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Due to exponential demand in IoT based healthcare, the demand for robust 

mechanisms to ensure data privacy, security, and scalability with the increasing 

dependence on cloud-based healthcare systems is immensely felt. Current 

approaches to dealing with health-care data in cloud settings lack the potency 

to tackle challenges emanating from the distribution of non-IID data, dynamic 

access control requirements, and secure cross-chain data analysis. These 

methods could not provide a holistic solution to adapt with the heterogeneous 

nature of healthcare data while maintaining advanced privacy and security 

levels over the distributed networks. In this way, the present work proposes to 

offer a secure and scalable protocol that is based on the blockchain for 

healthcare cloud data samples. It integrates the following four new 

methodologies: Adaptive Federated Learning for Healthcare Data, Secure 

Homomorphic Blockchain Encryption, Dynamic Attribute-Based Encryption 

for Healthcare, and Proof of Healthcare Privacy (PoHP) consensus based cross-

chain federated Analytics with Zero Knowledge Protocol (ZKP) for healthcare. 

AFL-HD would work with optimal model training over the distributed 

healthcare data and thereby handle the challenges that are non-IID in nature, 

while reducing the communication overhead by 30-40%. SHBE would ensure a 

1.5x improvement in encryption and decryption times and also enable secure 

computations on encrypted data samples. Thus, DABE-HC enables dynamic 

access control policy management in blockchains, while ensuring access 

control precision in excess of 99%, with near-instant policy updating. CCFA-HC 

supports X-blockchain privacy-preserving analytics, thereby reducing the 

cross-chain communication overhead by 20-30%. In this protocol, therefore, 

cloud healthcare data management is made more scalable, secure, and private. 

It allows tackling challenges in the healthcare domain and gives a holistic 

solution supporting meaningful and secure, efficient, and collaborative 

healthcare data processing and analytics across distributed environments. The 

impact of this work is immense in providing a foundation for the next 

generation of secure healthcare data systems. 
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INTRODUCTION 

Fast digitization of health systems has contributed to exponential increases in data volumes from the different 
activities related to healthcare. The data holds immense potential for developing medical research, improving 
outcomes for patients, and optimizing healthcare services. These data contain everything, ranging from EHRs and 
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diagnostic images to genomic sequences and real-time data from patient monitoring. However, the sensitivity of the 
healthcare data enforces very strong measures of privacy, security, and scalability, especially when this data is 
maintained and processed in cloud environments integrated with Internet of Things devices. Traditional solutions 
to data management, though effective in some context or other, are generally incapable of addressing the complex 
challenges associated with secure and scalable handling of healthcare data across distributed networks [1, 2, 3]. 
Arrival of blockchain technology opened up fresh avenues in improving the safety and transparency in data storage 
and sharing, mainly for decentralized environments. Inherent properties in blockchain—immutability, 
decentralization, and transparency—make it an attractive solution for the management of healthcare data samples. 
However, some of the challenges to the integration of blockchain technology with healthcare data systems are 
grounded in the issues of scalability, data privacy, and ability to do complex computations on encrypted data 
without breaking the security envelope. Besides, healthcare data is usually spread among different entities, such as 
hospitals, laboratories, and research institutions, each having its requirements regarding data storage and 
processing. This distribution also creates several other problems with data heterogeneity, nonindependence, and 
nonidentically distributed data, and envisages the need for dynamic access control mechanisms due to the 
changeable roles and responsibilities of healthcare professionals [4, 5, 6]. Set against these challenges, an increasing 
need is felt for an integrated solution that achieves a blockchain-based, secure, scalable, and privacy-preserving 
solution for healthcare data management in cloud-based IoT environments. In this paper, the authors have 
developed a comprehensive protocol that comes with a number of key innovations in health care data management: 
(i) adaptive federated learning over health care data, (ii) secure homomorphic blockchain encryption, (iii) dynamic 
attribute-based encryption for health care, and (iv) ZKP with Proof of Healthcare Privacy (PoHP) consensus based 
cross-chain federated analytics for health care. All these methods are designed to enhance specific challenges in 
health care data and provide a robust framework pertaining to managing data securely when combined. 

Consistently, AFL-HD is a strategy devised to address the inherent non-IID issue across healthcare data, which is 
essentially spread out through a group of nodes—hospitals, clinics, etc.—each having unique characteristics. 
Traditional approaches towards federated learning engender the assumption of IID data and invariably result in 
models of suboptimal quality for samples of healthcare data samples. This limitation is again overcome by AFL-HD, 
which can dynamically adjust the learning rate and model aggregation strategies in light of the heterogeneous data 
situations over different nodes, leading to model improvement in terms of accuracy at a much lesser communication 
overhead. Thus, it could be a scaled solution for the distributed health care data environment. Below is a further 
explanation of some of the key components of the suggested protocol: Secure Homomorphic Blockchain Encryption 
(SHBE). It allows homomorphic encryption of health data to perform computations on encrypted data without the 
need to decrypt it, ensuring that sensitive health data remains secure throughout the processing lifecycle. SHBE is 
optimized for healthcare data, which contributes to faster times in encryption and decryption compared to standard 
homomorphic encryption methods. This is important with regard to providing practical secure data processing in 
real-time health applications, where query latency and data security are of paramount importance. Dynamic 
Attribute-Based Encryption for Healthcare  deals with the challenge in providing fine-grained, secure access control 
in the health environment in which roles and responsibilities change frequently. In traditional access control 
mechanisms, access control is majorly static. The incorporation of modifications to user role or rights is manual in 
nature and thus prone to security vulnerabilities. DABE-HC will automate this process by hardwiring the access 
control policies into the encryption process itself and thereby enable the ability of making real-time updates of 
access control policies based on evolving attributes of users. This dynamic approach therefore ensures that only 
authorized persons have access to specific healthcare data, which greatly enhances the privacy and security of the 
data samples. 

The idea is that CCFA-HC enables federated analytics in a cross-chain way for the healthcare domain; that is, 
analytics collaboration over several blockchain networks. This technique harnesses federated learning for data 
analysis over distributed data sources while maintaining the privacy and security of the underlying data samples. 
Enabling secure cross-chain communication, CCFA-HC empowers healthcare institutions to collaborate on data-
driven insights without really compromising data privacy, thereby meeting a longstanding need for an analysis of 
comprehensive data within a fragmented healthcare system. Such an integration of the methods in one protocol 
provides the holistic solution for healthcare data management in a cloud-based IoT environment. This protocol 
serves as a robust framework for next-generation healthcare data systems through mitigation of the challenges of 
scalability, security, and privacy. It enhances not only the security and privacy of healthcare data but also the 
scalability and efficiency of data management processes for such information; hence, this approach is of vital 
importance in healthcare informatics operations. 
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MOTIVATION & CONTRIBUTION: 

This work is motivated by the critical need to address several multi-faceted challenges in managing healthcare data 
in cloud-based IoT environments. The healthcare sector is leveraging data-driven insights in support of clinical 
decision-making, as reflected in optimizing patient outcomes and the advancement of medical research at a central 
level. However, health-related data are sensitive, posing severe challenges to data privacy, security, and scalability 
due to the distributed and heterogeneous nature of its storage and processing. Traditional solutions to the problems 
of data management normally would not be properly tailored to handle these challenges, much less for the 
distributed environment where data resides at different entities with differing levels of trust and access 
requirements. Moreover, such dynamism in the roles and responsibilities of healthcare requires a flexible and 
secure access control mechanism that can adapt to the changing circumstances in real-time scenarios. The 
contributions of this work are manifold. First, it provides a new protocol combining four state-of-the-art 
techniques—Adaptive Federated Learning for Healthcare Data, Secure Homomorphic Blockchain Encryption, 
Dynamic Attribute-Based Encryption for Healthcare, and ZKP with Proof of Healthcare Privacy (PoHP) consensus 
based cross-chain federated Analytics for Healthcare—each addressing some part of the challenges in managing 
healthcare data samples. AFL-HD is designed to provide a scalable solution for the training of machine learning 
models over distributed healthcare data in a non-IID setting, reducing communication overhead. SHBE aims to 
improve data security by allowing computations on encrypted data; it ensures that access control policies are 
dynamic in accordance with changes in user roles and responsibilities. Finally, CCFA-HC allows multi-blockchain 
secure and privacy-preserving analytics to be conducted on comprehensive data without affecting the privacy of 
data samples. In this regard, the proposed protocol provides an all-in-one solution by considering the major 
challenges of healthcare data management over a cloud-based IoT environment. This work offers a robust and 
scalable approach to guaranteeing the privacy, security, and efficiency of healthcare data systems by putting these 
methods together within one framework. The impact will be high, for the foundation of the development of the new 
generation healthcare data systems lies in this work within the constantly changing landscape. This protocol 
ensures not only the safety and privacy of healthcare data but also improves the scalability and efficiency of the data 
management process; hence, this development in healthcare informatics is critically required for this process. 

IN DEPTH REVIEW OF MODELS USED TO ENHANCE CLOUD-BASED HEALTHCARE 

SECURITY PERFORMANCE 

The outlook of healthcare data management has undergone tremendous development in response to the urge to 
have secure, efficient, and privacy-preserving solutions in this digital age of health. Table 1 summarizes the 
literature review concerning the wide range of methodologies and technologies that have been put forward to tackle 
the multifaceted challenges associated with the storage, transmission, and analysis of healthcare data in a cloud and 
IoT environment. This review elucidates how traditional cryptographic techniques have moved toward more 
sophisticated systems that currently involve federated learning, blockchain technology, and advanced encryption 
methods. Synthesizing this through analysis provides us with insights into the strengths, limitations, and future 
potentials of these emerging technologies in the healthcare domain. All of the studies reviewed herewith were 
undertaken on the critical necessity concerning the preservation of privacy in healthcare data management. As 
shown in [1], preservation of forward privacy has been the cornerstone of secure transmission in IoT-enabled 
healthcare systems. The cryptographic approach ensures that even if the past data gets compromised, the future 
data is still safe. This is very critical for maintaining confidentiality related to sensitive patient information. 
However, scalability remains an issue with such solutions, especially concerning large-scale deployment. It is also 
described in [9] and [18] how blockchain and federated learning can be combined into a healthcare system for the 
preservation of privacy. Their results are very promising with respect to preserving data integrity and preventing 
unauthorized access, but are usually limited by high computational costs and communication overhead, which 
inhibits wide adoption in real-world scenarios. 

One can see that the challenge of balancing security with efficiency is one of the common themes permeating 
previous literature. Advanced machine learning techniques and blockchain integration for more secure 
architectures in health care over the cloud are proposed by [4] and [12]. While significantly enhancing resilience 
against cyber-attacks, these methods bring along some additional computational overhead, a fact that can be often 
detrimental to performance.  The security efficiency trade-off is further depicted in, where a blockchain-based 
decentralized privacy-preserving framework has been designed. While the study achieved high data privacy levels, 
it still faces significant obstacles to scalability and real-time application due to the improved computational 
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requirements of blockchain processing. Besides privacy and security, several studies under review also focus on the 
efficiency aspect of managing health data samples. In an attempt to reduce the computational overhead of data 
encryption and transmission in cloud-assisted healthcare IoT environments, [2] and [6] have focused on lightweight 
protocols and authentication schemes. All these approaches have been able to keep the overhead as low as possible 
while implementing robust security measures and are therefore more feasible for real-time healthcare applications. 
However, most of them remain quite effective only in some use cases, and their ability to be applied to the 
complexity of healthcare scenarios still awaits a full exploration of its possibilities. 

Another important theme in the published literature is the place of advanced analytics and artificial intelligence in 
healthcare data management. Examples include the application of AI-assisted smart healthcare systems discussed 
in [15] and the resource allocation schemes presented in [21]. These illustrate how AI might actually help in raising 
the quality of care through better decision-making and optimizing resource use. However, with the increasing 
importance of AI and machine learning models come new challenges: keeping up with their demanding labeled data 
requirements, avoiding model bias, and interpreting the output from complex models. These are some of the 
challenges that must be surmounted for AI to realize full benefits in healthcare. The paper will give an approach for 
the management of health data, integrating IoT, cloud computing, and blockchain technologies. Prominent and 
motivating evidence comes from [20] and [25], which identifies the benefits of integrating these technologies in 
building up a scalable, efficient, and secure healthcare system. These studies have reported improved processing 
speeds, enhanced data privacy, and reduced energy consumption, which are all critical factors toward the successful 
implementation of smart healthcare solutions. However, these integrated systems raise many challenges in terms 
of handling the complexity, and dependence on network availability and reliability will become two major concerns 
in successful deployment. 

From the analytical point of view, the trend visible from the literature is a clear inclination toward more integrated 
and sophisticated solutions in the field of health care data management. Very early works, such as [1] and [5], were 
focused on enhancing privacy and security by cryptographic techniques and privacy-preserving monitoring 
systems. Over time, there has been a growing tendency toward the incorporation of multiple technologies—such as 
blockchain, federated learning, and AI—to answer the growing complexity and scale of health data samples. This 
line of progression could have been influenced by the fact that, with growing recognition of the need for holistic 
solutions to privacy, security, efficiency, and scalability all at the same time. A number of open challenges still persist 
despite the revolutions so far in the domain. Key challenges lie in how scalable they can be. Most research has been 
conducted on a controlled basis where, of course, they have proven to be effective. Still, they beg the question of 
whether these methods could be applied or hold true at the larger scales found in real-world healthcare systems. 
Computational resources processing blockchains, communication overhead in federated learning, and energy 
requirements of AI models are enormous barriers to scalability that will one day need to be researched. This kind 
of integration might further result in increased system complexity and interoperability issues. What is more, it is 
expected that the integration between technologies or platforms is seamless, especially nowadays, when the 
interconnectivity of healthcare systems increases. However, most of the studies that were reviewed do not explain 
clearly enough issues about interoperability, which affects deployment success in different healthcare 
environments. 

Reference Method Used Findings Results Limitations 

[1] Forward Privacy 
Preservation 

Proposed a 
cryptographic 
approach to preserve 
forward privacy in IoT-
enabled healthcare. 

Achieved secure data 
transmission with 
minimal overhead. 

Limited scalability for 
large-scale 
deployments. 

[2] CNN and 
Blockchain-Enabled 
Federated Learning 

Integrated CNN with 
federated learning and 
blockchain for EHR 
privacy. 

Enhanced data privacy 
with 92.5% accuracy in 
disease classification. 

High computational 
cost due to complex 
CNN models. 



Frontiers in Health Informatics 

ISSN-Online: 2676-7104 

www.healthinformaticsjournal.com 

 

2024; Vol 13: Issue 2 Open Access 

 

693 | P a g e  

[3] Cloud-Assisted 
Micro-Service-
Based Framework 

Developed a 
microservice 
architecture for cloud-
based healthcare 
systems. 

Improved modularity 
and scalability in 
healthcare application 
development. 

Increased latency in 
inter-service 
communication. 

[4] Adversarial ML-
Based Secured 
Cloud Architecture 

Implemented 
adversarial ML 
techniques to secure 
cloud architecture in 
IoT healthcare. 

Improved resilience 
against adversarial 
attacks with a 30% 
reduction in false 
positives. 

Computational 
overhead increased 
due to complex 
cryptographic 
operations. 

[5] Privacy-Preserving 
Healthcare 
Monitoring 

Utilized time-series 
analysis with privacy-
preserving techniques 
over cloud 
infrastructure. 

Achieved 85% 
accuracy in activity 
recognition while 
preserving data 
privacy. 

Performance 
degraded with 
increasing data size. 

[6] Lightweight 
Authentication 
Scheme 

Proposed a redactable 
signature-based 
lightweight 
authentication for 
cloud-assisted 
healthcare IoT. 

Provided secure 
authentication with 
reduced signature 
overhead by 25%. 

Limited application to 
more complex IoT 
scenarios. 

[7] High-Order Fuzzy C-
Means Clustering 

Applied fuzzy C-means 
clustering for privacy-
preserving data 
analysis in smart 
healthcare. 

Achieved 88% 
clustering accuracy 
with reduced 
computational 
complexity. 

Less effective in 
handling high-
dimensional data 
samples. 

[8] Bee Foraging 
Learning-Based PSO 

Enhanced cloud 
healthcare security 
using a multi-objective 
optimization algorithm. 

Improved data 
sanitization and 
restoration with a 20% 
increase in security 
measures. 

High energy 
consumption due to 
iterative optimization 
processes. 

[9] Federated Learning 
with Blockchain 

Integrated federated 
learning with 
blockchain for privacy 
preservation in IoMT 
systems. 

Achieved 90% model 
accuracy while 
maintaining privacy. 

Limited by 
communication 
overhead between 
federated nodes. 

[10] Blockchain-
Envisioned 
Authenticated Key 
Management 

Designed a robust key 
management 
mechanism for IoMT-
based smart healthcare. 

Ensured secure key 
exchange with 98% 
success rate. 

Scalability concerns 
with large-scale IoT 
deployments. 
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[11] Cryptoanalysis on 
Cloud-Centric IoMT 

Analyzed the security 
of cloud-centric IoMT 
healthcare systems. 

Identified 
vulnerabilities in 
existing IoMT security 
protocols. 

Lacked a practical 
implementation to 
address identified 
issues. 

[12] Blockchain-Assisted 
Geospatial Web 
Service 

Implemented 
blockchain for 
geospatial web services 
in smart healthcare 
systems. 

Improved data 
integrity and privacy 
with 95% uptime. 

Increased latency in 
geospatial query 
responses. 

[13] Anonymous 
Authentication with 
Cloud-Based 
WBANs 

Developed an efficient 
and anonymous 
authentication protocol 
for WBANs in 
healthcare. 

Achieved 97% 
authentication success 
rate with low 
communication 
overhead. 

Potential vulnerability 
to side-channel 
attacks. 

[14] AI-Enabled 
Healthcare with 
Digital Twins 

Integrated digital twins 
for task offloading in 
AI-enabled healthcare 
systems. 

Enhanced 
computational 
resource management 
with a 15% 
improvement in 
energy efficiency. 

High initial setup cost 
for digital twin 
infrastructure. 

[15] AI-Assisted Smart 
Healthcare System 

Leveraged 5G 
communication for 
real-time AI-assisted 
healthcare decision-
making. 

Achieved 93% real-
time decision accuracy 
with low latency. 

Dependency on 5G 
network availability 
and coverage. 

[16] Blockchain with 
Cloud-Assisted 
Privacy-Preserving 
Framework 

Developed a 
decentralized privacy-
preserving framework 
using blockchain for 
healthcare 
applications. 

Ensured 98% data 
privacy with low 
latency in service 
utilization. 

High computational 
demands for 
blockchain 
processing. 

[17] Privacy-Preserving 
Healthcare Data 
Retrieval 

Designed a block-based 
retrieval system for 
encrypted healthcare 
data in cloud 
environments. 

Achieved a 92% 
retrieval accuracy with 
strong privacy 
guarantees. 

Performance issues 
with large datasets. 

[18] PRMS for Privacy 
Preservation in 
Cloud Platforms 

Developed a patients' e-
healthcare records 
management system 
for cloud platforms. 

Improved privacy 
preservation with 90% 
patient satisfaction 
rate. 

Scalability issues 
when integrated with 
existing systems. 
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[19] TriPhase Adaptive 
Learning-Based 
Privacy 
Preservation 

Proposed a learning-
based privacy-
preserving model for 
medical data in the 
cloud. 

Enhanced privacy 
preservation with a 
25% reduction in 
information leakage. 

High computational 
overhead during the 
learning phase. 

[20] Blockchain-Based 
Verifiable 
Healthcare Service 
Management 

Implemented a 
verifiable service 
management system 
using blockchain in IoT 
healthcare. 

Improved service 
verification with a 20% 
reduction in 
fraudulent activities. 

High latency in service 
verification due to 
blockchain 
processing. 

[21] Resource Sharing 
and Allocation in 
IoT-Assisted 
Healthcare 

Developed a resource 
sharing and allocation 
scheme for IoT-assisted 
healthcare systems. 

Achieved 15% 
improvement in 
resource utilization 
efficiency. 

Limited by the 
complexity of transfer 
learning models. 

[22] RFID Authentication 
Protocols with PUF 

Proposed a lightweight 
RFID authentication 
protocol using PUF for 
e-healthcare. 

Achieved secure 
authentication with a 
30% reduction in 
authentication time. 

Vulnerable to physical 
attacks on PUF. 

[23] Healthcare Data 
Security with 
Lightweight 
Protocol 

Designed a lightweight 
security protocol for 
cyber-physical systems 
in healthcare. 

Improved data 
security with 95% 
reduction in attack 
success rate. 

Limited to small-scale 
healthcare 
environments. 

[24] Scalable Framework 
for Green 
Healthcare 

Developed a scalable 
and green healthcare 
framework integrating 
IoT and cloud 
computing. 

Achieved 20% 
reduction in energy 
consumption while 
maintaining service 
quality. 

Complexity in 
managing the 
scalability of the 
framework. 

[25] Healthcare 5.0 with 
Fog/Cloud 
Computing 

Proposed a fog/cloud 
computing architecture 
for Healthcare 5.0. 

Improved processing 
speed by 25% while 
maintaining data 
privacy. 

Dependency on fog 
node availability and 
network latency. 

Table 1. Empirical Review of Existing Methods 

The other critical domain in which much future work is needed is the ethical dimensions of such technologies. 
Artificial intelligence and machine learning applied to healthcare bring issues of bias in data and possible 
discrimination, raising questions of transparency into decision-making processes. Blockchain technology raises 
questions about data ownership and governance and possibilities for centralization in a decentralized system. These 
ethical concerns need to be addressed in a bid to have these technologies applied in health processes responsibly 
and equitably. Concluding, the review offers an insightfully current status of healthcare data management 
technologies. The studies reviewed pointed out that advanced technologies such as Blockchain, Federated Learning, 
and AI sets had made tremendous progress toward enhancing privacy, security, and efficiency in healthcare 
systems. It also points out some of the challenges that need to be factored in to make these technologies finally work 
in real-world healthcare systems. Future research has to focus on scalability, complexity, and ethical challenges of 
these technologies, plus find new ways of how they could be seamlessly integrated into existing healthcare 
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infrastructures & scenarios. It will, thereafter, be possible to develop more robust, secure, and efficient solutions in 
healthcare data management for a number of scenarios to meet patients', providers', and policymakers' needs. 

PROPOSED DESIGN OF AN INTEGRATED METHOD FOR BLOCKCHAIN-BASED SECURE 

HEALTHCARE CLOUD IOT USING FEDERATED LEARNING AND HOMOMORPHIC 

OPERATIONS 

This section focuses on the design of an integrated method for blockchain-based secure healthcare cloud IoT, using 
federated learning and homomorphic operations to help overcome the low efficiency and high deployment 
complexity issues prevailing in the existing blockchain-based healthcare cloud deployment models. Figure 1: AFL-
HD: Adaptive Federated Learning for Healthcare Data samples. It is designed to handle the challenges involved in 
the training of machine learning models on decentralized healthcare data, which resides in multiple nodes such as 
hospitals, clinics, and laboratories. Heterogeneity in healthcare data with non-IID makes it very challenging to 
ensure high accuracy with efficient model training. These challenges are overcome by AFL-HD through dynamic 
adjustment of both the learning rate and the model aggregation strategies based on the distribution of data across 
different nodes, ensuring its optimization in the learning process while maintaining data privacy and enhancing 
scalability. In AFL-HD, each local node trains a model on its subset of healthcare data samples. These local models 
are periodically updated and shared with a central server for aggregation into a global model. In this view, the most 
important innovation for AFL-HD should be the adaptive change in aggregation and learning rates with respect to 
the variance in data distribution across the nodes. It is also imperative in tackling the inherent non-IID characteristic 
of the data so that the global model very well represents diversity in characteristics among the distributed datasets 
without demanding centralization of sensitive patient information sets. Afterwards, local model updates are 
aggregated using an adaptive weighted averaging process into a global model. Let wi(t) be the local model 
parameters of node i at iteration t, and let ni be the number of sets of data samples at node i. Using Equation 1, the 
model updates its parameters from W(t) to W(t+1) for the global model parameters at the next iteration, 

𝑊(𝑡 + 1) = ∑
𝑛𝑖

𝑁
⋅ 𝑤𝑖(𝑡) … (1)

𝑁

𝑖=1

 

This operation gives the guarantee that each node's contribution to the global model is weighted by the size of its 
samples in the local dataset. Now, in AFL-HD, this weighted summation is further dynamically adjusted for the 
heterogeneity of the data distributions. The adaptation will be done through a variance-based correction factor for 
each node, denoted as γi(t). It will be obtained from the gradient variance levels computed by the local model. The 
modified aggregation is represented via equation 2, 

𝑊(𝑡 + 1) = ∑
𝑛𝑖

𝑁
⋅ 𝛾𝑖(𝑡) ⋅ 𝑤𝑖(𝑡) … (2)

𝑁

𝑖=1

 

Where, γi(t) is computed via equation 3, 

𝛾𝑖(𝑡) =
1

1 + exp (−𝜎 ⋅ 𝑉𝑎𝑟(𝛻𝑤𝑖(𝑡)))
… (3) 

Where σ is the scaling parameter, this process controls the sensitivity of adaptation to Var (∇wi(t)). A large gradient 
variance would imply more heterogeneous data at the node, hence moderating the updates during the global 
aggregation process to reduce the potential risk of model divergence caused by the non-IID nature of data samples 
across nodes. The learning rate should also be adaptive in AFL-HD for the global model with stable and efficient 
convergence operations.  



Frontiers in Health Informatics 

ISSN-Online: 2676-7104 

www.healthinformaticsjournal.com 

 

2024; Vol 13: Issue 2 Open Access 

 

697 | P a g e  

 

Figure 1. Model Architecture of the Proposed Blockchain Deployment Process 

By making the learning process sensitive to the aggregated data distribution, Equation 4 updates the learning rate 
η(t) at the t-th iteration based on the integral of the cumulative gradient norm across all nodes. 

𝜂(𝑡 + 1) = 𝜂(𝑡) ⋅ 𝑒𝑥 𝑝 (−𝜆 ∫ ∥ ∑ 𝛻𝑤𝑖(𝜏)

𝑁

𝑖=1

∥ 𝑑𝜏
𝑡

0

) … (4) 

Here, λ will be the decay parameter that will control how fast the learning rate will decay as the global model 
converges. Integrating the cumulative gradient norm, it adjusts the learning rate regarding the progress of model 
training in its totality, ensuring that the global model shall neither converge early nor oscillate due to improper 
adjustments of the learning rate. The AFL-HD approach would be suitable for health-related problems in which data 
distribution spans across multiple institutions and inside, there can be several heterogeneity. Accordingly, because 
of the adaptiveness of AFL-HD, a global model will have to truly represent the ensemble dataset in spite of non-IID 
challenges of data samples. By solving the main problem of raw data centralization, AFL-HD not only helps in 
preserving sensitive healthcare information but also works for decentralized healthcare data environments as a 
robust and scalable solution. Moreover, AFL-HD justifies the choice made in the context of secure healthcare data 
management since this will complement the other methods, such as SHBE and DABE-HC, under the proposed 
protocol. While SHBE and DABE-HC are concerned mostly with problems of security and privacy related to data 
storage and access, AFL-HD deals with the challenge of scalable and accurate model training across distributed 
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nodes. Conjugated, all these techniques will be designed to deal with healthcare data over a cloud-based IoT 
environment that ensures the security, privacy, and scalability of the data itself and its inferred results. 

Next, according to Figure 2, secure homomorphic blockchain encryption for health analysis is embedded. This would 
be a strong, secure framework for doing computations on encrypted healthcare data residing in a Blockchain 
network. Here, this approach focuses on the unique challenges in health data for the preservation of privacy of 
patients and processing complex data analysis. This SHBE scheme allows direct computation on encrypted data 
without the need to decrypt it at any point in the computational process, which is more critical in healthcare where 
confidentiality of the data is paramount and unauthorized access could mean serious consequences. Homomorphic 
encryption, a cryptographic technique that permits implementation of specified kinds of computations on 
ciphertexts, is at the heart of SHBE. Specifically, it allows certain computations to be executed on ciphertexts in a 
way that an encrypted result, upon decryption, will give the same result as if the operations had been performed on 
the plaintext. In the context of SHBE, it means more specifically that healthcare data, whether patient records or 
genomic sequences, are first encrypted before storage on a blockchain. In such a setting, say, by a healthcare 
provider or by a researcher, a request triggers the direct execution of the operation on the ciphertext; afterwards, 
the resultant ciphertext is sent back to the user for decryption with their private key. No sensitive data is revealed 
during computation, and hence its confidentiality is maintained. SHBE first expresses the health data as a plaintext 
polynomial m(x) and then encrypts to obtain a ciphertext, c(x), involving a public key, pk, in the process. Now, 
considering any two ciphertexts, c1(x) and c2(x), which correspond to messages m1(x) and m2(x), respectively, for 
both addition and multiplication operations, a homomorphic encryption scheme is defined in such a way that 
conditions via equations 5 & 6, following holds, 

𝑐1(𝑥) + 𝑐2(𝑥) = 𝐸𝑛𝑐(𝑚1(𝑥) + 𝑚2(𝑥)) … (5) 

 𝑐1(𝑥) × 𝑐2(𝑥) = 𝐸𝑛𝑐(𝑚1(𝑥) × 𝑚2(𝑥)) … (6) 

These operations demonstrate the property that all additions and multiplications conducted on the ciphertexts 
translate directly to the corresponding operation on the plaintexts underlying these ciphertexts, except it does so 
in encrypted form. This is one of the core properties of SHBE that makes it applicable to perform genomic data 
analysis or disease risk assessment in a secure manner over encrypted data stored within the blockchain. Overall 
process of homomorphic computation over encrypted data in SHBE. Suppose some authorized user intends to 
compute some function, f(m(x)), over encrypted data, c(x) = Enc(m(x)), using this process. During these operations, 
the blockchain network performs the computation on the ciphertext itself to obtain the result as an encrypted 
message, c′(x) = Enc(f(m(x))) in the process. Critical innovation in SHBE lies in the process optimization with regard 
to healthcare-specific data structures, reducing computational overhead and latency usually associated with 
homomorphic encryption. Tailoring it to exploit the inherent sparsity and structured nature of healthcare data—on 
account of the repeated patterns found in genomic sequences, for example—enables more efficient computation. 
Mathematically, optimization in SHBE can be described by considering the integral representation of the encryption 
operation over a healthcare data domain D via equation 7, 

𝑐(𝑥) = 𝐸𝑛𝑐(∫ 𝐷𝑚(𝑡) 𝑑𝑡) … (7) 

This operation shows that, in essence, the encryption process integrates health data against a specified domain and 
captures its important features in the encrypted form. The integral representation is especially beneficial in the case 
of health data, which may follow a continuous or structured pattern and hence can be utilized to reduce 
computational complexity of the encryption and later homomorphic operations. In the last step of SHBE, the process 
decrypts the encrypted result c′(x). The authorized user decrypts the ciphertext by their private key, sk, and obtains 
the plaintext result, f(m(x)), via equation 8, 

𝑓(𝑚(𝑥)) = 𝐷𝑒𝑐(𝑐′(𝑥), 𝑠𝑘) … (8) 

This very equation makes sure that anything computed on the encrypted data will be shown in the decrypted result 
and thus gives the correct output to the user while keeping the confidentiality of the data intact throughout the 
process. The choice of SHBE in healthcare data management is justified by the fact that it can complement other 
techniques, like AFL-HD and DABE-HC, under the proposed protocol. While AFL-HD ensures scalable and accurate 
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model training across distributed nodes, DABE-HC manages dynamic access control policies; SHBE tackles the 
severe problem of secure computation on sensitive healthcare data samples. These methodologies present an all-
inclusive package to manage healthcare data for cloud-based IoT environments by ensuring the security, privacy, 
and scalability in real-time scenarios of the healthcare data and the insights derived from them. This is an 
application where the SHBE model will be most appropriate in settings, such as genomic data analysis or patient 
record queries, where health data confidentiality should remain very prime. In SHBE, computations can be made on 
encrypted data, thereby ensuring the concealment of sensitive information, which, even during the processing stage, 
is never revealed. This maintains patient privacy and therefore helps sustain strict data protection regulations. In 
SHBE, the computational overhead of homomorphic encryption is kept low by optimization of the process for 
healthcare-specific data structures, making it practical for real-time applications in healthcare settings. 

Next, it integrates a sophisticated scheme—Dynamic Attribute-Based Encryption for Healthcare—to ensure 
controlled and secure access to healthcare data within this blockchain-integrated environment. In this regard, this 
method uses Attribute-Based Encryption principles for enforcing access control policies based on user attributes, 
such as roles, departments, and clearance levels.  

 

Figure 2. Overall Flow of the Proposed Blockchain Deployment Process 
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Unlike in other conventional ABE schemes, DABE-HC introduces a dynamic component where it brings on board an 
automated update of the access control policies whenever there is a change either in user role or access rights on 
the blockchain. As roles and responsibilities keep changing in a health setting, this dynamic updating is important 
and calls for a flexible yet very secure access control mechanism. In DABE-HC, healthcare data is first encrypted 
under an ABE scheme, wherein the access structure A is embedded within the ciphertext. The access structure 
defines the set of attributes required to perform decryption. In the process for any set of user attributes S, 
decryption is possible when S satisfies A in the process. Mathematically, if 'C' represents the ciphertext and 'S' the 
set of user attributes, the decryption process is represented via equation 9, 

𝐷𝑒𝑐(𝐶, 𝑆) = {
𝑚, 𝑖𝑓 𝑆 ⊨ 𝐴

𝑛𝑢𝑙𝑙, 𝑖𝑓 𝑆 ⊨ 𝐴
 … (9) 

Where, m represents the plaintext healthcare data samples. This operation says explicitly that decryption in the 
above scheme is based on whether the user's attributes satisfy the embedded access structure, so, only an 
authorized user can retrieve the data samples. The dynamic aspect of DABE-HC comes due to the integration of 
smart contracts over blockchain. These smart contracts store access policies and monitor changes in user attributes. 
When the role of a user or his access rights change, the corresponding smart contract will trigger an update of the 
access structure A inside the encrypted data samples. Afterwards, the updated access structure A′ will be used to 
re-encrypt the data for maintaining the consistency between the encryption policy and the access control 
requirements of the current state. Equation 10 regulates this dynamic update mechanism, 

𝐴′ = 𝐴 ⊕ 𝛥(𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠) … (10) 

Where, Δ(Attributes) is a change in User's Attributes, and ⊕ represents an Update Operation on the Access 
Structure based on the change. This operation ensures refresh, with respect to any kind of modification in user 
attributes in real-time, the integrity and relevance of access control policies. The reason for selecting DABE-HC for 
the proposed healthcare data management scheme is that it can offer security together with flexibility in its access 
control. In healthcare environments, the roles of individuals frequently change due to new hires, promotion, or 
departmental shift; hence, access control mechanisms should be able to adapt as quickly as possible without 
compromising security. This is attained in DABE-HC through automation in updating policies on the blockchain, 
hence reducing the possibilities of unauthorized access and ensuring fine-grained access to sensitive healthcare 
data samples. In DABE-HC, the re-encryption process triggered by any update in the access structure is also very 
efficient and secure. Let C′ represent the re-encrypted ciphertext after an update in access structures. Equation 11 
expresses the relation of original ciphertext, C, and its re-encrypted ciphertext, C′, 

𝐶′ = 𝑅𝑒𝐸𝑛𝑐(𝐶, 𝐴, 𝐴′) … (11) 

This operation specifies the re-encryption function ReEnc that takes as input the original ciphertext C, the original 
access structure A, and an updated access structure A′ and produces a new ciphertext set C′. Having this function 
running will ensure that re-encrypted data stays safe, remaining only for users whose attributes are going to satisfy 
the updated access structure A′ sets. DABE-HC will be used to complement other techniques, such as Secure 
Homomorphic Blockchain Encryption and Adaptive Federated Learning for Healthcare Data, in the proposed 
protocol. On the other hand, SHBE considers secure computations on encrypted data, and AFL-HD considers the 
challenge of scalable model training across distributed nodes, while DABE-HC will ensure tight access control and 
dynamic updating of access to the encrypted healthcare data under changes in user roles. These schemes all put 
together in a general framework for the decentralized and secure management of healthcare information, where 
DABE-HC preserves the privacy levels of data and integrity levels for access. 

Finally, the CCFA-HC method is integrated, which is a groundbreaker in enabling secure and privacy-preserving 
data analysis across many blockchain networks. This approach thus fulfills one of the most important needs of 
healthcare in this fragmented landscape: collaborative analytics, in which data frequently exists in silos across 
different institutions, each of which has a blockchain network of its own. Traditional ways of sharing data are limited 
to the extent that transferring raw data from one entity to another brings in enormous privacy and security risks. 
CCFA-HC facilitates federated learning to resolve these challenges by generating aggregated insights from 
distributed sources of data without revealing the raw data and thus ensuring that sensitive healthcare information 
is not exposed at any stage during the analytical process. In CCFA-HC, every blockchain involved retains only a local 
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federated learning model trained using a subset of healthcare data samples. After that, these local models share 
encrypted updates to a central aggregator to combine the updates in the formation of a global analytical result. More 
importantly, there is no access to raw data or the individual model parameters by an aggregator; therefore, data 
privacy is guaranteed. The results are then aggregated and shared across the participating blockchains herewith; 
hence, all parties can leverage the collective analysis without compromising the privacy and security underlying the 
data samples. Each blockchain i at iteration t maintains a local model that drives the process of federated learning, 
represented by wi(t). The process involves each blockchain sending to the central aggregator, the encrypted model 
update, represented as ci(t) = Enc(wi(t)). Updates are then aggregated using a secure aggregation function F to a 
global model W(t+1), represented via equation 12, 

𝑊(𝑡 + 1) = 𝐹(𝑐1(𝑡), 𝑐2(𝑡), … , 𝑐𝑁(𝑡)) … (12) 

This ensures knowledge from these participating blockchains gets embedded in the global model W(t+1), which 
does not directly expose their individual data samples. Secure aggregation function F is designed to work on 
encrypted data samples. Using homomorphic encryption, the sum of the encrypted model updates underpins data 
privacy to ensure no raw data is ever exposed through aggregation. In the next step, CCFA-HC differentially 
privatizes an aggregated model at the central aggregator for better privacy protection. Differential privacy 
introduces controlled noise into the aggregated result so that contributions from any single blockchain cannot be 
inferred in the process. Mathematically, the differentially private aggregated result W~(t+1) is given via equation 
13, 

𝑊~(𝑡 + 1) = 𝑊(𝑡 + 1) + 𝑁(0, 𝜎2) … (13) 

Where, N(0,σ2) is Gaussian noise with a mean of zero and variance σ2 levels. The choice of the parameter value of 
σ2 shall ensure an effective global model while maintaining strong privacy regarding the inherent trade-off between 
model accuracy and privacy. In this way, the aggregated model W~(t+1) can ensure that inference attacks are 
avoided, thus keeping confidential individual blockchain contributions. The last step in the CCFA-HC process is to 
share the aggregated, differentially private model W~(t+1) among all the participating blockchain networks. 
Subsequently, every blockchain can utilize this global model in its healthcare-related tasks, from predicting diseases 
to analyzing the effectiveness of treatments. The whole process is designed to minimize the cross-chain 
communication overhead to the minimum possible while ensuring privacy and security for data protection. The 
interchain communication gives rise to message overhead O, which is expressed via equation 14, 

𝑂 = ∑ (𝐶(𝑐𝑖(𝑡)) + 𝐶(𝑊~(𝑡 + 1))) … (14)

𝑁

𝑖=1

 

In the equation above, C(⋅) is the communication cost, which contains the costs of transmitting both the encrypted 
model updates ci(t) and the aggregated model W~(t+1). Derived through optimization of the communication 
protocols and efficient encryption technique in use, CCFA-HC reduces 20% to 30% of the total communication 
overhead in comparison with other traditional cross-chain communication methods, hence practical for large-scale 
healthcare data analytics. The reasons for which the CCFA consortium à la CCFA-HC has mooted are its capabilities 
for enabling collaborative analytics over multiple blockchain networks without data privacy being compromised. 
To realize the various potential capacities of the different institutions regarding the massive amount of distributed 
data, a significant amount of CCFA-HC in the HealthCare domain would be required, a domain that involves exchange 
of information among the highest possible number of subscribers. CCFA-HC must integrate federated learning with 
cross-chain data analytics to complement the other methods involved in the proposed protocol, including Secure 
Homomorphic Blockchain Encryption and Dynamic Attribute-Based Encryption for Healthcare. While SHBE mainly 
focuses on secure computation over encrypted data and DABE-HC mainly handles dynamic access, CCFA results in 
secure aggregation of insights from distributed data sources and therefore ensures the secure and scalable health 
data management process. The CCFA-HC lays much emphasis on the development of healthcare data analytics. 
Precisely, the mathematical underpinnings of the CCFA-HC define a strong framework that enables privacy-
preserving palladium across multi-blockchains with secure aggregation, differential privacy, and the overhead of 
communication equations. CCFA-HC makes sure healthcare institutions can obtain insights in a fully secure cross-
chain collaborative environment from all distributed data without leaking sensitive information, so this component 
remains very important for the overall healthcare data management protocols. We next discuss the efficiency of the 
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proposed model with respect to different metrics and compare it with some existing models under different 
scenarios. 

RESULT ANALYSIS & COMPARISONS 

In this work, an integrated model has been developed that evaluates an Adaptive Federated Learning for Healthcare 
Data, a Secure Homomorphic Blockchain Encryption, a Dynamic Attribute-Based Encryption for Healthcare, and a 
ZKP with Proof of Healthcare Privacy (PoHP) consensus based cross-chain federated Analytics for Healthcare, all of 
which come with a finely detailed experimental setup aimed at simulating real-world healthcare data scenarios 
while ensuring rigorous testing of scalability, security, and privacy features. The experiments are conducted on a 
distributed cloud environment with a number of blockchain networks, simulating various health institutions like 
hospitals, research laboratories, and clinics. The used datasets in this work are real datasets that include electronic 
health records, medical imaging datasets, and genomic sequences. In this regard, such datasets are further 
fragmented into shares and distributed across a number of blockchain nodes to simulate the scenario of non-IID in 
healthcare data samples. For example, in this study, the EHR dataset used is of size about 20,000 patient records, 
which is a subset of MIMIC-III; features used include demographic information, diagnosis codes, and treatment 
history sets. Medical imaging data were derived from the NIH Chest X-ray dataset with over 100,000 images 
annotated, and genomic sequences from the 1000 Genomes Project. In the present research, these datasets have 
been encrypted using SHBE at 128-bit security and processed under the federated learning framework that ensures 
raw data never leaves the local nodes. The performance of the proposed model with regard to management and 
analysis of healthcare data samples has been evaluated in this study using the MIMIC III dataset. MIMIC-III is one of 
the richest, open-source datasets that houses de-identified health-related information corresponding to more than 
40,000 critical care patients admitted to Beth Israel Deaconess Medical Center from 2001 through 2012. It contains 
demographic data, vital signs, laboratory test results, medication, diagnosis, procedures, and clinical notes; hence, 
it is highly relevant for developing and testing machine learning models in healthcare. The diversity present in the 
data of MIMIC-III at structured and unstructured data types makes it an ideal source for thorough testing of the 
prowess of the proposed system in handling complex multi-modal healthcare data samples. For this paper, a subset 
of MIMIC-III was chosen, focusing on about 20,000 patient records containing demographic information, ICU stay 
details, and outcome variables. This subset emulates a real-world setting of distributed healthcare, which is very 
demanding in terms of data privacy, security, and scalability. In this way, the use of MIMIC-III ensures 
generalizability of the experimental results to a wide spectrum of clinical settings beyond being bound to only real-
world healthcare scenarios. 

These experiments were run to test the system under different conditions, which involve a change of user role, 
distribution of data, and computational demands. The choice of input parameters was made to be relevant in 
practice. In AFL-HD, the learning rate was dynamically adjusted with the initial setting being 0.01; the model 
aggregation frequency was 5 communication rounds, where each node sent updates upon the completion of 50 local 
epochs. Testing of the DABE-HC scheme was done based on access control policies with attributes like user role, for 
example, doctor and researcher, departments such as cardiology and oncology, and clearance level, for example, 
low, medium, and high. The policies are updated automatically every 30 minutes or in case of detection of a role 
change. Optimizations of the SHBE encryption process were done, and the measurement for sample encryption time 
is approximately 2.3 milliseconds per data point, while the decryption time was 2.1 milliseconds on average. In this 
paper, the capability of the CCFA-HC mechanism with respect to model update aggregation across different 
blockchain networks in a privacy-preserving manner is assessed. The differential privacy noise levels are set to be 
ϵ=0.9, with a target reduction of 25% on cross-chain communication overhead. It tests the analytical accuracy using 
disease prediction models with target accuracy levels running from 92% to 95%, ensuring that the communication 
overhead does not surpass the benchmark of a 30% reduction. Such parameters, together with the chosen datasets, 
will ensure that all aspects of the integrated system on its robustness, scalability, and security are thoroughly tested 
in order to obtain experimental results that would be representative and applicable to healthcare data management 
scenarios in the real world. The experimental results from the application of the proposed model were compared 
with three established methods, referenced as [4], [9] and [18]. Comparisons are drawn on different performance 
metrics related to accuracy, communication overhead, privacy guarantee, and computational efficiency. This is 
provided by Tables:, giving the different perspectives of the analysis applied to the contextual datasets derived from 
MIMIC-III and the NIH Chest X-ray dataset samples. 
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Table 2: Accuracy Comparison for Disease Prediction Models 

Method Chest Cancer Prediction 
Accuracy (%) 

Heart Disease Prediction 
Accuracy (%) 

Diabetes Prediction 
Accuracy (%) 

Proposed 94.7 93.2 95.1 

Method [4] 91.5 89.7 92.4 

Method [9] 92.3 90.5 93.0 

Method [18] 90.8 88.9 91.7 

Table 2 presents evidence on how accurate the proposed model was in predictions for three different diseases 
against other compared methods. On all cases of diseases to be predicted, the proposed model had an accuracy 
higher than the other methods by about 2 to 4 percentage points. The improvement can be attributed to the fact 
that the model had effectively dealt with non-IID data using AFL-HD, which optimized learning across distributed 
healthcare data samples. 

 

Figure 3. Accuracy Analysis 

Table 3: Communication Overhead Reduction 

Method Chest Cancer (%) Heart Disease (%) Diabetes (%) 

Proposed 32.4 30.8 33.1 

Method [4] 18.7 20.1 19.3 

Method [9] 21.3 22.5 23.0 
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Method [18] 16.5 17.9 18.4 

Table 3 compares the different methods in terms of reducing communication overhead by the proposed model. The 
proposed model's performance is the best in all cases, reducing communication overhead by at least 30%. This may 
be due to the CCFA-HC component where efficient aggregation and differential privacy reduce the amount of raw 
data to be exchanged between nodes. 

Table 4: Privacy Guarantee (Differential Privacy Levels) 

Method Chest Cancer (ε) Heart Disease (ε) Diabetes (ε) 

Proposed 0.8 0.9 0.7 

Method [4] 1.5 1.6 1.4 

Method [9] 1.2 1.3 1.1 

Method [18] 1.6 1.7 1.5 

Table 4: Differential Privacy Levels as a Guarantee for Models' Privacy. In this case, smaller values of ε will indicate 
the stronger level of privacy protection. "It integrates SHBE and differential privacy mechanisms to protect the 
sensitive healthcare data in the strongest manner, during processing and aggregation. 

 

Figure 4. Communication Overhead Reduction in the Process 

Table 5: Encryption/Decryption Time (milliseconds per data point) 

Method Chest Cancer Heart Disease Diabetes 

Proposed 2.3 2.1 2.4 
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Method [4] 4.8 4.5 4.7 

Method [9] 3.5 3.4 3.6 

Method [18] 5.1 5.2 5.0 

Table 5 compares the time for the proposed model against other methods in terms of encryption and decryption 
times. The proposed model significantly reduced the time of encryption/decryption to nearly half of what Methods 
[4] and [18] reported. The results proved the efficiency of the optimized SHBE component in dealing with health 
care data structures more efficiently. 

 

Figure 5. Encryption/Decryption Time (milliseconds per data point) In the Process 

Table 6: Policy Update Latency (seconds) 

Method Chest Cancer Heart Disease Diabetes 

Proposed 0.85 0.78 0.80 

Method [4] 1.45 1.40 1.48 

Method [9] 1.20 1.18 1.22 

Method [18] 1.55 1.60 1.58 

Table 6 presents latency in updating the access control policy in response to a change in user roles or attributes. 
The proposed model, compared to the rest, presents a much lower latency where sub-second updates are delivered 
for any dataset and samples. This is guaranteed by the DABE-HC component that allows fast and secure policy 
updates for real-time scenarios. 
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Table 7: Analytical Accuracy with Differential Privacy 

Method Chest Cancer Accuracy (%) Heart Disease Accuracy (%) Diabetes Accuracy (%) 

Proposed 93.5 92.7 94.3 

Method [4] 88.2 87.9 89.1 

Method [9] 89.7 88.8 90.5 

Method [18] 87.4 86.7 88.2 

Table 7 compares the analytical accuracy achieved with differential privacy introduced by all models. Not much of 
a difference is suffered by the proposed model, still high accuracy is maintained, hence proving that it does very 
well in balancing the trade-off between privacy and analytical performance. This shows without any equivocation 
that the architecture design of the proposed model—federated learning with secure encryption and differential 
privacy—ensures that accurate insights can be derived while maintaining patient data samples private. These 
results all demonstrate the supremacy of the proposed model on several important metrics in the management of 
healthcare data samples. AFL-HD, SHBE, DABE-HC, and CCFA-HC have been embedded into the model for better 
accuracy, enhanced privacy, reduced communication overhead, and faster processes of encryption and decryption 
in front of existing approaches. Evaluations clearly contrast the performance of the proposed model against 
established benchmarks in handling complex requirements that characterize modern healthcare data analytics. In 
the process, we will discuss an example use case for the proposed model, which will help the reader understand the 
whole process. 

PRACTICAL USE CASE SCENARIO ANALYSIS 

To illustrate the effectiveness and applicability of the proposed model, consider the following detailed example with 
sample values and characteristics of the data, which are typical for healthcare scenarios. The example will include 
AFL-HD—Adaptive Federated Learning for Healthcare Data, SHBE—Secure Homomorphic Blockchain Encryption 
for Healthcare, DABE-HC—Dynamic Attribute-Based Encryption for Healthcare, and CCFA-HC—ZKP with Proof of 
Healthcare Privacy (PoHP) consensus based cross-chain federated Analytics for Healthcare. In the process, each 
step is valued against certain input parameters and outputs, captured in the next set of tables. It will establish how 
well the model represents distributed healthcare data, securing sensitive information, managing dynamic access 
control, and eventually aggregating insights across blockchain networks. Suppose, in this example, healthcare data 
is spread over three hospitals, namely A, B, and C; patient data features include the following: Age, Blood Pressure, 
Cholesterol Levels, Diagnosis Code, Treatment Plan, Outcome. Models trained on each hospital's local data in a 
federated learning approach are aggregated to obtain a global model. This globally outlined model, post the 
encryption and differential privacy mechanisms, is analyzed for the prediction of disease and treatment 
effectiveness. 

Table 8: Adaptive Federated Learning for Healthcare Data (AFL-HD) Results 

Feature Hospital A Hospital B Hospital C Global Model 
(Aggregated) 

Age (Mean) 56.4 53.2 58.7 56.1 

Blood Pressure (Mean) 130.5 128.7 132.1 130.4 
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Cholesterol Levels (Mean) 210.3 195.8 220.4 208.8 

Diagnosis Accuracy (%) 92.4 91.2 93.1 92.2 

Communication Overhead Reduction 
(%) 

33.1 30.7 34.5 32.8 

Table 8 presents the results from the Adaptive Federated Learning process. There is a clear representation that the 
global model is an aggregation of local models trained using data from the three hospitals; that is, in the process of 
aggregation, diverse data distributions have been presented, reducing communication overhead. This table 
obviously shows how the federated learning process could adapt to different characteristics of the data by retaining 
high diagnostic accuracy using one consistent global model. 

Table 9: Secure Homomorphic Blockchain Encryption (SHBE) for Healthcare Results 

Feature Hospital 
A 

Hospital 
B 

Hospital C Global Model (Encrypted) 

Encryption Time (ms) 2.4 2.3 2.5 2.4 

Decryption Time (ms) 2.1 2.0 2.2 2.1 

Data Security Level (bits) 128 128 128 128 

Encrypted Diagnosis Accuracy (%) 91.9 90.7 92.6 91.7 

Table 9 presents the performance of the Secure Homomorphic Blockchain Encryption process. This measures the 
time for the encryption and decryption of each hospital's data, and the security level and diagnosis accuracy after 
encryption. The results confirm the efficiency of the encryption process with a very minimal effect on accuracy and 
that data is still very securely protected. 

Table 10: Dynamic Attribute-Based Encryption for Healthcare (DABE-HC) Results 

Attribute Hospital A Hospital B Hospital C Policy Update Latency 
(s) 

Role (Doctor, Researcher, Admin) Updated Updated Updated 0.82 

Department (Cardiology, Oncology, 
Neurology) 

Updated Updated Updated 0.78 

Clearance Level (Low, Medium, High) Updated Updated Updated 0.80 

Unauthorized Access Attempts 0 0 0 0 
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Table 10 shows the results of Dynamic Attribute-Based Encryption. The table updates the access control policies 
with respect to changes in user roles, departments, and clearance levels for the three hospitals. Policy update latency 
will be at a minimum, guaranteeing fine-grained access control even in real-time scenarios. None of the 
unauthorized access attempts succeeded, hence proving the strength of the system. 

Table 11: ZKP with Proof of Healthcare Privacy (PoHP) consensus based cross-chain federated Analytics for 
Healthcare (CCFA-HC) Results 

Feature Hospital A Hospital B Hospital C Aggregated Analytics 
Result 

Disease Prediction Accuracy (%) 93.5 92.8 94.1 93.4 

Differential Privacy Level (ε) 0.9 0.8 0.7 0.8 

Communication Overhead Reduction 
(%) 

25.4 23.7 26.1 25.1 

Table 11 reports the results of the ZKP with Proof of Healthcare Privacy (PoHP) consensus based cross-chain 
federated Analytics process, in which the aggregated results of analytics are obtained from encrypted data shared 
across the three hospitals. The accuracy of disease prediction remains at a high level, while differential privacy 
ensures that contributions from individual data are well-guarded. It can be seen that there is a huge reduction in 
communication overhead via the cross-chain aggregation process. 

Table 12: Final Outputs 

Output Metric Hospital A Hospital 
B 

Hospital C Global Output 

Final Disease Prediction Accuracy (%) 94.0 93.2 94.5 93.9 

Total Communication Overhead Reduction (%) 30.2 28.9 31.4 30.2 

Total Privacy Guarantee (ε) 0.85 0.80 0.75 0.80 

Encryption/Decryption Efficiency (ms) 2.3 2.1 2.4 2.3 

Table 12 aggregates all the final outputs from the whole process, drawing on the results from all the components: 
AFL-HD, SHBE, DABE-HC, and CCFA-HC. On a global level, these output metrics show that the proposed model is 
able to keep accuracy for disease prediction at a high level while reducing communication overheads and 
guaranteeing robust privacy. The efficiency in encryption and decryption further supports applicability in real 
healthcare scenarios where security and performance are critical. Such results, born from an extensive 
experimental setting, demonstrate the competence of the proposed model in dealing with complicated challenges 
in managing healthcare data in a distributed environment. In particular, this model combines cutting-edge federated 
learning, encryption, dynamic access control, and cross-chain analytics to construct a robust, scalable solution for 
secure and privacy-preserving healthcare data management process. 
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CONCLUSION & FUTURE SCOPES 

The authors of this paper provide results of research that demonstrate an integrated approach in the direction of 
secure, scalable, and privacy-preserving healthcare data management using advanced methods like Adaptive 
Federated Learning for Healthcare Data, Secure Homomorphic Blockchain Encryption, Dynamic Attribute-Based 
Encryption for Healthcare, and ZKP with Proof of Healthcare Privacy (PoHP) consensus based cross-chain federated 
Analytics for Healthcare. Results validate the supremacy of the proposed model on various metrics compared with 
prior methods. This model is able to achieve a mean global accuracy for disease prediction of 93.9%, improving by 
an average of 2-4 percentage points in comparison to the other methods. This is because AFL-HD can adapt itself on 
distributed healthcare data that is heterogeneous and non-IID. It also drastically reduced more than 30% across the 
board of the communication overhead on different datasets, thus proving the efficiency of the CCFA-HC component 
in reducing data transfer between nodes in a distributed setting. The security maintained the data at 128 bits by the 
SHBE method, and the encryption and decryption processes finished within an average time of 2.3 milliseconds per 
point. The DABE-HC mechanism was found to be very resilient for access control in real-time; this means that the 
update latency of policies always remained below one second to avoid any unauthorized access and therefore gives 
strict privacy standards for differential privacy levels in the range from ϵ=0.75 to ϵ=0.85. Therefore, these results 
allow demonstrating the practical applicability of the proposed model in real-world healthcare environments where 
the security, privacy, and efficiency of data handling are related to the very paramount issues. It is further factorial 
in the model, meeting and even exceeding the critical requirements of managing distributed healthcare data, hence 
providing an all-inclusive solution to challenges in healthcare institutions for this process. Federated learning, 
combined with advanced encryption techniques and fine-grained dynamic access control, protects sensitive health 
information while making it possible for analysis of data to achieve accuracy and be timely for different scenarios. 

FUTURE SCOPE 

These promising results from this research work open a host of avenues for future work. It would also be good to 
discuss how more advanced differential privacy techniques could be included in the future to further improve 
privacy guarantees on the model and for large-scale sharing of data between multiple jurisdictions with 
heterogeneous regulatory requirements. This could also be applied to future work on the use of the model for a 
broad scope of healthcare analytics tasks—predictive modeling for rare diseases and personalized medicine, for 
example. Other areas that would be important to investigate in this regard relate to the optimization of the CCFA-
HC component. This is with a view to reducing communication protocols, thereby introducing some overhead but 
adding latency to communications in large-scale deployments that involve several blockchain networks. This can 
be further researched through the integration of quantum-resistant encryption techniques into the SHBE 
component, which would set it up against vulnerabilities in post-quantum computing environments. Testing in a 
real-world setting, across different healthcare settings, including the collaboration of healthcare providers and 
institutions, would be very useful in gaining insights regarding performance and adaptability, perhaps leading to 
further refinements and enhancements, tailored to specific use cases. These are future directions in the further 
development of management solutions that are secure, scalable, and privacy-preserving for healthcare data, 
ensuring robustness and effectiveness against the continuously evolving technological and regulatory challenges. 
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