5], who used machine learning with satellite data for the prediction of air quality in conflict zones, deep learning models 

also suffer from high computational complexity. Their robustness in prediction comes at the cost of significant 

computational resources and tuning, especially in applications that involve real-time processing or extend over large 
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geographical areas with multiple pollutant sources. Besides, some of the critical models that were introduced, such as by 

Mokhtari et al. [6], incorporate uncertainty modeling into deep learning; this signals another crucial area in air quality 

management, which is related to the unavailability of predictability of external events, such as those that happen during an 

accidental release of certain pollutants. Some of these models do have sensitive parameters and are not consistent across 

various urban environments. 

Another key trend has involved the usage of sensor networks and low-cost monitoring solutions for air quality sensing. 

Other works, such as that by Liu et al. [12] and Ali et al. [13], have discussed the use of low-cost sensors integrated with 

IoT technologies in improving real-time air quality monitoring. These methods democratize pollution data by lowering the 

cost and increasing the coverage of monitoring stations, especially in less developed areas where traditional infrastructure 

is nil. A big challenge faced by these studies is sensor calibration and the accuracy of the low-cost devices. Apart from this, 

inconsistencies in sensor data due to environmental conditions or sensor drift over time, as observed by Yadav et al., will 

greatly affect the reliability of the data collected and will require frequent recalibration and model adjustments. Federated 

learning and UAV-based sensing frameworks, such as those reviewed in the works of Liu et al., are pushing the boundaries 

of air quality sensing by integrating innovative data collection methods. However, the logistical challenges of deploying 

swarms of UAVs and maintaining such systems in cities often outweigh the benefits. Another state-of-the-art application, 

currently discussed in recent research, utilizes RL for optimizing air quality management policy. A nice example of MARL 

has been presented by Park et al. [16], where multiple agents individually seek to optimize their behaviors with the 

improvement of air quality in different sectors, such as traffic and industrial emissions control. These models ensure 

promise for real-time optimization by learning from environmental feedback and result in considerable reduction in 

pollutant levels, as reflected in the urban air mobility systems. However, multi-agent frameworks are always plagued with 

coordination issues and non-stationarity, where the agents' actions interfere with one another to make the learning process 

more difficult. Moreover, many of these methods also lack efficiency in solving problems that have delayed rewards, where 

the impact of certain actions on air quality might not be seen immediately and therefore is hard to give proper credit to any 

agent. Another such emerging field is the application of spatiotemporal models towards air quality management in smart 

cities. For example, Chatterjee et al.  and Borah et al.  initiated studies of spatiotemporal data integration with IoT-enabled 

infrastructure to manage urban pollution. These models, while designed to work within smart city frameworks, exhibit high 

potentials that may be used in real-time interventions and data-driven policy enforcement to manage ambient air quality. 

These studies demonstrate the capability of capturing real-time air pollutant concentrations and meteorological factors 

using IoT sensors and advanced data models. However, the key shortcoming of such models is that they require large-scale 

IoT networks, which may be unavailable in all urban settings, more so in developing countries where smart city deployment 

infrastructure remains in its infancy. Finally, Acharyya et al. [24], among other works, present studies concerning the 

chemical and physical aspects of air quality monitoring by using machine learning algorithms for the detection of VOCs 

with high sensitivity and selectivity. This line of research is critical since it addresses indoor air quality and human health 

risks associated with specific pollutants. However, their performances are rather sensitive to a number of environmental 

parameters, especially those related to temperature and humidity; thus, accuracy in sensors is a little challenging to maintain 

over a great swath of indoor and outdoor environments. 

Reference Method Used Findings Results Limitations 

[1] Genetic Algorithm-

Based Improved 

Extreme Learning 

Machine 

Demonstrated 

significant 

improvement in air 

quality forecasting 

accuracy. 

R² of 0.91 and MAE of 

3.2 AQI units. 

Limited to small datasets 

and low feature 

diversity. 
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[2] Machine Learning for 

Transport Policy 

Interventions 

Focused on evaluating 

transport policies for 

air quality 

improvement. 

Achieved 12% 

improvement in AQI in 

clean air zones. 

Model performance 

degrades under highly 

congested urban 

scenarios. 

[3] Regression Techniques 

for Air Quality 

Prediction 

Compared multiple 

regression techniques 

in smart cities. 

Random Forest 

performed best with an 

R² of 0.85. 

Lacks real-time 

adaptability and does not 

handle non-linear 

relationships well. 

[4] LSTM with Hyper 

Heuristic Multiple 

Chain Model 

Enhanced long-term 

air quality predictions. 

R² of 0.88 with 

significant 

improvement in 

multiple step 

forecasting. 

High computational cost 

and complexity in model 

tuning. 

[5] Machine Learning with 

Sentinel 5P for Air 

Quality Forecasting 

Studied air quality 

during the 2022 

Ukraine conflict. 

Achieved high accuracy 

with an R² of 0.90 for 

PM2.5 predictions. 

Limited spatial 

resolution due to 

reliance on satellite data 

samples. 

[6] Uncertainty-Aware 

Deep Learning 

Architectures 

Incorporated 

uncertainty into deep 

learning models for 

AQI prediction & 

healthcare 

enhancements. 

Reduced prediction 

errors with an MAE of 

2.9 AQI units. 

Model sensitivity to 

uncertainty parameters 

can lead to inconsistent 

outputs. 

[7] Predictive Air Quality 

Management in Smart 

Cities 

Focused on smart city 

infrastructure for air 

quality management. 

Achieved 13% 

improvement in AQI 

through IoT-based 

interventions. 

Does not scale well in 

cities without extensive 

IoT deployment. 

[8] Federated Learning 

with UAV Swarms for 

Air Quality Sensing 

Proposed a UAV-

based aerial-ground 

sensing framework. 

R² of 0.89 with 

improved spatial AQI 

sensing. 

Requires expensive 

UAV deployment and 

operational challenges. 

[9] Hybrid Air Quality 

Prediction with 

Empirical Mode 

Decomposition 

Developed a hybrid 

model using EMD and 

ARIMA. 

Achieved R² of 0.86 

with a stable forecast 

horizon. 

Struggles with real-time 

data updates and high-

frequency pollutant 

variations. 

[10] Gaussian-Mixture 

Nested Factorial 

Proposed a 

multivariate air quality 

prediction method. 

Reduced error rate by 

20% compared to 

baseline models. 

Complexity in training 

the variational 

autoencoder models. 
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Variational 

Autoencoder 

[11] Vision Transformer for 

Air Quality 

Classification 

Applied deep learning 

transformers to air 

quality classification. 

R² of 0.88 with robust 

classification across 

mobile devices. 

Limited interpretability 

of transformer models. 

[12] Estimating Black 

Carbon Levels Using 

Low-Cost Sensors 

Integrated low-cost 

sensors with machine 

learning for black 

carbon estimation. 

MAE of 3.5 µg/m³ for 

black carbon levels. 

Accuracy decreases 

under harsh 

environmental 

conditions. 

[13] IoT LoRaWAN for 

Low-Cost Air Pollution 

Monitoring 

Used LoRaWAN-

based connectivity for 

low-cost pollution 

sensors. 

Achieved 80% accuracy 

in predicting AQI for 

urban areas. 

Performance degrades in 

high-traffic areas with 

heavy interference. 

[14] Few-Shot Calibration 

of Low-Cost PM2.5 

Sensors 

Applied meta-learning 

for sensor calibration. 

Achieved 92% 

calibration accuracy in 

limited-data scenarios. 

Dependent on high-

quality training data for 

effective calibration. 

[15] Deep-MAPS for 

Mobile Air Pollution 

Sensing 

Developed mobile-

based air pollution 

sensing with machine 

learning. 

Reduced AQI error by 

15% compared to 

conventional mobile 

sensing systems. 

Limited battery life and 

computational resources 

of mobile devices. 

[16] Multiple Agent 

Reinforcement 

Learning for Urban Air 

Mobility 

Used multiple agent 

reinforcement learning 

for air transportation 

systems. 

Improved urban air 

mobility performance 

by 18%. 

Model is highly 

sensitive to real-time 

communication delays. 

[17] IoT-Enabled Predictive 

Air Pollutants Model 

for Respiratory Disease 

Developed a unified 

predictive model for 

respiratory health. 

Achieved 85% accuracy 

in pollutant forecasting 

and health risk 

identification. 

Lacks real-time 

adjustments based on 

changing environmental 

factors. 

[18] Wearable Device for 

Precision Health in 

Chronic Diseases 

Used wearable devices 

and deep learning for 

air quality and health 

correlation. 

R² of 0.87 for predicting 

respiratory disease 

outbreaks related to air 

quality. 

Requires continuous 

user compliance and 

device maintenance. 

[19] Indoor Occupancy 

Estimation Using 

Semi-Supervised 

Learning 

Applied machine 

learning for estimating 

indoor occupancy. 

Achieved 90% 

occupancy estimation 

accuracy based on 

environmental 

conditions. 

Model does not account 

for temporary occupants 

or rapid changes in 

occupancy. 
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[20] Machine Learning for 

Asphalt Mixture 

Compaction Prediction 

Used machine learning 

for air quality impact 

on asphalt compaction. 

R² of 0.85 in predicting 

compaction levels 

under different air 

quality conditions. 

Limited to specific 

geographical and 

environmental settings. 

[21] Comparative Analysis 

of Deep Learning and 

Statistical Models 

Compared deep 

learning and statistical 

models for urban air 

quality prediction. 

Deep learning 

outperformed statistical 

methods with an R² of 

0.89. 

Statistical models 

struggle with non-linear 

pollutant behavior. 

[22] Concept Drift in Low-

Cost NO2 Sensor 

Calibration 

Studied the effect of 

concept drift on low-

cost NO2 sensors. 

Achieved stable 

calibration accuracy of 

80% with model 

retraining. 

Sensor drift increases 

calibration error over 

time. 

[23] Multivariate Air 

Quality Forecasting 

with LSTM 

Used nested LSTM 

networks for air quality 

forecasting. 

R² of 0.90 in predicting 

multivariate AQI. 

High computational cost 

for training deep nested 

models. 

[24] VOC Detection with 

WO3 Nanoplates 

Using Machine 

Learning 

Proposed a 

chemiresistive sensor 

for VOC detection. 

Achieved 87% 

detection accuracy for 

indoor air quality. 

Sensor performance 

deteriorates under 

varying humidity levels. 

[25] Cardio-Respiratory 

Assessment in 

Different 

Environmental 

Conditions 

Used IoT-enabled 

sensors for indoor air 

quality monitoring. 

Achieved 91% accuracy 

in predicting cardio-

respiratory conditions 

based on air quality. 

Dependent on precise 

sensor calibration for 

accurate predictions. 

Table 1. Empirical Review of Existing Methods 

Particularly promising toward dynamic air quality management are those methods that can adapt to environmental 

feedback, such as reinforcement learning, and deep learning models of complex temporal dependencies. This is also quite 

a practical and scalable solution because the integration of low-cost IoT sensors with machine learning enables an extension 

of air quality monitoring networks and provides widespread access to air quality data in both developed and developing 

regions. Despite these advances, there are still various challenges that prevent these models from being effective and 

applicable in practical scenarios. Most machine learning and deep learning models are unable to solve the problem of 

computational complexity, heavy requirements regarding data, and large datasets & samples in appropriate structure. One 

of the biggest challenges is the requirement for clean and abundant data of the deep learning model in underdeveloped 

monitoring infrastructure and noisy and incomplete data. Moreover, although the low-cost sensor networks are a cheaper 

way of air quality monitoring, problems of calibration, accuracy, and reliability of sensors continue to be significant 

challenges for low-cost sensor networks in capturing fine-grained pollutant data samples. Multi-agent reinforcement 

learning models, for example, although effective in cooperative air quality management simulations, are generally confined 

by coordination issues and difficulty managing the non-stationarity of the environment. These models are yet to be refined 

for handling real-time and large-scale urban applications, where delayed rewards and possible interactions between 

independent agents can degrade the overall performance of the system. This calls for further refinement of these models to 
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make them robust, computationally efficient, and closer to real-world applications. This may involve the creation of more 

enhanced sensor calibration techniques, integration of extra data sources from satellite imagery down to citizen-sourced 

data, and enhancements in deep learning architectures that handle uncertainty and noise in data. Moreover, the integration 

of IoT-enabled real-time monitoring systems will be crucial as more cities transition to smart city infrastructure and will 

offer new possibilities for the application of advanced machine learning techniques in dynamic, data-driven management 

of air quality. Such improvements will assure the contribution of these predictive and optimization models toward 

sustainable urban environments and improved public health. 

PROPOSED DESIGN OF AN INTEGRATED MODEL USING XGBOOST, CONVLSTM, AND 

MULTIPLE AGENT DQN FOR SPATIO-TEMPORAL AQI PREDICTION & HEALTHCARE 

ENHANCEMENTS  

The design of the integrated model, using XGBoost, ConvLSTM, and multi-agent DQN for spatiotemporal AQI prediction 

& healthcare enhancements and optimizations to handle low efficiency & high complexity issues in existing methods are 

discussed subsequently. According to Figure 1, designing a multivariate AQI prediction & healthcare enhancements model 

based on XGBoost with RFE integrates machine learning efficiency and feature selection for an optimal performance. 

XGBoost is a decision-tree-based gradient-boosting framework selected to allow for multivariate data processing, reducing 

overfitting while managing the intrinsic complexity of the nonlinear relationships between different pollutants and AQI 

values that take part in the process. The model is enhanced with the addition of RFE, hence selecting the most relevant 

features in order not to diminish the performance because of extraneous or redundant input variables. The combination of 

XGBoost with RFE gives an extremely powerful solution, not only for the prediction of AQI values but also for categorizing 

them into discrete levels of air quality. Generally, the training of models by the XGBoost algorithm happens in a series of 

decision trees, each tree afterward trying to correct errors of its predecessors. This will be done via gradient boosting, where 

there is a minimization of a loss function across the trees. Given an input feature set, X={x1,x2,.,xn}, consisting of pollutant 

levels (PM2.5, PM10, NO2, etc.) and meteorological data like temperature and humidity, among others, the prediction of 

AQI value y'i for a sample ‘i’ is done by sum of the predictions from 'm' trees via equation 1,  

𝑦’𝑖 = ∑𝑓𝑘(𝑋𝑖), 𝑓𝑘 ∈ 𝐹

𝑚

𝑘=1

… (1) 

Where, fk(Xi) is the prediction from the 'k'-th tree and F is the space of decision trees. And, the optimization would be 

towards the minimum of the regularized objective function 'L' given by an equation combining the Loss term 'L' along with 

the regularization term Ω that would control the complexity of the trees via equation 2, 

𝐿(𝑦’, 𝑦) = ∑𝑙(𝑦’𝑖, 𝑦𝑖)

𝑛

𝑖=1

+∑𝛺(𝑓𝑘)

𝑚

𝑘=1

…(2) 

Where, l(y'i,yi) is a differentiable loss function-included MSE or MAE-between the predicted AQI value y'i and the true 

AQI value yi sets. The regularization term Ω(fk) penalizes overly complex trees, which helps to reduce overfitting and 

improve generalization to unseen data samples. Recursive Feature Elimination, RFE, complements XGBoost in the 

reduction of dimensionality from input features. RFE works by iteratively ranking the features regarding their importance 

in a recursive elimination manner, starting from the least important. Within the context of an XGBoost model, feature 

importance is assessed in terms of the contribution of each feature to stand in a decision-making role inside the trees, 

commonly measured via reduction in the loss function upon the inclusion of a certain feature to split the data samples. It 

selects a subset of features, Xopt⊆X, such that the highest levels of accuracies in the prediction are realized. RFE does its 

selection iteratively, meaning the model is never burdened with irrelevant features that may otherwise overfit the model or 

make it computationally expensive. The XGBoost framework based on the models of gradient boosting can be 

mathematically represented through its process of boosting. In each round 't', a new tree ft is added to the model to correct 

the residuals ri((t−1)), which is defined as the negative gradients of the loss function via equation 3, 
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𝑟𝑖(𝑡 − 1) = −
𝜕𝑙(𝑦𝑖, 𝑦’𝑖(𝑡 − 1))

𝜕𝑦’𝑖(𝑡 − 1)
… (3) 

The new tree is trained to predict these residuals and the model is updated by adding this prediction to the previous ensemble 

via equation 4, 

𝑦’𝑖(𝑡) = 𝑦’𝑖(𝑡 − 1) + 𝜂𝑓𝑡(𝑋𝑖)… (4) 

Where, η is the learning rate that controls the contribution of each tree. The recursive process continues until the 

convergence of the model or a specified number of trees developed. The nature of air pollution data-DRV, inherently 

multivariate with lots of linked factors-justifies the usage of XGBoost with RFE in AQI prediction & healthcare 

enhancements. For many of the pollutants, like PM2.5, PM10, NO2, and so on, the concentration versus AQI relationship 

shows a nonlinear relation, itself influenced by other meteorological parameters such as temperature, humidity, wind speed, 

and direction. XGBoost handles such complex interactions and nonlinearities relatively better. This feature selection 

through RFE retains the most informative features, reducing overfitting and increasing computational efficiency. Moreover, 

embedded regularization mechanisms within the objective function make the XGBoost model resilient to overfitting-a 

common problem with many conventional AQI prediction & healthcare enhancements methods while using high-

dimensional input data samples. This feature selection process through RFE is further justified in that many features 

contribute marginally or redundantly within a prediction model; removing them ensures the model focuses on the ones that 

are really critical: key pollutants and atmospheric conditions directly impacting air quality. This design includes the 

eventual outputs of both the forecasted AQI value, y'i, and its associated AQI category, c(y'i), where 'c' is any mapping 

function from the ranges of AQI values into categorical levels, such as "Good," "Moderate," and "Unhealthy," in the 

process. The categorical classification could be derived using a step function based on the regulatory AQI thresholds via 

equation 5, 

𝑐(𝑦’𝑖) = 𝑠𝑡𝑒𝑝(𝑦’𝑖, {𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝐴𝑄𝐼 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠})… (5) 

The application of XGBoost with RFE in this framework will make sure that the prediction model is accurate and 

interpretable, hence quite suitable for AQI forecasting with actionable insights about air quality management across varied 

regions. Hence, with high predictive power, along with feature selection, this addresses a few key complexities of AQI 

prediction & healthcare enhancements while maintaining computational efficiency in this approach and forms an important 

component of the broad air quality analysis process. 

Further, Figure 2 below shows that ConvLSTM was considering incorporating geospatial interpolation through Kriging to 

handle the demand for accurate temporal and spatial prediction of AQI from regions with different pollutant levels. 

ConvLSTM is an advanced model that integrates CNNs and LSTMs to process spatial and temporal dependencies in data 

simultaneously. In air quality forecasting, the spatial and temporal variations in the distributions of pollutants such as 

PM2.5, PM10, and NO2, along with meteorological factors like temperature, wind speed, humidity, and atmospheric 

pressure, are observed to be wide. Capturing such dynamic patterns is important in the process of AQI forecasting, 

especially over regions where monitoring stations are sparse. Kriging, integrated in the model, further has high-resolution 

spatial predictions in areas with no monitoring stations; thus, very accurate and comprehensive output maps of pollutant 

distributions will be guaranteed. ConvLSTM applies convolutional operations internally in the LSTM network, and 

therefore, it can handle samples of multidimensional data, i.e., time-series data with spatial dimensions. For a sequence, 

Xt∈R(h×w×c), where 'h' and 'w' are the spatial dimensions, referring to latitude and longitude, respectively, and 'c' is 

channels, referring to pollutant concentrations and meteorological data, the ConvLSTM would process over timestamp 't' 

sets. The core operation of ConvLSTM is given in the cell state update via equations 6, 7, 8, 9 & 10, 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ 𝑋𝑡 + 𝑈𝑖 ∗ 𝐻(𝑡 − 1) + 𝑏𝑖)… (6) 

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ 𝑋𝑡 + 𝑈𝑓 ∗ 𝐻(𝑡 − 1) + 𝑏𝑓)… (7) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶(𝑡 − 1) + 𝑖𝑡 ⊙ 𝑡𝑎𝑛 ℎ(𝑊𝑐 ∗ 𝑋𝑡 + 𝑈𝑐 ∗ 𝐻(𝑡 − 1) + 𝑏𝑐)… (8) 
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𝑜𝑡 = 𝜎(𝑊𝑜 ∗ 𝑋𝑡 + 𝑈𝑜 ∗ 𝐻(𝑡 − 1) + 𝑏𝑜)… (9) 

𝐻𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛 ℎ(𝐶𝑡)… (10) 

In these equations, it, ft, and ot signify input, forget, and output gates, respectively, that control the information flow into 

and out of cells in the following equations. The inputs at every timestamp Xt are convolved with weight matrices Wi, Wf, 

Wc, and Wo, and the hidden state at the previous timestamp H(t−1) is convolved with sets Ui, Uf, Uc, and Uo for the 

process. This is because, by performing element-wise operations, irrelevant information does not get propagated through 

the sets of temporal instances, thus allowing ConvLSTM to learn both spatial features through the convolution operations 

and temporal dependencies through the structure. The output of the ConvLSTM model Ht comprises spatiotemporal 

characteristics for both pollutant concentrations and meteorological factors for all timestamps. 

 

Figure 1. Model Architecture for the Proposed Analysis Process 

This output is further used to predict AQI values for every spatial location and time frames. The ConvLSTM captures the 

spatial correlations among the adjacent regions at each timestamp while modeling the temporal evolution of pollutant 

concentration by applying a series of convolutional filters. The incompleteness in the spatial data samples is addressed 

using Kriging. Kriging is a geospatial interpolation technique for estimating the values of a function at unobserved locations 

based on observed data points. Given a set of observed AQI values at locations L={L1, L2,., Ln}, the Kriging estimator 

Z'(L0) at an unobserved location L0 is given by the weighted sum of the observed values via equation 11, 

𝑍’(𝐿0) = ∑𝜆𝑖 ∗ 𝑍(𝐿𝑖) … (11)

𝑛

𝑖=1

 

Where, λi are the weights assigned to every observed location depending on the spatial covariance between points. These 

weights are determined by solving a system of linear equations derived from the covariance function, so that the 

interpolation is unbiased and the variance of the predictions is minimized in the process. The covariance function C(Li, Lj) 

describes the spatial correlation of two locations Li and Lj sets. It is normally modeled as a function of the Euclidean 

distance between them via equation 12, 

𝐶(𝐿𝑖, 𝐿𝑗) = 𝜎2𝑒𝑥 𝑝 (−
∥ 𝐿𝑖 − 𝐿𝑗 ∥2

2 ∗ 𝜃2
)… (12) 

In this equation, 𝜎2 represents the variance of the observed data, and θ is a parameter that controls the range of spatial 

dependences. It, therefore, allows the model to give high-resolution spatial maps for the AQI values and fill the gaps caused 

by the lack of monitoring stations, hence covering the whole region in the process. The combination of ConvLSTM with 

Kriging captures both temporal and spatial aspects of AQI prediction & healthcare enhancements, hence making this model 

effective in particular for regions with sparsely distributed monitoring stations. The ConvLSTM learns complex temporal 



Frontiers in Health Informatics 

ISSN-Online: 2676-7104 

www.healthinformaticsjournal.com 

 

2024; Vol 13: Issue 2 Open Access 

 

674 | P a g e  

interactions among pollutants and meteorological factors, while the Kriging will ensure that the spatial predictions are 

continuous and smooth in areas where direct measurements will not be available in the process. The rationale for using the 

ConvLSTM with Kriging is that air quality data contains dual natures, that of being temporal and spatially dynamic. The 

task is just perfect for ConvLSTM since it will handle the time-series nature of pollutant levels and take into consideration 

the spatial correlations among different regions. This becomes far more critical in urban areas, where over short distances, 

the pollution level might vary significantly due to local sources like traffic or industrial emissions. More comprehensively, 

Kriging complements ConvLSTM by addressing the spatial gaps in the monitoring data so that the predictions are spatially 

full and accurate. The present model also supplements other models used in the AQI prediction & healthcare enhancements 

framework, such as XGBoost with Recursive Feature Elimination, by providing high-resolution temporal and spatial 

forecasts that could be used as inputs or benchmarks for more generalized models. While XGBoost focuses on the 

prediction of the AQI value on relevant features, ConvLSTM with Kriging provides a more detailed representation of how 

AQI evolves continuously in time and space and gives valuable insight into real-time air quality management and 

intervention sets. 

Ultimately, Multiple Agent Deep Q-Networks for air quality optimization revolve around the capability of reinforcement 

learning agents to learn and apply optimal control strategies in real time with a goal of minimizing AQI levels dynamically. 

In this multi-agent setting, each agent will represent a sector that is a contributor to air pollution, such as traffic 

management, industrial regulation, or municipal governance. Each agent interacts with the environment, which is defined 

by pollutant levels, meteorological conditions, and emission sources, for decision making based on attempts at reducing 

pollution. Real-time input data involves pollutant concentrations of PM2.5, PM10, and NO2; emissions of CO and SO2; 

and meteorological variables of temperature, wind speed, and wind direction. The real-time nature of input data enables 

iterative learning by the agents in quest of optimality of their actions. These agents use Deep Q-Networks to learn an 

approximation to the optimal policies by learning a value function that maps states to expected rewards. The key to DQN-

based reinforcement learning is the Q Value function, which is the return or cumulative reward expected for taking an 

action 'at' in a certain state 'st', and from that point onwards, following an optimal policy. Each agent perceives the 

environment as an MDP defined by the tuple:. In this, 'S' is a set of states, including current AQI levels and meteorological 

conditions; 'A', the set of available actions or decisions taken, such as vehicle restrictions or industrial emission controls; 

'P', the transition probability between states; 'R', the reward function; and γ ∈ [0,1], the discount factor. The goal of each 

agent is to learn a policy π(a∣s) that maximizes expected cumulative reward over temporal instance sets. Iteratively, the Q 

Value function Q(st, at) is updated using the Bellman Process via equation 13, 

𝑄(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼[𝑟𝑡 + 𝛾𝑚𝑎 𝑥𝑎(𝑡+1) 𝑄((𝑠𝑡 + 1), 𝑎𝑡 + 1) − 𝑄(𝑠𝑡, 𝑎𝑡)]. . . (13) 

Here, α represents the learning rate, and rt is the reward received after taking action 'at' in state 'st' sets. The max term 

represents the maximum future reward that the agent expects to attain in the next state sets s(t+1). The usage of deep neural 

networks allows approximation of Q Value function when the state space 'S' is large and continuous, as it usually is in the 

air quality management scenarios where AQI values, emission amounts, and meteorological conditions are changing 

dynamically over time and region. In the multi-agent setting, every agent has its Q Value function interacting with the 

shared environment sets. The agents learn such a coordinated set of policies to minimize the overall AQI levels. So, at each 

time stamp 't', each agent observes the state 'st' and based on the current policy selects an action 'at' sets. Based on the 

environmental dynamics, the system moves to the next state s(t+1). Each agent gets a reward 'rt', which is a function of the 

performance of that action in bringing down AQI levels. That is to say, the positive reinforcement of those actions that 

bring down the AQI by restricting vehicles are very satisfactory with respect to the reduction of emissions on the part of 

industries, while on the part of the process, every action or move worsening the air quality is penalized. The reward function 

'R' is shaped in a form to reflect desired air quality outcomes by providing a trade-off between short-run AQI prediction & 

healthcare enhancements efficiencys and long-run sustainability levels. The reward for an agent in charge of traffic flow, 

is defined via equation 14, 

𝑟𝑡 = −𝛥𝐴𝑄𝐼 + 𝜆(𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝐹𝑙𝑜𝑤)… (14) 
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Where, ΔAQI is the change in AQI levels due to traffic restrictions imposed, and λ(TrafficFlow) is the penalty term for 

accounting with the negative impacts of traffic congestions. It balances the trade-off between emission reduction and 

efficiency in the transport system by using a parameter λ. The process then uses an exploration-exploitation strategy that 

prevents agents from prematurely converging into suboptimal policies. This is achieved by adopting an epsilon-greedy 

policy for the process. Each agent selects an action uniformly at random with probability ϵ, hoping to explore new policies. 

With probability 1-ϵ, the agent exploits its current policy by taking the action with the highest estimated Q Value sets. Over 

time, this parameter epsilon will decay, enabling agents to shift from exploration to exploitation because they can learn 

more about the environment. Each agent approximates the Q Value function Q(st,at;θ) parametrized by a deep neural 

network; θ denotes the parameters across this neural network. The network parameters are trained using mini-batch 

stochastic gradient descent to minimize the loss function L(θ) that updates the network parameters via equation 15: 

𝐿(𝜃) = 𝐸 (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, (𝑠(𝑡 + 1))) [(𝑟𝑡 + 𝛾 max
𝑎(𝑡+1)

[𝑄 ((𝑠(𝑡 + 1)), 𝑎(𝑡 + 1); 𝜃′) − 𝑄(𝑠𝑡, 𝑎𝑡; 𝜃))]
2

]… (15) 

Where, θ′ represents the parameters of the target network, which is a delayed copy of the online network θ, used to stabilize 

the training process by providing more consistent Q Value targets. The target network parameters are updated periodically 

to follow the current parameters θ in the process. 

 

Figure 2. Overall Flow of the Proposed Analysis Process 

The multi-agent nature brings challenges like non-stationarity, among others, and the demand for coordination amongst 

agents. This, however, is a necessary organization to deal with multi-aspect nature of air quality control when many actors 

such as traffic, industry and municipalities have to pull together towards an optimum solution. In general, the interaction 

among agents is implicitly represented in the shared environment: an agent's action may affect the environment state 

observed by another process. For example, one agent might operate to reduce industrial emissions and the traffic control 

agent indirectly by reducing background levels of pollution such that less restrictive traffic limitations can be applied. 

Selection of DQN here is justified because it has the capability to handle large, continuous state spaces with efficiency in 

learning complex policies using deep neural network approximation. This allows DQN to learn scalably in high-

dimensional state and action spaces. Real-time AQI management requires multiple pollutant levels and meteorological 

conditions with possibly multiple control actions. The multi-agent structure ensures that it can handle multiple sources of 

pollution, thus allowing air quality issues for different scenarios to be dealt with co-ordinately and comprehensively. 
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Finally, Dynamic Time Warping with the DBSCAN model for clustering regional pollution patterns leverages strengths 

from both techniques in analyzing temporal and spatial variations within air quality data samples. DTW is a well-

established similarity measure between time-series data of different lengths and hence should be very suitable to represent 

the temporal variation in a pollutant like PM2.5, PM10, and NO2 when their level fluctuates due to different kinds of 

emission sources and meteorological conditions. DBSCAN complements this by clustering the spatial data points based on 

their density, which is effective in finding regional clusters of pollution and outliers, such as industrial zones with 

consistently high levels of pollution. Then, to compute similarity between time-series data from different locations, DTW 

is used. Given two time-series sequences X={x1,x2,.,xn} and Y={y1,y2,.,ym}, where 'n' and 'm' may not be precisely 

equal-the implication of time-series data of unequal lengths due to some missing measurements or sampling at unequal 

intervals-DTW seeks an optimal alignment between the two sequences by minimizing the total distance between the points 

concerned in the series. This DTW distance dDTW(X,Y) is given by the following recursion relation via equation 16, 

𝑑𝐷𝑇𝑊(𝑋, 𝑌) = 𝑚𝑖 𝑛{𝑑𝐷𝑇𝑊(𝑋(𝑛 − 1), 𝑌𝑚), 𝑑𝐷𝑇𝑊(𝑋𝑛, 𝑌(𝑚 − 1)), 𝑑𝐷𝑇𝑊(𝑋(𝑛 − 1), 𝑌(𝑚 − 1))}

+ 𝑑(𝑥𝑛, 𝑦𝑚)… (16) 

Where, d(xn, ym) is the Euclidean distance between the data points sets xn and ym, respectively. This recursion eventually 

aligns the sequences in such a fashion that the total distance between them will be as small as possible while it provides 

elastic shifts along the time dimension. Such shifting is required, for instance, during comparisons of pollutant trends that 

vary temporally due to regional or local sources of pollution or due to meteorological conditions and/or other external 

factors. After computing the DTW distances between time series data of different regions, the next task is to cluster those 

regions based on temporal pollution patterns. In this regard, a density-based clustering algorithm called DBSCAN is 

employed, which has been used to group similar data points into clusters that are densely packed together and labels others 

as noise. This will be appropriate, especially for DBSCAN, as it does not require the a priori specification of the number 

of clusters and is also robust against noise and outliers, which is really important in this given type of air quality data where 

some regions may have abnormal patterns of pollution due to industrial activities or other local features. For any point 'pi' 

with the geospatial coordinates (xi, yi) and the temporal data, DBSCAN defines the neighbourhood N(pi) of 'pi' as the set 

of points within a distance ϵ via equation 17, 

𝑁(𝑝𝑖) = { 𝑝𝑗 ∈ 𝑃 ∣∣ 𝑑(𝑝𝑖, 𝑝𝑗) ≤ 𝜖 }… (17) 

If the size of the neighborhood N(pi) is larger than the minimum number of points, minPts, then 'pi' is labeled as the core 

point and its neighbors are assigned to the cluster. The algorithm iteratively expands the cluster by checking the neighbors 

of every core point. Those points that fail to meet the criteria of density, that is, having less than minPts neighbors, are 

classified as outliers or noise levels. DTW combined with DBSCAN can therefore effectively identify the clusters of 

regions showing similar temporal pollution patterns even if their lengths vary or in the case where some values are missing 

during the process. In particular, DBSCAN treats spatial noise specially, so that it will be particularly useful to detect 

outliers, such as industrial zones or traffic hotspots, which might consistently have higher levels of pollution than their 

environs. For example, such clustering analysis may provide distinct groups of pollution behavior that can visually be 

projected onto maps, showing spatial "hotspots" of pollution and similar temporal patterns in the data. Justification of DTW 

combined with DBSCAN is viewed from the nature of air pollution data; where temporal changes of pollutant 

concentrations involve several contributing factors such as seasonal changes, industrial activities, road traffic flow, and 

meteorological conditions. Traditional clustering algorithms, such as k-means may go into problems caused by variable 

lengths of time-series data and non-linearity in temporal shifts between regions. DTW handles this by considering the time-

series sequences in alignment, so that distortions in time are minimized, thus making a reasonable comparison of pollutant 

trends across different regions feasible. DBSCAN, however, expresses flexibility in cluster detection without pre-defined 

parameters, such as the number of clusters, which is an important factor when the number of distinct pollution patterns is 

unknown or set high in spatial variation during the process. Additionally, the DTW-DBSCAN approach can be used to 

provide complementary regional pollution patterns that may advise real-time policy interventions to other AQI prediction 

& healthcare enhancements models. DBSCAN would yield regions identified as hotspots of pollution that would then be 

followed by more stringent emission controls or traffic restrictions modeled by the multiple-agent DQN system. These 
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clusters also act as a very useful input for machine learning models, such as XGBoost, whereby regional predictions can 

be informed by temporally and spatially correlated behaviors in pollutant levels. 

RESULT ANALYSIS & COMPARISON 

The current study will, therefore, integrate the different pollutant concentration, meteorological factors, emission data, 

geospatial information, available at various monitoring stations for chosen urban, industrial, and traffic-congested Delhi, 

India Geographies. Residential areas to be considered include R.K. Puram and Ashok Vihar; industrial areas: Wazipur and 

Okhla; mixed-use areas: Anand Vihar and Jawaharlal Stadium. Real-time AQI data on PM2.5, PM10, NO2, CO, SO2, and 

O3 is collected on an hourly basis, supported by meteorological parameters including temperature, humidity, wind speed, 

and wind direction in the range of 15°C to 40°C, 25% to 90%, 0.5 to 10 m/s, and 0° to 360°, respectively. The geospatial 

coordinates are taken for each monitoring station in order to enable the spatial analysis through Kriging. Emission data, 

particularly CO and SO2, were from industrial reports and also traffic congestion indices. It covers two years of data with 

both daily and hourly resolution and will therefore provide for strong training and testing datasets for the models. The data 

will involve specific samples that cut across the spectrum of AQI variability-for example, PM2.5 values of 50 µg/m³ in 

residential areas up to 200 µg/m³ in industrial zones during peak pollution events. The input data is then divided into an 

80:20 split for training versus validation so as to make the model generalize across unseen data without overfitting. It does 

so by basing the presented study on data that integrates CPCB and other Indian government sources into an integrated 

dataset of air quality and meteorological data from a wide array of geographies within Delhi, India. For residential areas 

like R.K. Therefore, the hourly data on ambient concentration of the pollutants such as PM2.5, PM10, NO2, CO, SO2, and 

O3, along with meteorological parameters such as temperature, humidity, wind speed, and wind direction were collected 

at Puram, Ashok Vihar, NSIT Dwarka, New Moti Bagh, Sonia Vihar, and Najafgarh. These data capture the variations in 

exposure to pollution in a densely populated residential area, especially during seasons. Further emissions data with respect 

to CO and SO2 in such industrial zones of Wazipur, Bawana, Okhla, and Mayapuri were sourced from the industrial reports 

and from CPCB monitoring stations. The concentrations in these zones are higher due to the manufacturing and processing; 

peak levels observed are during the working hours. It includes areas with mixed use, such as Anand Vihar, Punjabi Bagh, 

and Mandir Marg, representing places of combined residential, industrial, and commercial activities, hence reflecting very 

chaotic pollution patterns under the influence of local traffic, commercial emissions, and household activities. 

Such efforts included real-time integration of data on vehicular emissions and traffic congestion indices into the pollution 

monitoring for highly traffic-congested regions such as Pusa, Shadipur, and ITO. The trend indicates sharp spikes in PM2.5 

and NO2 during rush hours. In mixed-use recreational areas such as Jawaharlal Stadium, Dr. Karni Singh Shooting Range, 

and Major Dyanchand Stadium, the dataset reflects pollutant dispersion during large public events and recreational 

activities. These datasets contain AQI data in hourly scale and are complemented with spatial coordinates to serve the 

purpose of geospatial interpolation. Real-time air quality monitoring networks by CPCB, complemented with 

meteorological data provided by the India Meteorological Department, present a more authoritative and granular source 

for analysis of air quality patterns across the diverse urban landscape. Models were implemented using Python, especially 

the established libraries like TensorFlow and Scikit-learn. The hyperparameters were optimized for the XGBoost with 

Recursive Feature Elimination model by employing grid search, besides taking the maximum tree depth in the range from 

5 to 10, while setting the number of trees between 100 and 500 based on their cross-validation performance. The 

ConvLSTM was trained based on time-series data of pollutants and meteorological factors, with a 10-day LSTM window 

size, while the neural network setup used a convolutional kernel size of 3x3 with a hidden state size of 128 units. The 

optimization method was based on an Adam optimizer whose learning rate was set at 0.001. In the Kriging, a spherical 

covariance model was fitted for interpolating AQI values in the unmonitored region. Agents were established to regulate 

traffic and industrial emissions. Each agent was fed with AQI real-time data samples and the real-time emissions data for 

air quality optimization in the multi-agent DQN. Here, the discounting factor γ = 0.95, while the learning rate for the Q-

network was 0.01. DTW with DBSCAN for clustering pollution patterns takes a distance threshold value ϵ = 0.5 and minPts 

= 10 for clustering areas that enjoy similar profiles of pollution. All models are evaluated by R², MAE, silhouette score for 

clustering, AQI prediction & healthcare enhancements efficiency rates. The above DQN-based interventions levels 

converge after approximately 1500 iterations. This section also talks about the performance of the proposed model, which 
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has been tested in residential, industrial, mixed-use, and highly congested regions of Delhi. Performance comparison of the 

proposed model against three competing methods [4], [9], and [15] in terms of the coefficient of determination R², MAE, 

and AQI prediction & healthcare enhancements efficiency across regions where real-time optimization is implemented. 

The results are segregated and analyzed for residential areas, industrial estates, zones of high traffic, and mixed-profile 

zones. 

 

Table 2: Performance Comparison in Residential Areas (R. K. Puram, Ashok Vihar, NSIT Dwarka, New Moti Bagh, 

Sonia Vihar, Najafgarh) 

Method R² (Predictive Accuracy) MAE (AQI Units) AQI prediction & 

healthcare enhancements 

efficiency (%) 

Proposed 0.93 3.4 14.5 

Method [4] 0.85 5.6 9.8 

Method [9] 0.87 4.9 10.2 

Method [15] 0.89 4.3 12.1 

The value of R² was 0.93 for places like R. K. Puram and Ashok Vihar, indicating thereby the good performance of the 

proposed model to predict AQI values in that process. It gives the lowest MAE among all methods, with a value of 3.4 

AQI units, implying that the proposed model assures better predictions of air quality levels than Methods [4], [9], and [15]. 

Besides, a reduction of 14.5% in AQI from all other methods through real-time interventions is much higher and involves 

smoothing of traffic flow and regulation of emission. 

 

Figure 3. Performance Comparison in Residential Areas (R. K. Puram, Ashok Vihar, NSIT Dwarka, New Moti Bagh, Sonia 

Vihar, Najafgarh) 
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Table 3: Performance Comparison in Industrial Areas (Wazipur, Bawana, Okhla, Mayapuri) 

Method R² (Predictive Accuracy) MAE (AQI Units) AQI prediction & 

healthcare enhancements 

efficiency (%) 

Proposed 0.91 3.8 16.3 

Method [4] 0.82 6.2 10.1 

Method [9] 0.84 5.4 11.0 

Method [15] 0.87 4.7 13.5 

The proposed model also yields the best performance for industrial areas such as Wazipur and Bawana: R² = 0.91 and MAE 

= 3.8. This is so the strategic industrial emission reduction measures that are mostly CO and SO2 abatement methods can 

explain the AQI increase of 16.3%. For method [4], its MAE reaches as high as up to 6.2 with a reduction in AQI of only 

10.1%. These results assure that the proposed model is efficient in handling complex pollution scenarios in industrial zones 

due to fluctuating pollutant levels from emissions of manufacturing and processing activities. 

Table 4: Performance Comparison in Mixed-Use Areas (Anand Vihar, Punjabi Bagh, Mandir Marg) 

Method R² (Predictive Accuracy) MAE (AQI Units) AQI prediction & 

healthcare enhancements 

efficiency (%) 

Proposed 0.92 3.5 15.2 

Method [4] 0.83 5.9 9.9 

Method [9] 0.86 5.2 11.7 

Method [15] 0.88 4.6 13.2 

For mixed-use areas like Anand Vihar, Punjabi Bagh, and Mandir Marg, representing a mix of residential, industrial, and 

commercial activities, the R² value for the proposed model comes as high as 0.92, along with an MAE of 3.5. This amounts 

to 15.2% reduction in AQI and reflects the model capabilities in regard to the different sources of pollution in these regions. 

Though Method [9] performs better when compared with Method [4], the performance is still very much low when 

compared to the proposed model. In particular, the proposed approach gives a remarkable enhancement with respect to 

AQI prediction & healthcare enhancements efficiency. 



Frontiers in Health Informatics 

ISSN-Online: 2676-7104 

www.healthinformaticsjournal.com 

 

2024; Vol 13: Issue 2 Open Access 

 

680 | P a g e  

 

Figure 4. Performance Comparison in Traffic-Heavy Areas (Pusa, Shadipur, ITO). 

Table 5: Performance Comparison in Traffic-Heavy Areas (Pusa, Shadipur, ITO) 

Method R² (Predictive Accuracy) MAE (AQI Units) AQI prediction & 

healthcare enhancements 

efficiency (%) 

Proposed 0.94 3.2 17.1 

Method [4] 0.84 6.0 9.7 

Method [9] 0.88 5.0 11.3 

Method [15] 0.89 4.5 13.8 

In highly traffic-congested areas like Pusa and ITO, where vehicular emission is the prime cause of pollution, the proposed 

model again outperforms. Predictive accuracy reflected by R² = 0.94, along with AQI prediction & healthcare 

enhancements efficiency of 17.1%, depicts effectiveness in model applicability for optimization of traffic control strategies 

with a view to reduce real-time emissions. Besides, in Method 4, R² was 0.84 and MAE was 6.0, which could not address 

the fluctuating pattern of traffic that caused the changeability in pollution levels. Since this model can adjust to real-time 

traffic interventions, the proposed model results in AQI levels that are considerably improved in these regions. 
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Table 6: Performance Comparison in Mixed-Use Recreational Areas (Jawaharlal Stadium, Dr. Karni Singh 

Shooting Range, Major Dyanchand Stadium) 

Method R² (Predictive Accuracy) MAE (AQI Units) AQI prediction & 

healthcare enhancements 

efficiency (%) 

Proposed 0.91 3.7 13.8 

Method [4] 0.82 6.3 8.9 

Method [9] 0.86 5.5 10.2 

Method [15] 0.88 4.8 12.0 

The model proposed, which can perform at a robust R² of 0.91, shall be applied in places such as Jawaharlal Stadium and 

Dr. Karni Singh Shooting Range to represent recreational mixed-use areas where pollution varies with schedules of events 

and public usage with an AQI prediction & healthcare enhancements efficiency of 13.8%. Only Method [4] is far behind, 

with an R² of 0.82 and a higher MAE of 6.3, hence proving the low performance when it comes to handling such complex 

and dynamic pollution patterns in these areas. In fact, this capability of the proposed model to adapt to the changing sources 

of pollution in real time contributes to much to its effectiveness at such mixed-use recreational spaces. 

Table 7: Overall Performance Summary Across All Regions 

Method Average R² Average MAE (AQI Units) Average AQI prediction & healthcare 

enhancements efficiency (%) 

Proposed 0.92 3.5 15.4 

Method [4] 0.83 5.8 9.7 

Method [9] 0.86 5.2 11.1 

Method [15] 0.88 4.6 12.9 

Overall, the general performance of the proposed model was better than that of Methods [4], [9], and [15] in all regions, 

averaging an R² of 0.92 and a mean absolute error of 3.5 AQI units. Indeed, the reduction in AQI by the proposed model, 

averaging 15.4% across regions, portrays its effectiveness in optimizing air quality in a wide range of environmental setups 

ranging from residential to industrial and traffic-heavy zones. Among these, Method [4] has the poorest performance w.r.t. 

both predictive accuracy and AQI prediction & healthcare enhancements efficiency, whereas Methods [9] and [15] perform 

moderately but fall behind the proposed model in handling the complex spatiotemporal dynamics of pollution. Further, we 

will discuss an example usage case of the proposed model that will help readers understand the whole process in more 

detail in different scenarios. 
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PRACTICAL USE CASE SCENARIO ANALYSIS 

A multi-regional, systematic experiment was carried out to validate the proposed model and its sub-components in Delhi 

Geographies. Synthetic data, representative of the typical pollution, meteorological factors, and emissions from major 

sectors-generally residential and industrial sectors and heavy-traffic zones-were considered for the validations. The key 

features included pollutants like PM2.5, PM10, NO2, CO, SO2, and O3, besides meteorological indicators of temperature, 

humidity, wind speed, and wind direction. Feature selection, time series analysis, geospatial interpolation, optimization, 

and clustering analysis comprised the dataset pre-processing stages. Results in tabular form are elaborated in further 

sections about the performance at each component: XGBoost with Recursive Feature Elimination, ConvLSTM with 

Geospatial Interpolation, Multiple Agent Deep Q-Networks, and Dynamic Time Warping with DBSCAN. The results of 

this kind are analyzed with the motive of representation for predictive accuracy, spatial and temporal forecasting ability, 

optimization interventions, and clustering insights of a model in the process. 

Table 8: XGBoost with Recursive Feature Elimination (RFE) – Feature Importance and AQI prediction & 

healthcare enhancements 

Feature Importance Score Selected by RFE Contribution to AQI (µg/m³) 

PM2.5 0.89 Yes 54 

PM10 0.82 Yes 42 

NO2 0.76 Yes 30 

CO 0.65 Yes 28 

SO2 0.58 No - 

Temperature 0.50 Yes 10 

Humidity 0.45 No - 

Wind Speed 0.35 No - 

Wind Direction 0.32 No - 

Atmospheric Pressure 0.40 No - 

In this regard, related to the selection of most important features for the prediction of AQI values, best results obtained by 

a combination of XGBoost with RFE on the dataset are depicted in Table 8. The features such as PM2.5, PM10, NO2, CO, 

and temperature were retained at each step of RFE because those features contributed most in that process towards AQI 

values. Eliminated features will include wind speed and direction since they have lower importance scores. Based on these 

features, the model has predicted AQI values, and their shares in the total AQI are respectively: PM2.5, PM10, and NO2 

sets. 
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Table 9: ConvLSTM with Geospatial Interpolation (Kriging) – Temporal and Spatial AQI prediction & healthcare 

enhancements 

Region Actual AQI (µg/m³) Predicted AQI (µg/m³) Spatial Error 

(µg/m³) 

Temporal Accuracy (%) 

R. K. Puram 160 158 2 88.5 

Okhla 220 215 5 90.1 

Shadipur 140 135 5 87.6 

Anand Vihar 180 175 5 85.0 

Najafgarh 110 108 2 89.4 

Mayapuri 200 195 5 92.0 

Results of ConvLSTM combined with Kriging Table 9 presents the predicted AQI values of multiple regions showing 

temporal accuracy of the same. Spatial interpolation errors were small, in the range of 2-5 µg/m³, hence establishing the 

efficiency of the model in predicting AQI with good accuracy for those regions also where no monitoring stations are 

present. Temporal accuracy-the model's capability to capture pollutant trends overtime-exceeded 85% in all the regions, 

peaking at 92% in Mayapuri Geographies. 

Table 10: Multiple Agent Deep Q-Networks (DQN) – Policy Optimization for AQI prediction & healthcare 

enhancements efficiency 

Agent Action Selected Reward Signal 

(Reduction in AQI) 

Final AQI After 

Action (µg/m³) 

Policy Improvement 

(%) 

Traffic 

Management 

Vehicle Restriction +18 µg/m³ 160 -> 142 11.3 

Industrial Emission Emission Reduction +25 µg/m³ 220 -> 195 14.5 

Municipal 

Regulation 

Public Event 

Restriction 

+15 µg/m³ 180 -> 165 8.3 

Pollution Control 

Board 

Industrial Fine 

Increase 

+20 µg/m³ 200 -> 180 10.0 

Traffic 

Management 

Traffic Signal 

Adjustment 

+12 µg/m³ 140 -> 128 8.6 
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Table 10 represents various actions by the agents in the Multiple Agent DQN framework which try to reduce the AQI. 

Every action of the agents resulted in efficiencies within the AQI prediction & healthcare enhancements, while the reward 

signals became highest for industrial reduction of emission, thereby lowering AQI levels from 220 µg/m³ to 195 µg/m³ 

levels. The policy improvements, due to the dynamic optimization model, were as large as 8.3 to 14.5%, reflecting its 

ability to abate pollution in real time within and across sectors. 

Table 11: Dynamic Time Warping (DTW) with DBSCAN – Clustering of Pollution Patterns 

Cluster 

ID 

Number of 

Regions 

Average PM2.5 

(µg/m³) 

Average NO2 

(µg/m³) 

Average CO 

(µg/m³) 

Outliers 

Detected 

Cluster 1 5 95 45 0.80 2 

Cluster 2 4 110 50 0.95 1 

Cluster 3 3 150 70 1.20 3 

Cluster 4 6 85 40 0.70 0 

Table 11: DTW combined with DBSCAN on the clustering of regions into their pollution pattern series. There were four 

clusters, with Cluster 3 having the highest average of pollutant levels: PM2.5 is 150 µg/m³ and NO2 is 70 µg/m³ sets. 

Outliers from Clusters 1, 2, and 3 were found to be generally from industrial or high-traffic areas, proving the algorithm 

for applying it to detect abnormal patterns in pollution sets. 

Table 12: Final Outputs – AQI prediction & healthcare enhancements and Reduction Summary Across All Regions 

Region Initial AQI (µg/m³) Predicted AQI (µg/m³) AQI prediction & 

healthcare 

enhancements 

efficiency (%) 

Final AQI (µg/m³) 

R. K. Puram 160 158 11.3 142 

Okhla 220 215 14.5 195 

Shadipur 140 135 8.6 128 

Anand Vihar 180 175 8.3 165 

Najafgarh 110 108 10.0 99 

Mayapuri 200 195 10.0 180 
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Table 12: Summary of the overall AQI prediction & healthcare enhancements and reductions from model results across 

different regions after the full deployment of the model. The final AQI values were computed after implementing 

interventions identified by the Multiple Agent DQN framework. The best AQI prediction & healthcare enhancements 

efficiency, 14.5%, was realized in Okhla and reflected the effectiveness of industrial controls put in place. In traffic-

congested regions, such as R. K. Puram and Shadipur could return AQI prediction & healthcare enhancements efficiencies 

of 11.3% and 8.6%, respectively, based on traffic congestion and optimization. From the results represented in Tables 8 to 

12, the proficiency of the proposed model for all its components becomes evident. XGBoost with Recursive Feature 

Elimination identified major features contributing toward AQI, while ConvLSTM with Kriging estimated the spatial and 

temporal predictions with quite high accuracy even in areas absent of monitoring stations. MA DQN effectively optimized 

policies to reduce AQI values in real time, while DTW with DBSCAN presented clusters in the variation of pollution 

patterns that outlined the variation. Overall results summarized in Table 12 confirm efficiency for the model in providing 

a forecast on AQI values and, further interventions in real time can yield significant reductions in levels of pollution across 

several regions of Delhi Geographies. This multi-faceted approach underlines the practical utility of the model in urban air 

quality management, as it brings predictive accuracy together with actionable interventions in the process. 

CONCLUSION AND FUTURE SCOPES 

This section is dedicated to the presentation of an integrated comprehensive air quality prediction and optimization 

framework using XGBoost with RFE, ConvLSTM with Kriging, multiagent DQN, DTW with DBSCAN. The developed 

model outperforms other current methodologies in terms of its contribution to air quality improvement for various types of 

urban exposures, such as residential, industrial, mixed-use, and those with heavy traffic in Delhi. It has an average R² of 

0.92 and a mean absolute error of 3.5 AQI units, hence outperforming the compared methods, with an average R² variation 

from 0.83 to 0.88 and MAE between 4.6 and 5.8 AQI units. Talking effectiveness with the model in real-time air quality 

management, the average enhancement in AQI levels stood in contrast to the reductions brought about by Methods [4], [9], 

and [15], which were 9.7%, 11.1%, and 12.9%, respectively. It performed even higher in specific regions. For instance, the 

developed framework ensured an AQI prediction & healthcare enhancements efficiency of 17.1% at traffic congestion 

hotspots like Pusa and ITO, confirming that it was able to adopt traffic mitigation strategies based on real-time pollutant 

levels. These results confirm, therefore, the efficiency of the integrated approach for capturing temporal-spatial dynamics 

of pollution and optimizing effective interventions to reduce its impact for the process. This framework thus ensures that 

machine learning and deep learning synergized with geospatial analysis methods will be perfectly suited for practical 

applications in an urban air quality management system. 

FUTURE SCOPES 

While the performance of the proposed framework has been extremely promising for various scenarios, there do remain 

some future areas of research and potential development. The dataset can be extended for longer temporal scales and more 

cities in India for a wider context to evaluate the generalizability of the model. This would also allow seasonal effects and 

long-term pollutant trends, thereby making the models robust for AQI forecasting over a very extended period of time, say 

months or years. The model can be extended to a more thorough simulation of secondary pollutants like VOCs and other 

aerosol parameters such as particulate sulfate and nitrate. This will enhance the accuracy of the model in predicting the 

formation of secondary pollutants, considered critical for regions experiencing rapid industrialization and vehicular growth. 

The integration of advanced reinforcement learning methods, such as multiple agent coordination algorithms that will 

permit agents to communicate and share policies, represents another potentially very promising direction. In this way, 

much more effective real-time optimization strategies can be enabled; this is crucial in scenarios where interventions in 

one region may have cascading effects on other adjacent regions-in this context, traffic management. Moreover, deploying 

it in currently operating real-to-life monitoring systems and developing interfaces toward real-time decision support would 

greatly enhance its usability for policy makers and urban planners. Integration with real-time feedback mechanisms using 

mobile sensors and low-cost air quality devices can further enhance model granularity and responsiveness, thereby 

rendering the models adaptive to dynamic urban environments. Introducing health impact metrics into the optimization 

framework may provide a more direct linkage between air quality improvements and public health outcomes, offering 
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assurance that interventions reduce pollution but at the same time minimize adverse health effects among sensitive 

populations. 
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