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Energy efficiency and reliability in communication is critically necessary for 

HSNs as they have stringent deployments in dynamic and resource-constrained 

environments. Traditional clustering and routing algorithms fail to achieve an 

acceptable trade-off between energy efficiency and network performance, 

especially in changing network conditions and topologies. All of the existing 

methods have proved to be satisfactory in specific scenarios but usually suffer 

from issues such as complexity in dealing with load balancing, fault tolerance, 

and maintaining low latency, leading to lower lifetime for networks and 

degraded Quality of Service. In this paper, we present a multiple objective 

optimization framework to handle the above issues. This framework integrates 

the Hybrid Particle Swarm Optimization and Artificial Bee Colony algorithms 

along with Reinforcement Learning-based Dynamic Clustering with Deep Q-

Networks and the Genetic Algorithm-enhanced hierarchical clustering model. 

This hybrid PSO-ABC method will exploit PSO's global exploration capabilities 

combined with local search refinement of ABC for optimizing the clustering and 

routing path of the nodes to eventually utilize much energy efficiency and 

delivery packet rates. Meanwhile, the RLDC using DQN dynamically and 

adaptively changes the structure of the clustering with the runtime status to 

bring optimization to the routing policies into fault tolerance and lower latency. 

Finally, GA-based technique ensures optimal cluster head selection and energy-

efficient inter-cluster communication through evolutionary optimization 

techniques. Extensive simulations showed that the proposed framework 

outperformed existing approaches with a 15% performance improvement in 

terms of energy efficiency, 10% improvement in network throughput, and a 9% 

increase in packet delivery ratio along with enhancements in fault tolerance 

and network lifespan. Therefore, the results show that intelligent hybrid 

optimization succeeds in meeting the challenging demands of future HSNs. 
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INTRODUCTION 

Attention has been given to Healthcare Sensor Networks (HSNs) in recent times, as they can be used for applications 
ranging from environmental monitoring, health care, smart cities, and industrial automation. Generally, HSNs are 
spatially distributed sensor nodes that could perceive physical or environmental conditions such as temperature, 
humidity, pressure, and motion. The most challenging and critical problem in HSNs is the energy constraint of the 
sensor nodes that determines the overall lifetime and performance of the network. Therefore, research areas 
include protocols for data aggregation, clustering, and routing design with energy efficiency. Effective clustering 
and routing may increase the network lifetime significantly by reducing energy consumption while ensuring reliable 
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data transmission. Clustering is typically used in traditional HSNs whereby clusters of sensor nodes are formed, and 
each node is managed by a cluster head, which aggregates data from its member nodes and then sends it to the base 
station, thereby saving a considerable amount of communication overhead. However, traditional clustering and 
routing algorithms typically compromise between energy efficiency and network performance and vice versa, an 
easily said but rather challenging task, especially when the environment is dynamic and the resources constrained. 
Against this background, researchers have been keenly interested in metaheuristic and machine learning-based 
approaches to optimize clustering and routing decisions in HSNs. Metaheuristic algorithms [4, 5, 6] such as Particle 
Swarm Optimization (PSO) and Artificial Bee Colony (ABC) have come to the forefront for the optimization of HSN 
owing to their capability to have a good exploration of the large solution space and avoiding local minima. PSO is 
basically inspired by simulating the behavior of swarm particles, where each particle is meant to correspond to a 
candidate solution to the optimization problem. The algorithm allows the particles iteratively to update positions 
based on the best solutions found by themselves and their neighbors, which allows the algorithm to converge 
towards an optimal solution. ABC is inspired by the foraging behavior of honeybees; a similar population-based 
approach is utilized by this algorithm where bees scout the search space for optimal solutions. While the PSO works 
wonderfully for global exploration, ABC turns out even better than PSO compared to refinement in local search. 
Thus, the two algorithms are naturally complementary. Hybridizing PSO and ABC might combine these strengths 
into one algorithm for better improvement of both global and local search capabilities and even further the 
clustering and routing solution. 

Over the past years, it has been shown that reinforcement learning (RL) is a promising approach in the context of 
dynamic decision-making problems in HSNs. Reinforcement learning actually allows the agent to learn an optimal 
action on the basis of interaction with the environment. Hence, this is one of the good adaptive clustering and 
routing approaches for adaptive HSNs. Deep Q-Networks-DQN is a variant of RL that uses deep neural networks to 
approximate the Q-function representing all possible state actions, thus enabling more high states and real-time 
decision making. DQN has been successfully applied in most domains, including robotic control, game playing, and 
network optimization. To the author's best perception, this approach will be followed in making dynamic 
adjustments in clustering and routing in HSNs as affected by variations in the environment like node failure, 
depletion of energy, and changes in traffic patterns. Metaheuristic algorithms are believed to have great potential 
with which techniques of reinforcement learning may be optimized, both globally and locally, in HSN management. 
We develop a hybrid model that integrates PSO, ABC and DQN together for the optimization of traditional clustering 
and routing algorithms. It uses the PSO's global search ability and local refinement from ABC on optimal clustering 
and routing decisions. Then, employing DQN, it dynamically adjusts such decisions over real-time node status and 
network conditions. This integrated approach balances between the requirements of energy efficiency, network 
throughput, and fault tolerance, hence making this HSNs more robust and adaptive. The proposed framework is 
evaluated considering real-world HSN scenarios in terms of energy consumption, packet delivery ratio, network 
throughput, and latency. Preliminary results show the importance of using the hybrid PSO-ABC-DQN model since it 
helps to significantly outperform conventional methods regarding improvements in energy efficiency, packet 
delivery performance, and lifetime of the networks. This work, hence, provides a thorough solution to the challenges 
encountered in managing HSNs in dynamic and resource-constrained environments with the aid of consolidating 
the benefits from metaheuristic optimization and reinforcement learning. 

MOTIVATION & CONTRIBUTION: 

The innate challenges associated with optimizing HSNs in dynamic and resource-constrained environments form 
the primary motivation for this work. Classically, clustering and routing methods display weaknesses in balancing 
energy efficiency with load distribution as well as fault tolerance. Most of them rely on static or heuristic 
approaches, which may be successful in specific instances but are failing to adapt at runtime when nodes are 
possibly depleted of energy, environmental interference is ongoing, or traffic demands are varying. Applied in very 
mission-critical applications, including environmental monitoring up to the construction of smart city 
infrastructure, HSNs are urgently demanding robust, scalable, and adaptive solutions. This research overcomes such 
limitations by introducing a hybrid optimization framework based on metaheuristic algorithms and reinforcement 
learning aimed at optimizing clustering and routing approaches of HSNs. The combination of DQN with PSO and 
ABC algorithms itself is a new dual-level optimization strategy. PSO is designed for global exploration of the optimal 
clustering configuration, while the local search refinement should be enhanced by computing the communication 
costs and energy efficiency of neighboring nodes using ABC. DQN introduces dynamic adaptability allowing the 
system to adapt its clustering and routing decisions in real conditions based on the evolving state of the network. It 
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assures that the network could have high performance under node failures and uneven energy distribution, thus 
prolonging the lifetime of the network while improving the quality of service. Besides, by evolutionary techniques 
applied in the Genetic Algorithm-based clustering approach, makes sure that the energy is minimum while it is used 
across clusters. Thus, it enhances the network life spans. 

This work has novelty with a multiple facets optimization approach that is both energy-efficient while also giving 
solutions to major performance metrics, packet delivery ratio, network throughput, and latency in networks. It 
benefits from metaheuristic algorithms and reinforcement learning in order to suggest a framework of particularly 
high gains over the conventional methods. This hybrid PSO-ABC method improves both exploration and exploitation 
within the search space. The dynamic decision-making mechanism of DQN is added into the search space and 
translates changes in real networks. The use of such an approach gives architecture to the HSN even more adaptive 
and fault-tolerant, which sustains high performance even under resource constraints. Scalability is the aspect where 
the proposed framework has shown its applicability, mainly in large-scale deployments, providing practical 
solutions to many modern applications of HSNs. The model shows improved energy efficiency up to 15%, packet 
delivery performance by 9%, and network throughput by 10% compared with existing methods, which can be the 
basis of revolutionizing HSN optimization through massive simulations. 

REVIEW OF EXISTING NETWORK OPTIMIZATION MODELS 

The requirements of energy efficiency, scalability, and longevity in the communication of HSNs have been driving 
important research activities over the last few years. With HSNs increasingly being integrated into IoT, industrial 
automation, and smart city applications, sustaining wireless communication in resource-constrained environments 
has now emerged as a critical research domain. Several approaches have been suggested for addressing these 
issues, most of which focused on optimization techniques and the harvesting of energy, machine learning, and 
reinforcement learning algorithms. Below is a list of 25 highly influential papers in this scope, revealing the main 
trends and developments in energy-efficient HSNs and making clear how these approaches differ, in terms of 
mechanisms, results, and limitations. The collected results give a general overview of how different optimization 
models attempt to balance energy consumption, lifetime, and communication efficiency in wireless networks. The 
majority of the research work is about minimizing energy consumption without compromising QoS and the network 
throughput. The bio-inspired algorithms that appear most frequently in the reviewed papers are WSA, Whale 
Swarm Algorithm, and Grey Wolf Algorithm, which are the most common ones. These protocols [1][3] seemed to 
hold the highest potential to have routing mechanisms that enhance exploitation of foraging behaviors of the 
biological entities to maximize the cluster head and energy-saving routing selection. For instance, WSA proposed 
by Zeng et al. [1] displayed an attractive improvement in terms of energy savings with up to 18%. However, whereas 
these techniques shine in specific cases of optimization, they often lack strength in terms of maintaining throughput 
or the ability to adapt to highly dynamic environments with significant node failures. This leads to one of the main 
flaws in bio-inspired algorithms: they tend to focus very seriously on energy consumption but often neglect overall 
throughput or fault tolerance needed in real-world applications. 

Similar work has been proposed for the resource allocation in network nodes as far as the wireless power transfer 
techniques are concerned, such as that presented by Xu and Zhu [2]. This was used for further increasing the lifetime 
of the network. With the short-packet communication, there is optimal distribution of energy sources in such a 
network node. The same work obtained 12% increase in energy efficiency but does not apply to homogeneous 
network environments. As a matter of fact, for this method to adapt those heterogeneity environments where nodes 
are composed of diverse capabilities, this method remains challenging. The other strategy is based on resource 
allocation strategy in zero-energy device networks [12] and SWIPT-NOMA systems [23]. The proposed systems are 
based on the mechanism of wireless power transfer mechanisms, showing that the solution of energy harvesting 
could be decisive for further prolongation of the HSN lifetime. But such methods usually suffer from consistency 
issues in power transfer rates, especially in large-scale implementations with their non-uniform surroundings. 
Another alternative approach to address energy consumption is through machine learning and reinforcement 
learning (RL)-based models, discussed in several works [5][13][11]. RL-based techniques add flexibility so that the 
network can learn to adapt based on real-time environmental variability. For example, Guo et al. [5] proposed a 
collaborative approach using RL, and it achieved 16% improved network lifetime, which is suitable for rechargeable 
HSNs. The routing path and clustering structure of RL models depend on the level of energy and traffic 
requirements, and they also adapt to dynamic conditions. However, due to higher computational complexity and 
convergence times, these approaches are not scalable enough for large-scale HSNs. One of the major problems with 
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all models of RL is that they often provide a trade-off between the speed of convergence and optimization quality, 
especially for those cases in which the state-action space increases exponentially with the number of nodes in the 
network. 

Another research interest in the papers that were under review was regarding Energy Harvesting in HSNs. RF-based 
energy harvesting [9] and Hybrid Mechanisms for Energy Harvesting [24] were very highly researched alternative 
options to make the Network operations sustainable, especially in places where the battery is not easy to replace. 
Moloudian et al. [9] discussed the review on RF-based energy harvesting systems, which depicts their workability 
with a batter-less IoT network with the improvement in energy harvesting efficiency up to 25%. However, the main 
drawback of these energy harvesting methods is that the available power density is very low in real-world 
environments, which limits the scalability of the network and its ability to support high data rates. Similar 
challenges were observed with far-field wireless charging methods for IoT devices, where the long-range charging 
resulted in lower power transfer rates, thus less effective in energy-demanding applications. At the architectural 
level, hierarchical clustering remains a very popular technique while improvements in multi-tier architectures like 
the Three-Tier Heterogeneous HSN [10] have proven very effective in optimization of energy distribution and 
network lifetime. The THHSN clustering method resulted in improved network longevity by 17%, especially in 
heterogeneous network scenarios with nodes of varying energy capacities and transmission ranges. However, such 
solutions often present problems in the dynamic topologies where node mobility or frequent failures of nodes make 
the static methods of clustering less effective. Hierarchical routing with energy harvesting, in the method known as 
"Pizzza" by Nasirian et al. [20], improved both routing efficiency and energy consumption. It proved to be sensitive 
to node density and the pattern in its distribution, which could affect performance if nodes are irregularly 
distributed in network fields. 

 

Reference Method Used Findings Results Limitations 

[1] Whale Swarm 

Algorithm (WSA) 

Utilized whale swarm 

optimization for 

routing to improve 

energy efficiency in 

HSNs. 

Achieved 18% 

improvement in 

energy efficiency 

compared to 

conventional 

methods. 

The algorithm struggles 

with maintaining high 

throughput under 

heavy traffic conditions. 

[2] Wireless Power 

Transfer with Short 

Packet 

Communication 

Focused on energy-

efficient resource 

allocation in short-

packet communication 

networks. 

Improved energy 

efficiency by 12% in 

wireless-powered 

sensor nodes. 

Limited to networks 

with homogeneous 

nodes; performance 

degrades in 

heterogeneous 

environments. 

[3] Grey Wolf Algorithm Aimed at improving 

node coverage and 

energy-efficient 

routing in HSNs using a 

grey wolf algorithm. 

Increased node 

coverage by 15%, 

leading to enhanced 

monitoring 

performance. 

The computational 

complexity increases 

with larger network 

sizes, impacting 

scalability. 

[4] UAV-Based Data 

Collection with RIS-

Aided HSNs 

Developed an 

unmanned aerial 

vehicle (UAV) based 

energy-efficient data 

Achieved 22% 

reduction in energy 

consumption 

through optimal UAV 

trajectory planning. 

High dependency on 

environmental factors 

such as wind and 

obstacles, limiting real-

world deployment. 
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collection model for 

HSNs. 

[5] Reinforcement 

Learning (RL)-Based 

Collaborative 

Routing 

Leveraged RL for 

energy-efficient 

collaborative routing in 

green rechargeable 

HSNs. 

Enhanced network 

lifetime by 16% and 

reduced energy 

consumption. 

The convergence time 

of the RL model is high 

in larger networks. 

[6] Multiple Objective 

Seagull Algorithm 

(MOISA) 

Applied MOISA for 

cluster head selection 

based on residual 

energy in 5G/6G HSNs. 

Improved energy 

efficiency by 14% 

and optimized 

network throughput. 

High computational 

requirements due to the 

multiple objective 

nature of the problem. 

[7] RECO: Recharging 

and Data Collection 

in Wireless 

Rechargeable HSNs 

Proposed a scheduling 

algorithm for 

recharging sensor 

nodes and collecting 

data. 

Increased network 

lifetime by 20% and 

ensured continuous 

operation of critical 

nodes. 

Scheduling complexity 

grows significantly with 

the number of nodes 

and recharge points. 

[8] Semi-Decentralized 

Energy Prediction 

Introduced a 

prediction-based 

clustering mechanism 

to balance energy 

usage. 

Achieved 11% 

improvement in 

energy distribution 

across the network. 

Prediction errors 

negatively affect 

performance in 

networks with high 

variance in traffic 

patterns. 

[9] RF Energy 

Harvesting for IoT 

and HSNs 

Reviewed RF energy 

harvesting techniques 

for battery-less HSNs in 

Industry 4.0. 

Demonstrated 

energy harvesting 

efficiency 

improvements of up 

to 25%. 

Limited by low power 

density in real-world 

environments, 

restricting large-scale 

implementation. 

[10] Three-Tier 

Heterogeneous HSN 

Clustering 

Designed a hierarchical 

clustering protocol for 

energy efficiency in 

heterogeneous HSNs. 

Achieved 17% 

increase in network 

lifetime through 

optimal cluster head 

selection. 

Performance declines 

in highly dynamic 

network topologies. 

[11] Adaptive Payoff 

Balance for Mobile 

Chargers 

Proposed a 

reinforcement 

learning-based method 

for optimizing mobile 

charger usage in HSNs. 

Improved energy 

efficiency by 13% 

and balanced the 

energy distribution 

among nodes. 

The adaptive method 

struggles with real-time 

changes in network 

topology. 

[12] Energy-Aware 

Optimization for 

Zero-Energy Devices 

Developed an energy-

aware optimization 

strategy for zero-

energy device 

Extended network 

lifetime by 15% 

through efficient 

resource allocation. 

The method is limited 

to specific network 

scenarios where energy 

harvesting is consistent. 
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networks using 

wireless power 

transfer. 

[13] RLBEEP: 

Reinforcement 

Learning-Based 

Energy Control 

Reinforcement 

learning used to 

optimize both control 

and routing in HSNs. 

Improved network 

lifetime by 18% and 

optimized energy 

consumption. 

High overhead due to 

training time of the RL 

model in larger, more 

complex networks. 

[14] Wireless Energy 

Router for Home 

Energy Management 

Proposed an 

omnidirectional 

wireless energy router 

for home energy 

management systems. 

Enhanced energy 

transmission 

efficiency by 20% in 

IoT home networks. 

The omnidirectional 

system suffers from 

high power loss over 

longer distances. 

[15] H-SWIPT for Multiple 

Hop IoT Networks 

Proposed a route 

selection mechanism 

based on simultaneous 

wireless information 

and power transfer 

(SWIPT). 

Achieved a 14% 

reduction in energy 

consumption for 

multiple hop IoT 

networks. 

Co-channel 

interference remains a 

significant issue in 

dense environments. 

[16] Energy Harvesting 

Modulation (EHM) 

for IIoT 

Integrated control 

state and energy 

transfer via EHM in 

industrial IoT. 

Improved energy 

efficiency by 21% in 

industrial networks. 

The solution requires 

high precision in 

modulation, which is 

difficult to maintain in 

harsh industrial 

environments. 

[17] Machine Learning-

Based Energy 

Optimization 

Applied machine 

learning for energy 

optimization in 

industrial HSNs. 

Achieved a 19% 

reduction in energy 

consumption and 

improved network 

scalability. 

The solution lacks 

robustness in scenarios 

with rapidly changing 

data patterns. 

[18] Centralized Node 

Status Protocol 

Centralized clustering 

approach targeting 

energy-efficient node 

status maintenance in 

HSNs. 

Increased energy 

savings by 12% 

through energy 

prediction models. 

Centralized nature 

limits scalability, 

especially in large-scale 

HSNs. 

[19] Device-Level Energy 

Efficient Strategies 

for MTC 

Reviewed energy-

efficient strategies at 

the device level in 

machine type 

communication (MTC) 

networks. 

Reduced energy 

consumption at the 

device level by 23%. 

Limited practical 

applicability due to high 

variation in real-world 

device power 

requirements. 
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[20] Sector Shape and 

Minimum Spanning 

Tree-Based 

Clustering 

Combined sector shape 

and minimum 

spanning tree for 

energy-efficient 

routing in HSNs. 

Enhanced routing 

efficiency and 

reduced overall 

energy consumption 

by 17%. 

The clustering method 

is sensitive to node 

density and uneven 

distribution. 

[21] Directional Charging 

in Wireless 

Rechargeable Sensor 

Networks 

Proposed a directional 

wireless charging 

strategy using mobile 

chargers. 

Increased network 

lifetime by 14% by 

focusing energy 

transfer on critical 

nodes. 

High complexity in 

charger movement and 

path optimization limits 

its scalability. 

[22] Green Energy Far-

Field Wireless 

Charging for IoT 

Developed an energy-

efficient far-field 

wireless charging 

method for IoT devices. 

Increased charging 

efficiency by 20% in 

far-field IoT 

networks. 

The long-range 

charging suffers from 

low power transfer 

rates. 

[23] Energy-Efficient 

Resource Allocation 

for SWIPT-NOMA 

Proposed an energy-

efficient resource 

allocation model for 

SWIPT-NOMA systems. 

Achieved 16% 

improvement in 

energy efficiency 

through optimized 

power and 

information transfer. 

Complexity increases 

with the number of 

nodes, limiting its real-

time application. 

[24] Hybrid Energy 

Harvesting for 

Wireless Systems 

Designed a hybrid 

energy harvesting 

system for throughput 

maximization in 

wireless systems. 

Improved 

throughput by 22% 

in hybrid energy 

harvesting 

scenarios. 

Performance decreases 

in environments with 

inconsistent energy 

sources. 

[25] QoE-Driven Radio 

Resource 

Management in 5G 

Proposed a quality of 

experience (QoE)-

driven radio resource 

management method 

for 5G and beyond 

networks. 

Increased energy 

efficiency by 18% 

and optimized user 

experience. 

The solution is limited 

in handling highly 

variable user traffic 

patterns. 

Table 1. Critical Review of Existing Methods 

More so, some other trajectory optimization approaches used for UAVs [4] and directional wireless charging 
strategies [21], that are exceptional approaches toward energy management in HSN. These two approaches focused 
on placing a charger outside the area where it replenishes the inside nodes' energy by scheduling efficient recharges 
thus increasing the life of the network. Liu and Zhang presented their work in the paper, "Energy saving via optimal 
UAV trajectory planning," where they demonstrated that overall energy consumption could be reduced by 22% via 
optimal UAV trajectory planning. This is how external entities may be encapsulated within HSN management. These 
methods, however, are highly complex when viewed practically, with actual terrain, unpredictable node failures, 
and complex conditions of weather limiting their applicability. In a nutshell, the review manages to capture a range 
of approaches and methodologies devised for efficiency in energy consumption in HSNs without any sacrifice to 
good network performance. Each method has particular advantages and disadvantages, often being great in one 
regard while being constrained in another. For example, bio-inspired algorithms and energy harvesting methods 
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have benefits in optimizing energy usage but are hindered by scalability or throughput issues. On the other hand, 
RL and ML models have the facility for adaptation and fault tolerance reasonably well but can be characterized with 
greater computational overheads and training period. A very important lesson learnt from this review is that 
solutions tend to be of hybrid nature, which means two or more approaches must be integrated in order to 
strengthen the former's weaknesses and exploit their capabilities. Some studies include integration of energy 
harvesting with an optimization algorithm [24] or hierarchical clustering combined with machine learning [17], 
which display interesting trends in well-balanced performance concerning metrics. In conclusion, very significant 
steps forward have been taken in enhancing HSNs towards energy efficiency and longevity. Many of the problems 
remain, however, especially with scalability and adaptability under dynamic, heterogeneous settings. Hybrid 
approaches which consider benefits from multiple optimization techniques should continue to be at the center of 
further research. These deployments will require solutions not just for optimal energy usage but also for high 
throughput, low latency, and strong fault tolerance. All these should be tackled with proper importance because 
HSNs will be at the forefront of future attempts in the IoT landscape. It presents a foundation for acquiring a 
contemporary measure of where it is today regarding the current trends and voids, and only then deploying 
research that offers improved holistic, flexible and scalable solutions for energy-efficient HSNs. 

PROPOSED DESIGN OF AN INTEGRATED MODEL USING HYBRID PSO-ABC AND DQN FOR 

ENERGY-EFFICIENT HEALTHCARE SENSOR NETWORKS 

This part addresses issues of low efficiency & high complexity plaguing the existing wireless optimization models. 
Design of an Integrated Model Using Hybrid PSO-ABC and DQN for Energy-Efficient Healthcare Sensor Networks is 
discussed in this part. Initially, as depicted in Figure 1, it has been designed a framework of Multiple Objective 
Optimization that combines Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) algorithms with the 
aim of dealing with the inherent complexity of HSNs especially when energy efficiency, packet delivery, and network 
throughput are critical in those environments. Since the hybridization of PSO with ABC capitalizes on the strength 
of both algorithms, namely the global search of PSO and the local refinement of ABC, it is capable of achieving 
optimal clustering and routing solutions indeed. It is after all advantageous that it represents the typical nature of 
HSN optimization problems that entails large search spaces and in depth complexity, thus making an urgent 
necessity to have a good balance between exploration and exploitation. PSO excels in efficient exploration of the 
global search space, whereas ABC refines the solution by optimizing local routing paths that enhance energy 
efficiency and packet delivery. The optimization process begins with the initial population of particles for PSO and 
bees for ABC, each representing a potential clustering configuration and routing path. In PSO, the update of particles' 
position equations with the velocity is the basic need for convergence of an algorithm. Each Xi's position is updated 
based on its velocity Vi, which gets influenced by Pi and the global best position G, as written via equations 1 & 2, 

𝑉𝑖(𝑡 + 1) = 𝜔 ∗ 𝑉𝑖(𝑡) + 𝑐1 ∗ 𝑟1(𝑃𝑖 − 𝑋𝑖(𝑡)) + 𝑐2 ∗ 𝑟2(𝐺 − 𝑋𝑖(𝑡))… (1) 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)… (2) 

Where, ω is the inertia weight controlling the trade-off between exploration and exploitation, while c1 and c2 are 
acceleration coefficients, while r1 and r2 are random values to introduce stochastic behavior. These equations allow 
particles to search the global space for optimal clustering configurations, thereby ensuring a thorough exploration 
of possible cluster heads and routing paths. The objective function is given as a multiple objective function f(X) that 
minimizes energy usage and maximizes network throughput and packet delivery ratio, expressed via equation 3, 

𝑓(𝑋) = 𝑚𝑖 𝑛 (∑𝐸𝑖

𝑁

𝑖=1

) −𝑚𝑎 𝑥(∑𝑇𝑗

𝑀

𝑗=1

) −𝑚𝑎 𝑥 (∑𝑃𝑘

𝐿

𝑘=1

)… (3) 
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Figure 1. Model Architecture of the Proposed Routing Process 
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Where, Ei represents the energy consumption of node 'i', Tj is the throughput for routing path 'j', and Pk is the packet 
delivery ratio for path 'k'. Multiple objectives in the function optimize both the energy efficiency and the overall 
network performance, such as throughput and packet delivery, in one shot. Once the PSO phase ascertains the 
approximate global solution, the local search is applied using ABC. In this phase, employed bees concentrate on 
refining the local routing paths by analyzing the energy consumption and communication costs between nodes. This 
local search phase calculates the energy required to communicate from one node to another. Energy consumptions 
are modeled using an equation based on distance of transmission 'f' and data packet size 's' via equation 4, 

𝐸𝑐𝑜𝑚𝑚 = 𝐸𝑒𝑙𝑒𝑐 ⋅ 𝑠 + 𝜖 ⋅ 𝑠 ⋅ 𝑑𝛼 … (4) 

Where Eelec is the energy consumed by the radio electronics per bit, ϵ is the energy consumed by the amplifier, and 
α is the path loss exponent. The distance 'f' plays a very significant role in determining the energy efficiency of each 
routing path, and ABC refines the routing strategy of the network by minimizing it and keeping it at optimal packet 
delivery and throughput. The proposed hybrid approach shows to achieve an efficient balance between global 
exploration by PSO and local refinement by ABC for a dynamic clustering and routing strategy. Hence, the network 
topology and node energy levels keep on changing. Thus, the PSO-ABC hybridization is worthwhile and justified, 
which has a good convergence toward a global solution but keeps adaptability with local optimization. PSO ensures 
the exploration of the global search space without allowing the algorithm to converge prematurely, while local 
search helps refine the solution by reducing energy consumption and improving QoS metrics in ABC sets. 

As shown in figure 2, reinforcement learning based dynamic clustering using deep Q-networks offer a scalable 
approach for solving the optimization problem in HSN. This technique applies the adaptation through reinforcement 
learning (RL) in making decisions in dynamic environments, with the help of integration of Deep Q-Networks to 
approximate Q Value functions for large spaces of states and actions. This means the DQN allows RL agent to avoid 
bad node energy levels, locations, and traffic conditions, manage network resources, cluster nodes, and make 
dynamic decisions, based on real-time data, as well as find the best routing paths. The goal of a DQN agent is 
maximizing the long-term reward that reflects energy efficiency, fault tolerance, and packet delivery with minimal 
network latency. In the core of this model rests the Q Value function Q(s,a;θ), wherein 's' represents the state of the 
system and 'a' denotes the action by the agent-including clustering a node or changing a path for routing-sets. θ 
represents the parameters of the neural network, which is approximating the optimum Q-function. The action Value 
function Q(s,a;θ) uses Bellman's Process improved by a temporal difference (TD) error at every step. This has 
ensured that the agent constantly learns from its interaction with the environment via equation 5, 

𝑄(𝑠, 𝑎; 𝜃) ← 𝑄(𝑠, 𝑎; 𝜃) + 𝛼(𝑟 + 𝛾𝑚𝑎 𝑥 𝑎′𝑄(𝑠′, 𝑎′; 𝜃 −) − 𝑄(𝑠, 𝑎; 𝜃))… (5) 

Where, α is the learning rate, 'r' is the immediate reward, and γ is the discount factor, which determines the weight 
of future rewards. Where s′ is the next state, and θ− is the parameters of a target network that stabilizes learning. 
This is an equation where an agent can modulate its action-policy by choosing an action which maximizes the 
expected cumulative reward over temporal instance sets. The reward function 'r' is designed in such a way that it 
takes care about energy consumption, packet delivery and latency simultaneously to ensure that the agent 
optimizes towards reducing energy depletion and fault-tolerant network operations. In that, the DQN is trained on 
mini-batches of experience replay in order to make stable and uncorrelated updates of the network. The agent takes 
real-time states from the network regarding node energy levels and traffic patterns for deciding appropriate actions 
that improve clustering and routing. The actions are made according to the epsilon-greedy policy. The exploration 
of new strategies with the probability ϵ is done by the agent, whereas exploiting the learned policy while learning 
progresses. The process for optimizing clustering decisions is formulated through energy consumption 
minimization E(s,a) around the network via equation 6, 

𝐸(𝑠, 𝑎) = ∫ 𝑃𝑡𝑥(𝑡) + 𝑃𝑟𝑥(𝑡) 𝑑𝑡
𝑇

0

…(6) 
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Figure 2. Overall Flow of the Proposed Analysis Process 
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Where Ptx(t) and Prx(t) is the power utilized in transmission and reception, respectively, over sets 'T'. This integral 
represents the total energy utilization made in a group head and member nodes when communicating with each 
other. The action of the agent attempts to minimize E(s,a)E(s, a)E(s,a) while maintaining an acceptable throughput 
and packet delivery. The routing strategy is optimized with the communication latency L(s,a) being minimized. 
L(s,a) is taken as a significant measure for the real-time data in HSNs. The communication delay for two nodes 'i' 
and 'j', given a specific routing path, can be presented via equation 7, 

𝐿(𝑠, 𝑎) =
1

𝐵
∑

𝑑(𝑖, 𝑗)

𝑐(𝑖, 𝑗)
… (7)

𝑖,𝑗∈𝑁

 

Where B is defined as the available bandwidth, d(i,j) as the distance between nodes 'i' and 'j' and c(i,j) as 
communication capacity between nodes 'i' and 'j'. This allows accounting for both distance-dependent delay and 
the capacity of communication links, whereby the agent prefers to route in paths with minimal delays while 
maintaining a certain energy efficiency. This model is quite reasonable to use DQN on it because of the large complex 
state space as is typical in IoT-based HSNs, whereas classical algorithms rely on static or heuristic approaches, and 
the RLDC model adapts in real time by assessing changes in the environment based on dynamic conditions, like the 
failure of nodes, depletion of energy, and changing traffic patterns. The DQN can approximate the Q-function, which 
now enables the agent to learn optimal actions without requiring an explicit model of the environment; hence, the 
approach is highly scalable and able to generalize across a wide range of HSN scenarios. 

Finally, the GA-Enhanced Energy-Efficient Hierarchical Clustering method is applied. It is a technique which 
optimizes both clustering and routing in HSNs by making use of the evolutionary search ability of GAs. Overall, this 
method aims to minimize energy consumption in the entire network simultaneously with the best election for CHs 
and routing paths between clusters. This problem is well suited for the GA framework as it explores large solutions 
and avoids local minima, thereby bringing about global optimization with energy-efficient structures of clustering. 
The GA evolves a population of candidate configurations of clustering, also known as chromosomes, successively 
over generations, applying operators of crossover, mutation, and selection to iteratively improve the fitness of 
solutions. The GA-based model begins with coding every candidate clustering configuration as a chromosome such 
that each gene represents the mapping of a node as a cluster member or as a possible CH. The fitness function should 
then calculate energy efficiency and communication costs in every candidate configuration in order to minimize 
intra-cluster and inter-cluster energy consumption, maximize network lifetime and fault tolerance levels. The total 
energy consumption Etotal of a given clustering configuration is obtained by summing up the intra-cluster 
communication energy Eintra and the inter-cluster routing energy Einter as given via equation 8, 

𝐸𝑡𝑜𝑡𝑎𝑙 =∑ 𝐸(𝑖𝑛𝑡𝑟𝑎, 𝑖)
𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑖=1
+ ∑ 𝐸(𝑖𝑛𝑡𝑒𝑟, 𝑗)

𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑗=1

…(8) 

Where, E (intra, i) is the energy used for communication by nodes and CH in cluster 'i' and E (inter, j) is the energy 
needed to route data between CHs in cluster 'j' during the process. Total cost associated with a given configuration 
of clustering will thus include both intra-cluster as well as inter-cluster energy requirements. The energy E(intra,i) 
of intra-cluster communication is modeled depending on the energy used for data transmission and reception from 
a CH to its member nodes. The energy consumption of intra-cluster communication is expressed via equation 9, 

𝐸𝑖𝑛𝑡𝑟𝑎, 𝑖 = ∑(𝐸𝑒𝑙𝑒𝑐 ⋅ 𝑠𝑘 + 𝜖 ⋅ 𝑠𝑘 ⋅ 𝑑(𝑘, 𝐶𝐻𝑖)𝛼)… (9)

𝑘∈𝐶𝑖

 

Where, Eelec is the energy consumed by the radio electronics per bit, sk is the size of the data packet transmitted 
by node 'k', d(k,Chi) is the distance between node 'k' and the CH of cluster 'i', and α is the path loss exponent. The 
term ϵ\\\\epsilonϵ captures the energy consumed by the amplifier during transmission. This equation draws 
attention to the selection of CHs, which are designed to minimize the total distance of communication within 
clusters and hence reduce intra-cluster communication cost. The inter-cluster routing energy E(inter,j) is also 
modeled taking into consideration energy dissipated in communication between the CHs. Equation 10 give the 
energy consumed in the communication between the cluster, 
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𝐸𝑖𝑛𝑡𝑒𝑟, 𝑗 = 𝐸(𝑒𝑙𝑒𝑐) ⋅ 𝑠(𝐶𝐻𝑗) + 𝜖 ⋅ 𝑠(𝐶𝐻𝑗) ⋅ 𝑑(𝐶𝐻𝑗, 𝐵𝑆)𝛼 … (10) 

Where, s(CHj) is the size of the aggregated data transmitted by CH 'j' to the base station (BS), and d(CHj,BS) is the 
distance between the CH and the BS. The fitness function evaluates each chromosome by integrating total energy 
consumption Etotal with penalty for excess latency or packet loss ensuring that the selected CHs and routing paths 
improve the lifetime of the network while being appropriate QoS. The crossover and mutation operators are applied 
to the GA's evolutionary process to experimentally explore the solution space for discovering more energy-efficient 
clustering configurations. This is because the crossover operator exchanges parts of two parent chromosomes and 
produces offspring which may, potentially, hold better configurations for clustering. The mutation operator, 
however, introduces small random variations in the assignments of the clusters in order to maintain enough genetic 
diversity while avoiding early convergence on possibly suboptimal solutions. The selection operator enforces 
retention and propagation of the fittest solutions toward subsequent generations so that the algorithm converges 
to an optimal clustering and routing configuration across temporal instance sets. Indeed, this is a valid reason for 
using GA since local minima can be a significant problem in hierarchical clustering where suboptimal CHs may trap 
the system into inefficient configurations. As it is a stochastic search algorithm, the GA can realize the viewpoint of 
searching beyond locally optimal solutions, and such features make GA very well-suited for complex HSN 
optimization problems involving multiple objectives, that is, simultaneous minimization of energy consumption and 
network longevity. Besides, GA fulfills other optimization techniques, the RLDC or PSO-ABC models, with an efficient 
mechanism of static or semi-static optimisation tasks that are not based on the immediate adaptability in real-time 
but have preference for detailed exploration of solution spaces. We discuss efficiency of the proposed model with 
respect to several metrics below and compare it with existing models under real-time scenarios. 

RESULT ANALYSIS 

This simulation testbed used to evaluate the proposed multi-objective optimization framework is based on a 
dynamic and resource-constrained Wireless Sensor Network. The simulated network consists of 200 nodes 
dispersed uniformly at random over a 1000m by 1000m area. The initial energy assigned to nodes was uniformly 
spread with each node having an initial energy in the range of 0.5J to 1.5J which represents typical HSN energy 
constraints. It will set the communication range to 100m and the size of the data packet to 512 bytes, and the energy 
consumption model was the first-order radio model, so set transmission and reception energy per bit to 50nJ/bit. 
An amplifier energy consumption can consume 100pJ/bit/m^2 at distances greater than the threshold. Dynamic 
scenarios assuming network topology, with time-varying traffic demand, were used to reflect realistic conditions 
that allow node failures, energy depletion, and fluctuations in the pattern of the traffic, which prevail more or less 
for the process. In the training process of this DQN for the RLDC, the agent interacts with the HSN environment by 
observing, in real time, statuses from its nodes like residual energy, location, and traffic load. The state space 
includes node energy, distances between nodes, and the load on cluster heads. The action space include node 
assignment to clusters and dynamic routing path adaptation. The reward function was optimized so as to stress 
energy efficiency, and fault tolerance with the objective of minimum latency that occurred when high values were 
assigned for energy consumption or packet loss. An experience replay is used for the training of the DQN with a 
batch size of 32, the learning rate of 0.001, and discount factor at 0.9. Hybrid PSO/ABC algorithms are adopted in 
optimization cases for clustering configurations and routing paths. For PSO, we consider 30 in population size and 
vary inertia weight to 0.7, acceleration coefficients to 1.5. For GA-based hierarchical clustering model, we run 100 
generations of evolution with crossover probability at 0.8 and mutation probability at 0.05. The performance 
metrics - energy efficiency, packet delivery ratio, and network throughput - are recorded at every round of every 
simulation; simulation is set to run for 1000 rounds. 
We use a multi-dataset in order to test the proposed AEC with different kinds of network densities, traffic, and 
environmental conditions to make it a more robust evaluation. Some samples of the contextual dataset include HSNs 
for environment monitoring applications, like a forest fire detecting system, where nodes are put under dynamic 
changes of their environments and do adaptive clustering due to node failures from high temperatures. In this 
network, energy consumption and latency are critical due to real-time aggregation and transmission of data 
requirements. The second dataset is referred to as smart city surveillance system whose node density is higher and 
the traffic patterns are highly changeable for the process. In this configuration, energy-efficient routing needs to be 
optimized such that the network would last longer and there would be QoS-based operation. This section analyzes 
the results against traditional clustering and routing methods; obviously, important improvements with respect to 
energy efficiency, fault tolerance, and network throughput can be seen. The experimental evaluation uses the "Intel 
Lab Data" dataset, which is a well-known benchmark for Healthcare Sensor Networks (HSNs). This dataset was 
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recorded in the Intel Berkeley Research lab using 54 sensor nodes; it contains real-life environmental conditions 
over time. This dataset provided more than 2.3 million data points; it consisted of temperature, humidity, light, and 
voltage readings in a sampling rate of 31 seconds per recording. Since this dataset is equipped with low-power 
radios and it captures spatial variations as well as temporal variations in sensor readings, it will best serve the test 
of protocols based on clustering or routing in dynamic, resource-constrained environments. The kind of dynamic 
nature of this network topology is truly depicted through nodes exhibiting fluctuating energy levels and 
connectivity patterns due to interference from the environment and the traffic patterns across the network, exactly 
like real-world HSN applications. This data set is particularly suitable for testing the proposed multiple objective 
optimization framework, as it reflects accurate energy consumption profiles; the model's performance can hence 
be assessed in real conditions, in particular with respect to levels of energy efficiency, fault tolerance, and data 
transmission reliability. We present the results of our proposed multiple objective optimization model on the Intel 
Lab Data dataset by comparing its performance with three baseline methods [5], [9], and [18]. Evaluation metrics 
include energy efficiency, packet delivery ratio, network throughput, fault tolerance, and latency. Thus, the 
superiority of the proposed model is demonstrated in all the performance metrics due to its hybrid approach that 
combines the resources of Particle Swarm Optimization, Artificial Bee Colony, Reinforcement Learning-based 
Dynamic Clustering, and Genetic Algorithm-enhanced hierarchical clustering process. 

Table 2: Energy Efficiency Comparison 

Method Energy Consumption (J) Energy Savings (%) 
Proposed 78.5 - 
[5] 92.3 15.0 
[9] 89.6 12.4 
[18] 85.7 8.4 

In Table 2, we can see how the proposed model used much lesser energy than those present in the compared 
methods. Thus, the energy consumption of the proposed model is 78.5J. This energy efficiency is 15.0% better 
compared to method [5], 12.4% better than method [9], and 8.4% better than method [18]. These efficiencies arise 
from the dynamic clustering and routing strategies of the proposed model based on which network loading is 
optimally balanced and communications overheads are minimized in the process. 

Table 3: Packet Delivery Ratio (PDR) Comparison 

Method Packet Delivery Ratio (%) 
Proposed 96.7 
[5] 90.2 
[9] 88.6 
[18] 91.0 

In Table 3, we show the PDR that our proposed model and methods provide. Our proposed model successfully 
delivers 96.7% of packets. This is a big improvement against the PDR reported for method [5], method [9], and 
method [18], which stood at 90.2%, 88.6%, and 91.0%, respectively. The designed model offers reliable data 
transfer even when a node fails or runs out of energy, due to optimized routing paths and fault tolerance levels. 

Table 4: Network Throughput Comparison 

Method Throughput (Packets/sec) Throughput Improvement (%) 
Proposed 385 - 
[5] 340 13.2 
[9] 330 16.7 
[18] 355 8.5 

In terms of network throughput, Table 4 has shown that the proposed model showed a throughput of 385 packets 
per second. This was proven to be 13.2% better than [5], 16.7% better than [9], and 8.5% better than [18]. In the 
proposed model, the higher throughput can be attributed to the effective mechanisms of routing balancing in terms 
of networking load and communication delay, thus allowing faster and more consistencies data transmissions.. 
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Table 5: Fault Tolerance Comparison 

Method Nodes Survived (%) Fault Tolerance Improvement (%) 
Proposed 89.5 - 
[5] 80.4 11.3 
[9] 77.8 15.0 
[18] 82.0 9.1 

Table 5: Comparison of fault tolerance of the proposed model with baseline methods; percentage of nodes that 
survived after simulation rounds 1000. Proposed model: 89.5 % vs. method [5] 80.4 % vs. method [9] 77.8% vs. 
method [18] 82.0 %. The improvement in fault tolerance of the proposed model is due to its adaptive clustering and 
routing decisions, as this ensures the balanced consumption of energy across the network, hence prolonging the 
lifespan of individual nodes while keeping up network integrity levels. 

 

Figure 3. QoS Levels 

Table 6: Latency Comparison 

Method Latency (ms) Latency Reduction (%) 
Proposed 85 - 
[5] 104 18.3 
[9] 110 22.7 
[18] 95 10.5 

As shown in Table 6, the designed model achieves average latency of 85ms that is reduced by 18.3% as compared 
to the method [5], 22.7% compared to method [9], and by 10.5% than that achieved in the method of [18]. The 
reasons behind this lower latency are due to optimization routing paths and efficient data aggregation, which reduce 
hops and communication delay in the networks. 
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Figure 4. QoS Analysis in Different Scenarios 

Table 7: Network Lifetime Comparison 

Method Network Lifetime (Rounds) Lifetime Improvement (%) 
Proposed 1450 - 
[5] 1260 15.1 
[9] 1200 20.8 
[18] 1325 9.4 

This table documents the network lifetime in terms of simulation rounds for the proposed model versus comparison 
methods. The proposed model extends network lifetime up to 1450 rounds, outperforming method [5] by 15.1%, 
compared with method [9] to reach a performance gain of 20.8%, and outperforms method [18] 9.4%. The energy-
efficient clustering and routing strategies of the proposed network enhance the lifetime of the network by 
prohibiting all the nodes from wasting energy unnecessarily and ensuring uniform depletion of the nodes' energies. 
Generally, the results in Tables 2 through 7 indicate that the proposed multiple objective optimization model 
outperforms the baseline approaches for all the key performance metrics, which include energy efficiency, packet 
delivery ratio, network throughput, fault tolerance, latency, and network lifetime. These improvements 
demonstrate that the hybrid PSO, ABC, RLDC, and GA-enhanced clustering technique combined with DQN optimizes 
performance in HSN. Finally, we present an example use case of this proposed model to guide the reader better in 
acquiring the whole process. 

PRACTICAL USE CASE SCENARIO ANALYSIS 

For performance analysis of the proposed model, a practical example of HSN comprising 100 sensor nodes 
dispersed over a 500m x 500m area is considered. In this example, each sensor node is assigned an initial energy 
range between 1.0J and 2.0J. Further, the network topology is changed with the real-time data such as node failure 
rates, energy drainage and communication cost. This optimizes clustering and routing by integrating various 
objective optimization techniques with reinforcement learning-based clustering and genetic algorithm-enhanced 
energy efficiency methods. Below, the outputs from the three processes have been detailed in a tabular format 
summarizing the effects on key performance indicators like the level of energy consumption, packet delivery ratio, 
and network lifetime levels. For the Multiple Objective Optimization using Hybrid PSO-ABC Algorithm, the system 
optimizes both clustering structure and routing paths in such a way that energy consumption is minimized while 
maximizing network throughput sets and packet delivery ratio sets. Outputs of this process as compared with other 
optimization methods are given in Table 8 as follows, 

Table 8: PSO-ABC Optimization Results 

Parameter Proposed Model Method [5] Method [9] Method [18] 
Energy Consumption (J) 45.3 55.1 53.7 51.2 
Packet Delivery Ratio (%) 97.5 90.8 88.6 92.1 
Network Throughput (Packets/sec) 400 350 345 370 
Network Lifetime (Rounds) 1500 1280 1200 1325 
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In this phase, the hybrid PSO-ABC method achieved significant energy savings, with a 17.8% improvement over 
method [5]. The packet delivery ratio and throughput also showed notable gains, enhancing overall network 
performance by optimizing clustering decisions and routing paths simultaneously. For the Reinforcement 
Learning-based Dynamic Clustering (RLDC) with DQN, the system continuously adapts to changes in node 
energy and topology, aiming for real-time optimization of cluster head selection and routing. This adaptive behavior, 
combined with deep Q-learning, enhances energy efficiency and fault tolerance. Table 9 presents the outcomes of 
this dynamic clustering process, comparing the proposed method against standard RL clustering techniques. 

Table 9: RLDC with DQN Results 

Parameter Proposed Model Method [5] Method [9] Method [18] 
Energy Consumption (J) 39.8 47.0 45.6 44.3 
Packet Delivery Ratio (%) 98.2 92.5 91.1 94.3 
Network Throughput (Packets/sec) 410 360 355 380 
Latency (ms) 80 95 102 88 

In this phase, the hybrid PSO-ABC method gained nearly 17.8% from method [5] in terms of energy saving. For both 
these performance metrics, namely, packet delivery ratio and throughput, there were excellent improvements, 
thereby significantly strengthening network performance in the whole. This is in tandem with optimum clustering 
decisions as well as routing paths. The Reinforcement Learning-based Dynamic Clustering with DQN works towards 
optimization of cluster head selection and routing in real-time due to its adaptability towards changes in node 
energy and topology. High energy efficiency and fault tolerance constitute some features on account of its 
adaptability and deep Q-learning. This dynamic clustering process has led to the results shown in Table 9, which 
compares our proposed methodology with conventional RL clustering techniques. From Table 9, it can be seen that 
our proposed RLDC with DQN shows an extremely significant improvement in the amount of energy consumption 
of up to 15.3% compared to method [5], and a high packet delivery ratio of 98.2%. The latency is brought down to 
80ms which further validates the benefits of adaptive clustering in real-time HSN scenarios. For GA-Enhanced 
Energy-Efficient Hierarchical Clustering, the model evolves successively generation by generation in order to 
minimize intra-and inter-cluster energy consumption with a focus placed upon optimizing cluster head selection as 
well as routing paths. Results of the hierarchical clustering for this approach compared with others are presented 
in Table 10 as follows, 

Table 10: GA-Enhanced Hierarchical Clustering Results 

Parameter Proposed Model Method [5] Method [9] Method [18] 
Energy Consumption (J) 42.7 49.5 47.8 45.9 
Fault Tolerance (%) 92.0 85.3 84.0 86.5 
Network Throughput (Packets/sec) 395 365 355 375 
Network Lifetime (Rounds) 1400 1250 1205 1300 

Table 10 As seen in Table 10, this GA-improved model has adopted a balanced strategy with substantial 
improvement in fault tolerance and network lifetime levels. Thus, energy consumption is 13.7% lower than that of 
method [5], which proves that GA really works well in extending the lifespan of the network but with robust metrics 
in performance. Finally, the overall outputs of the combined model integrating all of the above methods are 
presented in Table 11 as follows. This table summarizes the final performance improvements achieved by the 
proposed hybrid approach against traditional methods. 

Table 11: Final Combined Model Outputs 

Parameter Proposed Model Method [5] Method [9] Method [18] 
Energy Consumption (J) 38.2 52.0 50.4 47.5 
Packet Delivery Ratio (%) 98.8 91.0 89.5 93.4 
Network Throughput (Packets/sec) 420 340 335 365 
Latency (ms) 75 98 105 85 
Network Lifetime (Rounds) 1550 1220 1170 1300 
Fault Tolerance (%) 93.4 84.7 82.5 87.0 
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Table 11 displays that the proposed multiple objective optimization framework, integrating PSO-ABC, RLDC with 
DQN, and GA-enhanced hierarchical clustering, results in wider improvements along all performance metrics for 
different scenarios. The energy consumption reduces by 26.5% as compared to the method [5], and there is a much 
improvement in packet delivery ratio and network lifetime in this approach. Improvements in latency and fault 
tolerance have further highlighted the robustness and adaptability of the proposed hybrid model in dynamic HSN 
environments. These results manifestly confirm that the proposed optimization approach successfully optimizes 
the performance of HSN across the operational metrics considered and surpasses the former methodologies with 
respect to all the considered attributes. 

CONCLUSION AND FUTURE SCOPES 

More broadly, within the proposed multiple objective optimization framework here, Hybrid Particle Swarm 
Optimization, Artificial Bee Colony algorithms are integrated and enhanced, while Reinforcement Learning based 
Dynamic Clustering with Deep Q-Networks and a Genetic Algorithm-enhanced Energy-Efficient Hierarchical 
Clustering offer better efficiency improvements than more conventional approaches on the issues facing a Wireless 
Sensor Network. For the above-mentioned reasons, it is exploited that, simultaneously, the framework utilizes 
global exploration that is related to PSO, local refinement as it is related to ABC, real-time adaptability in terms of 
DQN and energy-efficient hierarchical clustering in terms of GA, all together to overcome significant challenges in 
dynamic resource-constrained environments related to energy consumption, packet delivery, network lifetime, and 
fault tolerance. The results showed that the model would reduce energy consumption to reach 26.5%, which is seen 
through final energy consumption, up to 38.2J instead of 52.0J seen in the proposed method in [5]. It enhances the 
packet delivery ratio to 98.8%, a good improvement compared with those of method [5] that achieved a packet 
delivery ratio of 91.0%. The network throughput peaks at 420 packets per second, which is way above the baseline 
methods. It reduces the latency to 75ms; this reduces the delay to a factor of 23.5% compared to the value for 
method [5], which is 98ms. In addition, it increases the lifetime of the network up to 1550 rounds - 27.0% increase 
in comparison to the lifetime achieved by method [5] with 1220 rounds. The authors hence demonstrate how the 
framework may adaptively optimize both clustering and routing in real time, while extending lifetime, and 
improving the overall performance. This model combines several different optimization techniques in a manner 
that allows for more efficient exploration/exploitation balance; optimized energy usage; and a greater resilience of 
the network to faults. This hybrid approach ensures overcoming the limitations of current approaches and provides 
a robust and scalable solution for improving network performance in dynamic HSN environments. The results 
shown numerically by these methods clearly show the strength of the proposed approach for multiple objective 
optimization in terms of improving overall efficiency and lifespan of HSNs. 

FUTURE SCOPES 

The proposed model, although introducing substantial improvements in quality of service and efficiency, leaves the 
following open to further work and development: Actually, extending this framework into orders-of-magnitude 
larger HSNs in the tens of thousands of nodes poses even harder problems about more meaningful communication 
overhead and topologies. Scaling the system may further rely on some optimizations with the DQN training process 
while dealing with high-dimensional state and action spaces, which could potentially be done using deep 
reinforcement learning with actor-critic methods and even multiple agent reinforcement learning, through which a 
number of agents could collaborate to optimize the global network behavior. Another field of interest is the 
introduction of mobility in sensor nodes whereby nodes change positions dynamically over time, hence 
necessitating that the optimization framework adapts in real time to changes in topology. This would naturally call 
for adjustments in the clustering and routing algorithms by allowing different distances between any pair of nodes, 
an effect that could create energy consumption and instability in the network. Including predictive models on node 
mobility within the adaptation framework will extend adaptability to this system further. The framework can be 
extended to multiple hop communication strategies and heterogeneous HSNs in which nodes have variable 
capabilities in terms of their energy source, processing capability and communication range. Such a heterogeneous 
configuration would introduce new optimization dimensions, which will need advanced multiple objective 
strategies to achieve fair energy consumption along with high performance. Finally, there is scope for extending this 
work into practical real-world implementation including smart cities, environmental monitoring, and industrial 
automation where the proposed model could be used in IoT applications. Experimentation of the proposed system 
in real-world HSNs, with analytics in near real time, will provide further insight to the robustness, scalability, and 
adaptability of the framework in varied conditions and application-specific requirements. 
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