Mechanistic insight unrevealing the potential of Diadzein in ameliorating the Alzheimer's disease

Diksha Dalal¹, Lovedeep Singh^{1*}, Anish Singh^{1*}

1University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India *Corresponding Author

Cite this paper as: Diksha Dalal, Lovedeep Singh, Anish Singh (2024) Mechanistic insight unrevealing the potential of Diadzein in ameliorating the Alzheimer's disease. *Frontiers in Health Informatics*, 13 (3),7898-7906

ABSTRACT

Alzheimer's disease (AD), a progressive neurodegenerative disorder, is characterized by the accumulation of $A\beta$ plaques, tau protein tangles, oxidative stress, and chronic neuroinflammation. Natural compounds, such as daidzein, a phytoestrogen found predominantly in soy products, may have therapeutic potential in mitigating the symptoms and progression of AD. Emerging research has suggested that daidzein exhibits a range of neuroprotective properties, including antioxidant, antiinflammatory, and estrogenic effects, which are believed to be beneficial in Alzheimer's pathology. The phytoestrogen exhibits estrogenic activity, as declining estrogen levels have been linked to the increased risk of developing AD, especially in postmenopausal women. By binding to estrogen receptors, daidzein can modulate neuroinflammation and promote synaptic plasticity, which may protect against cognitive decline. Additionally, daidzein has been shown to inhibit Aβ aggregation, reduce oxidative damage to neurons, and improve mitochondrial function, all contributing to the neuroprotection observed in experimental models. According to study findings, daidzein provides neuroprotection by preventing oxidative stress, inflammation, and apoptosis, which are major causes of neuronal damage and degeneration. Moreover, studies revealed that daidzein inhibited oxidative stress by increasing SOD, CAT, and GSH levels and also it significantly decreased the p-eIF-2 α levels and general protein synthesis. Additionally, it also ameliorated the increased AChE and MDA levels. In addition to this, it also reduced the ERK, JNK, Akt, NF-κB and GSK-3β levels. The abstract reviews the multifaceted role of daidzein in AD, highlighting its potential as a neuroprotective agent. Further clinical investigations are needed to fully elucidate its efficacy and potential as a complementary treatment in AD therapy.

Keywords: Daidzein, Alzheimer's disease, Neuroprotection, Aβ, NF-κB, GSK-3β, AChE.

INTRODUCTION

Neurodegenerative disorders involve progressive dysfunction and loss of synapses and neurons and brain atrophy, slowly declining memories and cognitive skills, throughout a long process [1]. The most common neurodegenerative diseases are Alzheimer's disease (AD) and Parkinson's disease (PD). Depending on where in the brain the neurons disappear, numerous diseases can be identified by their distinctive symptoms [2]. The rise in the older population in recent years has contributed to the rise in the prevalence of certain age-dependent illnesses [3]. The neurological disorder known as dementia is defined as a gradual loss of ability to do instrumental and/or fundamental activities of daily life in two or more cognitive domains, such as memory, language, executive and visuospatial function,

personality, and behavior. Approximately 80% of dementia diagnoses are due to AD which is by far the most frequent cause of dementia [4]. AD is an illness that typically lasts 8-10 years in clinical stages, with prodromal and preclinical phases lasting 20 years. The illness has an incidence of 1-3 percent and an estimated prevalence of 10-30 percent in people over 65 [5]. The upstream brain accumulation of amyloid-beta (AB) species and plaques, which occurs up to 20-30 years before the spread of tau, neuronal loss, and eventually clinical manifestations, is a descriptive hypothetical model of AD pathophysiology supported by translational studies conducted over the past 25 years, including experimental animal and human neuropathological, genetic, and in vivo biomarker-based evidence [6]. Compared to 4% of individuals with typical symptoms, 53% of patients with atypical presentations in a neuropathologically verified cohort with young-onset AD were misdiagnosed [7]. It was estimated that by 2050 the number of ill patients will increase to approximately 152 million, with the highest increase expected in developing countries [8]. According to histopathology, the two main characteristics of AD are (i) neurofibrillary tangles (NFTs), which are made up of hyperphosphorylated tau protein linked to microtubules, and (ii) significant brain shrinkage caused by amyloid plaques constituted of Aß deposits [9]. Evidence indicates that APP, a transmembrane protein, extensively expressed in brain neurons, initiates the synthesis of AB [10, 11]. Research has shown that the neurotoxicity of Aβ oligomers and the interactions between acetylcholinesterase (AChE) and Aβ peptide are linked to cholinergic synaptic loss and the development of amyloid fibrils [12]. Inhibiting AChE to raise cholinergic levels is thought to be one of the treatment approaches that improves neuronal cell and cognitive function. AChEIs work by preventing the synaptic breakdown of acetylcholine, which causes ACh to continuously build up and cholinergic receptors to become active [13]. Furthermore, the interaction of reactive oxygen species (ROS) with glycoproteins causes AD. The byproducts, advanced glycoxidation end products (AGEs), are extremely harmful to nerve cells and could produce inflammatory mediators like TNF-α and IL-1, which would cause neuroinflammation in an AD brain [14]. Moreover, memory consolidation, neurogenesis, synaptic plasticity, long-term potentiation, and inflammation have all been connected to Glycogen Synthase Kinase-3 beta (GSK-3β) activity. Additionally, dysregulation of this GSK-3β has been observed to affect both Aβ and tau metabolism and toxicity in vitro and in vivo AD models [15]. Furthermore, the NF-κB signaling cascade also causes the brain to release several pro-inflammatory chemicals, including cytokines and chemokines, which contribute to AD patients' symptoms [16]. A naturally occurring phytoestrogen that belongs to the class of nonsteroidal estrogens, daidzein [7-hydroxy-3-(4hydroxyphenyl)-4H-1-benzopyran-4-onel has a variety of pharmacological properties, including antihemolytic, antioxidant, and anti-inflammatory properties [17]. Recent studies have indicated that daidzein may also enhance the clearance of Aß by promoting autophagy and boosting the activity of microglial cells, thereby reducing the burden of toxic protein aggregates [18]. Various lines of evidence indicate that daidzein significantly attenuated the dephosphorylation and activation of GSK-3β and also attenuated the tau hyperphosphorylation. In addition to this, western blot analysis revealed that it reduced the increased ERK, JNK, Akt, NF-κB, and GSK-3β levels (Table no. 1). Therefore, by synthesizing the published reports on the neuroprotective capabilities of daidzein, this review aims to elucidate their mechanistic potential in neuroprotection.

General chemistry of Isoflavones

Fig. no 1 Structure of Biochanin A

Fig. no. 2 Structure of Genistein

Fig. no. 3 Structure of Formononetin

Formononetin

Fig. no. 4 Structure of Diadzein

General preparation of Diadzein

Fig.no. 5 Chemical Synthesis of diadzein from Formononetin

Mechanism of diadzein

Inhibition of oxidative stress by diadzein to potentiate Anti-Alzheimer's effect

Decreased SOD, CAT, and GSH an increase in oxidative stress. Oxidative stress plays a crucial role in AD [19]. Increased oxidative stress diminished the mitochondrial activity which posseses AD. To date numerous in-vivo and in-vitro studies were done that may results in neuroprotection effect of

daidzein especially in AD [20, 21]. By using streptozotocin-induced AD rat model author documented that daidzein increased the reduced memory in rats. Moreover, it also significantly increased the reduced SOD, CAT, and GSH in the brain. It also reduced the increased MDA level. Histopathological analysis revealed that it reversed the increased neuronal loss in the cerebral and hippocampus part of brain [20]. In homocysteine-mediated neuronal degeneration in SH-SY5Y cell model, author documented that daidzein significantly reduced the increased cytotoxicity. DAPI staining revealed that it ameliorates the increased apoptosis. Moreover, it also attenuated the induction of UPR in SH-SY5Y cells. Furthermore, it significantly decreased the p-eIF-2α levels and general protein synthesis. Moreover, it also significantly increased the intracellular SAH levels. It also posseses a consequent reduction in the SAM/SAH ratio in cells. Furthermore, it significantly attenuated the tau hyperphosphorylation. It also significantly increased the activity of PP2Ac. Moreover, it also significantly attenuated the dephosphorylation and activation of GSK-3β as shown in fig no. 6 [21].

Activity of diadzein on acetylcohlinesterase enzyme level leading to anti-Alzheimer's effect

AChE is an enzyme which dissociate the acetylcholine in acetyl and choline. Increased AChE results in increased dissociation of acetylcholine that reduced the concentration of acetylcholine in our body which posseses AD [22]. AChE plays a pivotal role in AD [23]. AChE is an enzyme responsible for breaking down acetylcholine, a neurotransmitter crucial for memory and cognitive function [24]. In AD, there is a marked deficiency of acetylcholine in the brain, which contributes to the cognitive decline observed in patients [25]. Moreover, occurrence of AD increased due to increased MDA level in the body. By using scopolamine induced amnesia author demonstrated that daidzein attenuated the scopolamine induced memory loss and also activated the ChAT activation [26]. Moreover, it also ameliorates the increased AChE and MDA levels in the hippocampus part of brain [27]. These various in-vivo and in-vitro models are presented in Table no 1.

Table no. 1: Various In-vitro and In-vivo model those represent the dephricizing activity in Alzheimer's disease

SR. No.	Model	Effect	Reference
1.	Streptozocin-induced	Increased the reduced locomotor activity.	20
	Alzheimer's rat	Increased the reduced memory.	
	model	Increased the level of SOD, CAT, GSH.	
		Reduced the increased MDA level.	
2.	Homocysteine	Significantly reduced the increased	21
	mediated neuronal	cytotoxicity.	
	degeneration SH-	Reduced the increased Apoptosis.	
	SY5Y cell model	Decrease the level of eIF- 2α levels.	
		Reduced the increased GSK-3β.	
3.	Scopolamine	Attenuated the activity of ChAT	27
	induced amnesia	activation.	
		Ameliorated the increased AChE and	
		MDA levels.	
4.	Lipopolysaccharide	Significantly ameliorated the increased	28
	stimulated BV2	NO concentration.	
	microglial cell model	Reduced the increased COX-2 level and	
		IL-6 production.	

Activity of diadzein on Inflammatory cytokines to potentiate Anti-Alzheimer's effect

Mitogen activated protein kinase (MAPK) is a pathway that results in the activation of ERK, JNK pathway that further results in nuclear translocation of NF-κB. The nuclear translocation of NF-κB may potentiate the release of pro-inflammatory cytokines and COX-2 which results in neuroinflammation and also AD. Mainly this MAPK is activated due to increased oxidative stress or nitric oxide [29, 30]. By using LPS induced astrocyte cell model author documented that daidzein increased the reduced proliferation and cell viability. Moreover, it also reduced the increased AB and NO. Furthermore, it also ameliorated the increased effect of IL-6, TNF-α, ER-β, IL-1 mRNA levels [31]. By using H19-7 neuronal cell line model author documented that daidzein increased the reduced cell viability. Moreover, it also increased the reduced cell proliferation in the hippocampus part. Furthermore, it also significantly increased the BDNF mRNA level [32]. By using scopolamine induced amnesia mice model author documented that daidzein significantly increased spontaneous alteration. Furthermore, it also significantly reduced the step-through latency time and also restored the memory dysfunction induced by scopolamine. Western blot analysis revealed that it significantly enhanced the expression of BDNF, p-ERK, p-CREB [27]. GSK-3\beta plays a crucial role in the pathogenesis of AD [33]. This kinase is involved in several key processes that contribute to the development and progression of AD, including the hyperphosphorylation of tau protein, the formation of NFTs, and the production and accumulation of Aβ peptides [34]. Increased oxidative stress increased the production of A\beta in the brain that further also activate the pro-inflammatory cytokines and ROS that posseses neurodegeneration. Western Blot analysis revealed that it reduced the increased ERK, JNK, Akt, NF-κB and GSK-3β levels [28]. By using lipopolysaccharide stimulated BV2 microglial cells author demonstrated that MTT assay revealed that daidzein significantly ameliorated the increased NO concentration. Furthermore, it also reduced the increased iNOS, COX-2 levels and IL-6 production in a dose dependent manner. Moreover, it also reduced the increased ROS in LPS stimulated cells [35].

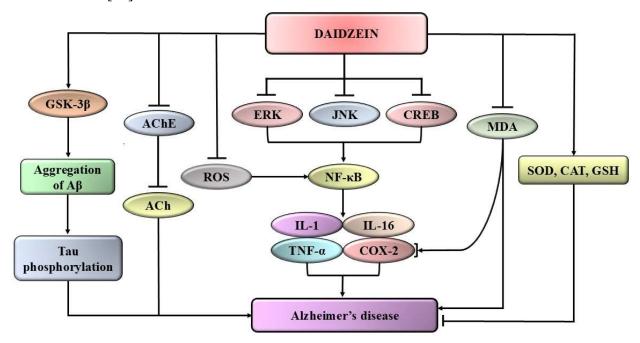


Fig. no. 6 Mechanistic interplay of daidzein in dephricizing the alzheimer's disease

CONCLUSION

Daidzein, a naturally occurring phytoestrogen, exerts antioxidant, anti-inflammatory, and estrogenic effects making it a potential therapeutic candidate for mitigating neuronal damage and cognitive decline. It has been prepared after the demethylation of formononetin. It has demonstrated efficacy in reducing A β aggregation, combating oxidative stress, and promoting synaptic plasticity, all of which are critical for maintaining neuronal health. It appears to attenuate the dephosphorylation and activation of GSK-3 β and also attenuated the tau hyperphosphorylation. Moreover, it reduced the iNOS, COX-2 levels, and IL-6 production. In addition to this, it also reduced the ERK, JNK, Akt, NF- κ B, and GSK-3 β levels. In summary, several conclusive evidence underscores the neuroprotective potential of daidzein, highlighting its mechanism of action. These findings suggest that daidzein's multifaceted mechanisms offer a compelling avenue for developing novel neuroprotective strategies, particularly for individuals at risk of or suffering from neurodegenerative disorders.

Reference

- 1. Lamptey, R. N. L., Chaulagain, B., Trivedi, R., Gothwal, A., Layek, B., & Singh, J. (2022). A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. *International journal of molecular sciences*, 23(3), 1851.
- 2. Gadhave, D. G., Sugandhi, V. V., & Kokare, C. R. (2024). Potential biomaterials and experimental animal models for inventing new drug delivery approaches in the neurodegenerative disorder: Multiple sclerosis. *Brain Research*, 1822, 148674.
- 3. Heemels, M. T. (2016). Neurodegenerative diseases. Nature, 539(7628), 179-180.
- 4. Crous-Bou, M., Minguillón, C., Gramunt, N., & Molinuevo, J. L. (2017). Alzheimer's disease prevention: from risk factors to early intervention. *Alzheimer's research & therapy*, *9*, 1-9.
- 5. Prince, M., Albanese, E., Guerchet, M., & Prina, M. (2014). World Alzheimer Report 2014. Dementia and Risk Reduction: An analysis of protective and modifiable risk factors (Doctoral dissertation, Alzheimer's Disease International).
- 6. Dubois, B., Feldman, H. H., Jacova, C., Hampel, H., Molinuevo, J. L., Blennow, K., ... & Cummings, J. L. (2014). Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. *The Lancet Neurology*, *13*(6), 614-629.
- 7. Balasa, M., Gelpi, E., Antonell, A., Rey, M. J., Sanchez-Valle, R., Molinuevo, J. L., ... & Neurological Tissue Bank/University of Barcelona/Hospital Clínic NTB/UB/HC Collaborative Group. (2011). Clinical features and APOE genotype of pathologically proven early-onset Alzheimer disease. *Neurology*, 76(20), 1720-1725.
- 8. Janoutová, J., Kovalová, M., Machaczka, O., Ambroz, P., Zatloukalová, A., Němček, K., & Janout, V. (2021). Risk factors for Alzheimer's disease: An epidemiological study. *Current Alzheimer Research*, 18(5), 372-379.
- 9. R. Schneider, A., & Sari, Y. (2014). Therapeutic perspectives of drugs targeting toll-like receptors based on immune physiopathology theory of Alzheimer's disease. CNS & Neurological Disorders-Drug Targets-CNS & Neurological Disorders), 13(5), 909-920.
- 10. Zheng, H., & Koo, E. H. (2006). The amyloid precursor protein: beyond amyloid. *Molecular neurodegeneration*, *1*, 1-12.
- 11. Bhadbhade, A., & Cheng, D. W. (2012). Amyloid precursor protein processing in alzheimer's disease.
- 12. Breijyeh, Z., & Karaman, R. (2020). Comprehensive Review on Alzheimer's Disease: Causes and Treatment. *Molecules (Basel, Switzerland)*, 25(24), 5789.

13. Anand, P., & Singh, B. (2013). A review on cholinesterase inhibitors for Alzheimer's disease. *Archives of pharmacal research*, *36*, 375-399.

- 14. Song, T., Song, X., Zhu, C., Patrick, R., Skurla, M., Santangelo, I., ... & Du, F. (2021). Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. *Ageing research reviews*, 72, 101503.
- 15. Llorens-Martín, M., Jurado, J., Hernández, F., & Avila, J. (2014). *GSK-3β*, a pivotal kinase in Alzheimer disease. Front Mol Neurosci. 2014; 7: 46.
- 16. Jha, N. K., Jha, S. K., Kar, R., Nand, P., Swati, K., & Goswami, V. K. (2019). Nuclear factor-kappa β as a therapeutic target for Alzheimer's disease. *Journal of neurochemistry*, 150(2), 113-137.
- 17. Bingham, S. A., Atkinson, C., Liggins, J., Bluck, L., & Coward, A. (1998). Phyto-oestrogens: where are we now?. *British journal of nutrition*, 79(5), 393-406.
- 18. Xin, S. H., Tan, L., Cao, X., Yu, J. T., & Tan, L. (2018). Clearance of Aβ and tau in Alzheimer's disease: from mechanisms to therapy. *Neurotoxicity research*, *34*, 733-748.
- 19. Yilgor, A., & Demir, C. (2024). Determination of oxidative stress level and some antioxidant activities in refractory epilepsy patients. *Scientific Reports*, 14(1), 6688.
- 20. Wei, J., Yang, F., Gong, C., Shi, X., & Wang, G. (2019). Protective effect of daidzein against streptozotocin-induced Alzheimer's disease via improving cognitive dysfunction and oxidative stress in rat model. *Journal of biochemical and molecular toxicology*, 33(6), e22319.
- 21. Park, Y. J., Jang, Y., & Kwon, Y. H. (2010). Protective effect of isoflavones against homocysteine-mediated neuronal degeneration in SH-SY5Y cells. *Amino acids*, *39*, 785-794.
- 22. Saud, A., Krishnaraju, V., Taha, A., Kalpana, K., Malarkodi, V., Durgaramani, S., ... & Ezhilarasan, S. (2024). Potential acetylcholinesterase inhibitors to treat Alzheimer's disease. *European Review for Medical & Pharmacological Sciences*, 28(6).
- 23. García-Ayllón, M. S., Small, D. H., Avila, J., & Sáez-Valero, J. (2011). Revisiting the role of acetylcholinesterase in Alzheimer's disease: cross-talk with P-tau and β-amyloid. *Frontiers in molecular neuroscience*, *4*, 22.
- 24. Tabet, N. (2006). Acetylcholinesterase inhibitors for Alzheimer's disease: anti-inflammatories in acetylcholine clothing!. *Age and ageing*, *35*(4), 336-338.
- 25. Chen, Z. R., Huang, J. B., Yang, S. L., & Hong, F. F. (2022). Role of cholinergic signaling in Alzheimer's disease. *Molecules*, 27(6), 1816.
- 26. Heo, H. J., Suh, Y. M., Kim, M. J., Choi, S. J., Mun, N. S., Kim, H. K., ... & Shin, D. H. (2006). Daidzein activates choline acetyltransferase from MC-IXC cells and improves drug-induced amnesia. *Bioscience, biotechnology, and biochemistry*, 70(1), 107-111.
- 27. Kim, S. K., Ko, Y. H., Lee, S. Y., & Jang, C. G. (2020). Memory-enhancing effects of 7, 3', 4'-trihydroxyisoflavone by regulation of cholinergic function and BDNF signaling pathway in mice. *Food and Chemical Toxicology*, *137*, 111160.
- 28. Simpson, D. S., & Oliver, P. L. (2020). ROS generation in microglia: understanding oxidative stress and inflammation in neurodegenerative disease. *Antioxidants*, *9*(8), 743.
- 29. Dhapola, R., Hota, S. S., Sarma, P., Bhattacharyya, A., Medhi, B., & Reddy, D. H. (2021). Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer's disease. *Inflammopharmacology*, 1-13.
- 30. Cuenda, A., & Rousseau, S. (2007). p38 MAP-kinases pathway regulation, function and role in human diseases. *Biochimica et Biophysica Acta (BBA)-Molecular Cell Research*, 1773(8), 1358-1375.

31. Liu, M. H., Lin, Y. S., Sheu, S. Y., & Sun, J. S. (2009). Anti-inflammatory effects of daidzein on primary astroglial cell culture. *Nutritional Neuroscience*, 12(3), 123-134.

- 32. Pan, M., Han, H., Zhong, C., & Geng, Q. (2012). Effects of genistein and daidzein on hippocampus neuronal cell proliferation and BDNF expression in H19-7 neural cell line. *The journal of nutrition, health & aging, 16,* 389-394.
- 33. Sequeira, R. C., & Godad, A. (2024). Understanding glycogen synthase kinase-3: a novel avenue for Alzheimer's disease. *Molecular Neurobiology*, 61(7), 4203-4221.
- 34. Prendecki, M., Kowalska, M., Toton, E., & Kozubski, W. (2020). Genetic editing and pharmacogenetics in current and future therapy of neurocognitive disorders. *Current Alzheimer Research*, 17(3), 238-258.
- 35. Yoon, D. H., Hong, S. M., Ko, E. J., Jeon, R. O., & Kim, S. Y. (2023). Anti-neuroinflammatory Effects of Active Compound SPA1413 via Suppression of the MAPK and JAK/STAT Signaling Pathways. *Biological and Pharmaceutical Bulletin*, 46(11), 1517-1526.