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Abstract 
This literature review delves into the advancements in epileptic seizure detection utilizing Convolutional Neural 
Networks (CNNs) and related deep learning techniques. It covers a wide array of research, from basic CNN 
models to complex hybrid approaches incorporating multi-modal data, transfer learning, and real-time 
processing. The review underscores the high accuracy, robustness, and applicability of CNN-based models in 
seizure detection tasks, with enhancements achieved through innovative methods such as spectrograms, wavelet 
transforms, and multi-channel EEG data. Nevertheless, difficulties such as the computational demands of deep 
learning models, the need for large and diverse datasets, and generalization across different patient groups and 
seizure types persist. Additionally, the real-time application of these models, particularly in resource-
constrained environments, requires further exploration. The review wraps up by pointing out the advantages 
and limitations of current approaches and suggests future research directions, including the combination of 
responsible AI and the development of lightweight models for portable devices. 

Keywords: Seizures; Electroencephalogram; Machine Learning technique; Deep Learning technique; Chatbot. 
 
1. Introduction  
1.1 Background  
A chronic neurological condition associated with unexpected, recurrent seizures without any identifiable 
triggers, which stem from abnormal brain activity. Ailment of individuals, irrespective of their age, epilepsy 
stems from genetic factors, infections, brain injuries, neurodevelopmental disorders, and other neurological 
diseases. The disorder presents in focal one-sided seizures that originate from a specific lobe and generalized 
seizures that affect the whole brain. Thus, the effects of epilepsy are not just limited to the health aspect but 
result in injuries, other concurrent conditions such as depression, and anxiety along with the possibility of 
SUDE. In the social aspect, the epileptic sufferer undergoes discrimination in education, employment, and other 
factors that compromise the quality of life. Economically, this condition leads to both direct and indirect costs 
related to healthcare spending and lost productivity. Epilepsy is usually treated using drugs; however, other 
modalities of treatment include surgery, diet and lifestyle changes. Major supports from the healthcare 
practitioners, families and communities are crucial in enhancing the quality of lives in people with epilepsy.  
 

EEG signals play a key role in diagnosing and forecasting seizures in people with epilepsy. By using 
electrodes attached to the scalp, EEG monitors the brain's electrical activity and offers real-time information 
about brain function. Thus, during a seizure, changes in EEG, which is used to diagnose epilepsy, are revealed. 
One of the ways in which professionals in the health care industry can use these patterns is to establish the kind 
of seizures and where they happen so that relevant management methods can be followed. Besides the detection, 
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new methods in EEG and computation have made it can predict the seizures. Long-term EEG data is processed 
with machine learning (ML) algorithms and deep learning (DL) models to detect such changes in the patterns 
that can be used for seizure anticipation, the prediction of seizures before they happen. It has been put forth that 
such forecast ability can better the life of epileptic patients by preventing mishaps and allowing treatment in 
due time. Therefore, EEG is incredibly valuable in tasks involving the diagnosis of epilepsy and the subsequent 
prevention of its manifestations, which can improve clinical outcomes and patients’ quality of life.  

 
1.2 Objectives of the Review 
It is for this reason that approaches which relies on deep learning models for identifying and predicting seizures 
are analyzed to enhance the quality of epilepsy treatment. CNN and Recurrent neural network (RNN) based 
deep learning models can extract meaningful EEG data features to find out the patterns that correspond to the 
seizures. In this way, the present procedures help make a decision in relation to the best methods for 
distinguishing pre-seizure conditions and accurate detection of seizures. They are prospective to nurture future 
research in creating accurate and real time monitoring techniques for early warnings and further individualized 
management of the disorder that may enhance the life quality of patients who have epilepsy. 
 
1.3 Scope of the Review 
It covers a variety of articles as a review that aims at finding out deep learning techniques on detecting and 
predicting seizures employing EEG signals. This is research articles and experiments, systematic reviews that 
discuss different DL models that include CNNs, RNNs, and the combinational networks. Other works that 
attempted to compare and analyse various preprocessing methods, the properties of the datasets and the 
possibilities of using the methods in the real-time applications are also reviewed.  
 
2. Deep Learning Methods for Seizure Detection  
2.1. Brief Introduction to Deep Learning Concepts Relevant to EEG Analysis 

Deep learning can be said as a learning process in which more sophisticated neural network 
structures are used, which allows the model to perform feature extraction autonomously. In 
the realm of EEG analysis for identifying and forecasting seizures, several DL concepts are 
particularly relevant 
 

2.1.1. Convolutional Neural Networks: 
CNNs are specialized neural network architectures designed to excel at processing grid-like data structures, 
such as images. In EEG analysis, the CNN’s make use of spatial features for EEG signal patterns without the 
need for human intervention. They use convolutional layers which pass filters over the inputs and extract 
localized features and spatial outcomes these are important in identifying seizure patterns on the EEG. 
  
2.1.2. Recurrent Neural Networks: 
RNNs are intended for processing the sequential data as they keep the state information from one time step to 
another. They are appropriate for EEG analysis because they allow for including temporal relationships and 
ordering of the data. RNNs manage EEG signals as time series as this makes it possible to capture temporal 
nature of seizures and pre-seizure states. 
 
2.1.3. Long Short-Term Memory (LSTM) Networks: 
LSTM Networks are a class of Recurrent Neural Networks introduced to overcome the issue of vanishing reflect 
in relation to sequential data. They include memory cells to store information for long periods; thus, can be 
useful for identifying and forecasting seizures from long-term EEG records. Contributions of LSTMs are useful 
in detecting temporal patterns that are marginal to occur before seizures take place.  
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2.2 Convolutional Neural Networks (CNNs) 
The CNN-based epileptic seizure identification field has undergone leaps and bounds with immense variety and 
innovation. Studying the ability of CNNs, Kaziha and Bonny (2020) as well as Sameer and Gupta (2022) showed 
high results of the algorithms in detecting epileptic seizures from EEG signals. The development of SeizureNet 
by Zhao and Wang, (2020) used to distinguish between ictal and interictal discharges makes it possible for 
applicants to identify the reliable seizure detection in various settings. Research has been conducted to develop 
new and improved architectures of CNNs for the detection objectives. Thuwajit et al. (2021) use EEGWaveNet 
that targets on swtEF-GCP, which corresponds to extracting features of locations and time, and Pisano et al. 
(2020) developed the EEG models aimed at nocturnal frontal lobe epilepsy. These studies present the new 
developments in terms of the architectures and extraction methods used in the processes. Interdisciplinary 
analysis of biosignals has been helpful as is confirmed by Liu et al. (2020) and Tian et al. (2019). These studies 
introduce the use of various modes and signs, and at the same time, the multiple biosignals provide compatible 
information between them to enhance the detection rate. Thus, such approaches as transfer learning and feature 
fusion have been beneficial in this problem. Zhang et al. (2020) engaged deep transfer learning when detecting 
cross-subject while Chen et al. (2023) proposed the combination of multiple data sources to increase the 
functionality and performance of the CNN classifier. On practicality, low power consumption and real-time 
efficiency are the cornerstones. Similar to Bahr et al (2021), there was a focus on placing CNNs into resource-
constrained systems for real-time seizure detection in wearable technology. Any such developments are critical 
to creating mobile and efficient seizure detection devices. Competition and comparison with other approaches 
were made by researchers such as Cho and Jang (2020) and Jana et al. (2020) and this gives the understanding 
of strengths and shortcomings of different CNN structures as well as the input modality. Such works aid in 
finding the most suitable approaches that may be applicable in various situations which is essential to enhancing 
seizure detection systems. However, several limitations still exist, the following. Data limitations are also an 
issue due to the limited set of data available in most of the analyzed papers which influences the models’ ability 
to generalize. This issue is further magnified by the increased architectural complexity in modern CNNs that 
include additional layers and/or substructures necessitating substantial resource demands for training and 
prediction as pointed out by different scholars. Thirdly, there are issues with the variability of reported 
methodologies and assessment measures, which hinders the possibility of comparing the outcomes of the 
research. Such guidelines, therefore, would assist in making an objective comparison of one model against the 
other. Limitations regarding the generalization are still observed, because models trained for some types of 
seizures or some patients’ categories can be not good at working with unknown data. Some of these challenges 
were demonstrated by Zhang et al. (2020) on cross-subject and cross-condition generalization. However, the 
most significant drawback is that CNN models have a so-called ‘black box’ approach, which means that in most 
cases their actions are difficult to explain, and in the background of clinical applications, this shortcoming is 
critical. However, deep learning methodologies proposed in Ullah et al., (2018) and Acharya et al., (2018) have 
more favourable results and outcomes but should not be used in each case. There could be some scenario that 
guide the modified interpretability and more basic model like signal processing or using deep learning in 
addition to signal processing approaches. To sum up, the analysis of the research on CNN-based epileptic 
seizure detection reveals the notable progress in the development of the subject, as well as new interesting ideas 
from various scholars. Nevertheless, some issues that are very relevant to these models are data constraints, 
scalability, model transferability, and model interpretability. Hence, the enhancement and optimization of such 
models will enhance the efficacy and implementability of seizure detection systems based on CNNs. The Table 
1 delivers a comprehensive overview of several CNN models developed by different authors, including their 
publication year and the reported accuracy percentage has been depicted in Figure 1. This plot describes only 
about the appreciable high performing top models in terms of the accuracy values. 
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Work Type of CNN architecture 
used 

Strengths Weaknesses 

[1] CNN Effective use of CNNs for 
seizure detection 

Limited exploration of model 
generalizability across diverse 
datasets 

[2] CNN High accuracy and 
robustness 

Model may require extensive 
training data and computational 
resources. 

[3] SeizureNet (CNN model) Vigorous performance in 
various scenarios. 

May struggle with real-time 
processing constraints. 

[4] Seizure detection using Deep 
learning and brain mapping 

Combines detection with 
brain mapping, providing a 
holistic approach. 

Complexity in combining 
detection with mapping can 
increase computational 
demands 

[5] Comparing various network 
architectures and input 
modalities 

Comprehensive 
comparison of modalities 
and structures. 

Results may vary significantly 
based on the chosen modality 
and structure. 

[6] EEGWaveNet (Multiscale 
CNN) 

Effective spatial-temporal 
feature extraction. 

High computational 
requirements for training and 
inference. 

[7] 1D-CNN with spectrogram Novel approach with good 
accuracy. 

Requires transformation of 
EEG data into spectrograms, 
which may not be optimal for 
all scenarios 

[8] Enhanced feature extraction-
based CNN 

Improved feature 
extraction techniques 

High computational technique 

[9] CNN for nocturnal frontal lobe 
epilepsy 

Tailored model for a 
specific epilepsy type 

| Limited generalizability to 
other types of epilepsy 

[10] CNN-based method for seizure 
detection 

Effective CNN architecture 
for seizure detection. 

Model may need optimization 
for real-world applications. 

[11]  CNN for epileptic seizure 
detection 

Strong performance with 
CNNs. 

May require extensive 
computational resources. 

[12] seizure detection using CNNs in 
real-time 

Suitable for real-time 
detection 

Real-time processing can be 
challenging and resource-
intensive. 

[13] Pretrained deep CNNs and 
transfer learning 

Effective use of transfer 
learning for adaptability. 

Performance depends on the 
quality of pretrained models. 

[14] 3D CNN for multi-channel EEG Innovative use of 3D 
CNNs for feature 
extraction. 

High computational cost for 
training 3D CNNs 

[15] Multi-biosignal CNNs Multi-biosignal approach 
improves detection. 

Integration of multiple signal 
types can increase model 
complexity. 

[16] CNN for identifying epileptic 
EEG signals 

Effective signal 
identification with CNNs 

Limited exploration of model 
generalizability 

[17] Deep CNN with fewer EEG 
channels 

Efficient use of EEG 
channels. 

Reduced number of channels 
may affect detection 
performance. 

[18] Spectral transformation with 
CNN 

Improved feature 
extraction through spectral 
transformation. 

Complexity in combining 
spectral transformation with 
CNNs. 

[19] CNN for seizure detection Enhanced performance Model performance can vary 
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with CNNs. with different datasets. 
[20] Multi-channel EEG wavelet 

power spectra and 1-D CNN 
Effective use of wavelet 
power spectra with CNNs. 

Wavelet transformation may 
add complexity to the 
processing pipeline. 

[21]  FPGA implementation of semi-
supervised reduced CNNs 

Efficient hardware 
implementation with 
FPGA. 

Limited to FPGA 
implementation, which may not 
be universally applicable. 

[22] Deep CNN for automated 
seizure detection 

Comprehensive approach 
for automated detection 
and diagnosis. 

High computational demands 
for deep CNNs. 

[23] Deep EEG features with CNNs 
and shallow classifiers 

Effective feature fusion 
with deep and shallow 
classifiers. 

Integration of deep and shallow 
methods can be complex. 

[24] CNNs and recurrence plots of 
EEG signals 

Innovative use of 
recurrence plots with 
CNNs. 

Recurrence plots may increase 
computational complexity. 

[25] CNN for neonatal seizure 
detection 

Tailored for neonatal 
seizure detection. 

May not be applicable to adult 
seizure detection. 

[26] Temporal-spectral squeeze-and-
excitation network 

Enhanced feature 
extraction with squeeze-
and-excitation network. 

Complex model architecture 
may require extensive tuning. 

[27] Automated spectrographic 
seizure detection using CNNs 

Effective use of 
spectrographic features for 
detection. 

Spectrographic transformation 
adds to computational 
complexity. 

[28] Tunable-Q wavelet transform 
and CNNs 

Real-time detection 
capability. 

Real-time processing can be 
challenging and resource-
intensive. 

[29] Deep learning framework for 
neonatal EEG 

Adapted for neonatal EEG 
signals. 

Limited to neonatal EEG data, 
affecting generalizability. 

[30] Examination of feature 
extraction techniques and 
evaluation of their performance 

Comprehensive review of 
feature extraction 
techniques. 

Focuses on review rather than 
novel methodology. 

[31] Deep convolutional 
autoencoders 

Effective feature learning 
with autoencoders. 

Autoencoders may require 
extensive training data and 
tuning. 

[32] Scalogram-based CNNs Innovative use of 
scalogram features. 

| Scalogram transformation 
may add complexity to 
preprocessing. 

[33] Deep multi-view feature 
learning 

Effective multi-view 
feature learning. 

Integration of multiple views 
can increase model complexity. 

[34] CNN classifier with feature 
fusion 

High accuracy through 
feature fusion with CNNs. 

| Feature fusion may add 
complexity to the model. 

[35] Cross-subject detection using 
Deep transfer learning  

Improved generalization 
across subjects. 

Transfer learning may require 
big data for effective 
generalization. 

Table 1: Analysis of CNN based existing solution 
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Figure 1: Accuracy plot for variant of CNN Models 

2.3 Recurrent Neural Networks (RNNs)and Long Short-Term Memory Networks (LSTMNs)  
RNNs and LSTMs are crucial models for detecting seizures since they are capable to work with sequential data 
and learn the temporal patterns implicated in the EEG signals. The RNNs always have an internal state, which 
they update at each time step and makes it suitable in processing EEG data which is time dependent. 
Nevertheless, it reveals that traditional RNNs have their disadvantages in the difficult space of long-term needs 
particularly the disappearing and exploding gradient problem. These limitations are overcome by LSTMs, a 
kind of RNN where memory cells and gating mechanisms are used and it helps the model to hold and utilize 
information after various time ranges. This is because LSTMs are good at learning both short-term and long-
term temporal dependencies rendering them ideal for seizure detection especially for the initial signs of a 
seizure. They are strategic in managing long-term temporal dependencies, allowing for intervenetion during the 
analysis of a prolonged EEG recording. Thus, comparing to smaller LSTMs, these models have the advantage 
of better memory to work with EEEG data and perform real-time monitoring of the disease, though they are 
computational intense. 
 
2.3.1. Review of studies using RNNs and LSTMs for seizure detection. 
Altogether, the papers describe the cutting-edge deep learning approaches to predict seizures based on the EEG 
using promising methodologies that included RNN derivatives.  
 
Jaffino et al. (2021) used Grey Wolf Optimization (GWO) with deep RNNs to enhance the identification rate 
of seizures. This wholly unsaturated combination seems to improve the detection accuracy; however, the 
approach may not be easily adaptable to real-time purposes because one’s complexity. As a new scheme, 
Borhade and Nagmode (2020) present a modified atom search optimization method combined with deep RNNs 
for seizure prediction, which seems to have enhanced the predictor’s performance at the cost of high 
computational complication that may limit applicability.  
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Zhang et al. (2022) describe a Bi-GRU network based on temporal dependencies in both directions which 
increase the detection sensitivity. However, intricacy of the algorithm increases and thus the training time of 
the RBF network might increase. Shekokar and Dour (2022) incorporated LSTM networks for automated 
seizure detection, which the authors pointed out provides better performance because LSTM has the capability 
to remember the temporal dependencies but could be slower with very big data.  Geng et al. (2020) also use 
Stockwell Transform together with bidirectional LSTM to consider both frequency and temporal characteristics, 
which enhances the method’s ability to detect events, although it comes with a high computational cost. 
Therefore, deep recurrent networks are used throughout: Verma and Janghel (2021) employs general RNNs, 
while Hu et al. (2020) uses Bi-LSTM networks for classification; Both are effective in detection of seizures but 
may hold some trade-off with regards to model complexity and computational efficiency.  
 
 In neonatal EEG seizure detection, Abbasi et al. (2019) utilize LSTM, which results in high precision but might 
have problems with the overfitting, hence poor generalization among patients. Liu et al. (2020) improves 
detection through the deep C-LSTM network for both the tumor and seizure; however, the model is more 
general, and data training is necessary. Bidirectional LSTM is applied by Ali et al. (2019) and Abdelhameed, 
Daoud, and Bayoumi (2018) achieving good performance for seizure prediction although the approach may 
have issues in real-time implementation due to the significant computational requirements. Qiu, Yan, and Liu 
(2023) and Tuncer and Bolat (2022) enhance accuracy and interpretability through proper ways such as attention 
mechanisms and bidirectional LSTM networks. These methods provide major improvements, but the cost may 
include model complexity and additional computation.  
 
 There are several LSTM- based methods reviewed by Acharya et al. (2021) and Hussein et al. (2018) wherein 
DL is highlighted in seizure detection. Acharya’s strategy has strong LSTM depths, while Hussein’s technique 
provides solidity for practice application issues. While He et al. (2022) and Hu and Yuan (2019) enhance the 
structural graph attention networks and Bi-LSTM which will increase the accuracy of seizure detection, but it 
may add layer of difficulty in the model deployment. Singh and Malhotra (2022) use two-layer LSTM networks 
achieve good results, but there may be some problems in training the model. A new architecture called 
multilayer LSTM Discriminant Network is proposed by Saichand (2021) and though it is better at detecting 
attacks, it is computationally intensive. Zhao et al. (2024) Deepa, Ramesh (2022) use residual and attention-
based Bi-LSTM networks that demonstrate relatively good detection prospects but at the same time might need 
intricate model parameters.  Khan et al. (2021) and Chakrabarti, Swetapadma, and Pattnaik (2021) provide 
LSTM based and generalized detection techniques, but they enhance the model’s seizure recognition 
adequately; however, some attention to model versatility is required. Abdelhameed and Bayoumi (2021) stresses 
automatic detection for children as they lay down efficient methods with application aspects.  
 
There have been tremendous advances in identifying epileptic seizure using deep learning; different methods 
have been presented out by different researchers with an aim of enhancing the consistency and accuracy of the 
DL algorithms. Jaffino, Jose, and Sudararaman (2021) implemented Grey Wolf Optimisation along with deep 
RNN and even recorded excellent accuracy rates; however, this may not necessarily be favourable for real time 
use due to model intricacy. Likewise, Borhade and Nagmode (2020) used what they referred to as a Modified 
Atom Search Optimization (ASO)-based deep RNN, with the approach possessing strength in the process of the 
EEG signals, although the high computational complexity might be a weakness in terms of resources limit. 
Zhang et al. (2022) proposed a Bi-directional Gated Recurrent Unit (Bi-GRU) network that proved to be very 
efficient in handling temporal information in EEG signals. Nevertheless, the presented method might be 
outperformed by commercial packages since it demands a higher computational power, which could be critical 
in big data analysis. In automatic seizure detection, Shekokar and Dour (2022) used LSTM networks for solving 
the problem that is naturally in the temporal domain. However, the training procedure of the model appeared to 
be lenghty and required a heavy use of resources.  Other works are Geng et al. Given that, the Stockwell 
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Transform and bidirectional LSTM are adopted, and the results reveal high accuracy but with high model 
complexity. Verma and Janghel (2021) used deep RNNs for analyzing the seizure from the EEG signals and 
supported the usage of the method, but at the same time they charged the scalability issues due to the resource 
consumption.  
 
Altogether, these studies jointly enhance the solution of epileptic seizure detection problem in parallel with 
mitigated accuracy and up to real time capability, nevertheless, these solutions are usually buried under issues 
like computational cost, time response, and expansible capacity. Although the stability of these factors will 
remain important in the future development of the field, it is also important to keep its balanced. The Table 2 
provides a comprehensive overview of various RNN/LSTM models developed by different authors, including 
their publication year and the reported accuracy percentage has been depicted in Figure  
 

Work Type of RNN/LSTM 
architecture used 

Strengths Weaknesses 

[41] GWO with Deep RNN Efficient in detecting 
seizures with high 
accuracy due to 
optimization techniques. 

High computational complexity 
due to the combination of 
GWO and RNN. 

[42] Modified ASO with Deep RNN Improved seizure 
prediction accuracy by 
enhancing feature 
selection. 

May suffer from convergence 
issues leading to slower 
training times. 

[43] Bi-GRU Network Proficient at capturing 
temporal relationships in 
EEG data, leading to robust 
seizure detection. 

Requires large datasets for 
optimal performance, which 
may not be available in all 
clinical cases. 

[44] LSTM Network Capable of handling long-
term dependencies in 
sequential data, providing 
reliable seizure detection. 

Prone to overfitting if not 
regularized properly, especially 
with small datasets. 

[45] Stockwell Transform Bi-LSTM Combines time-frequency 
analysis with DL, 
enhancing the accuracy of 
seizure detection. 

High computational load due to 
the complex blend of Stockwell 
Transform and Bi-LSTM. 

[46] Deep RNN Provides high accuracy in 
seizure detection by 
effectively modeling EEG 
signal patterns. 

Sensitive to hyperparameter 
tuning, which can be 
challenging. 

[47] Deep Bi-LSTM Network High performance in EEG 
classification due to 
bidirectional processing. 

Training and inference may 
demand substantial 
computational resources 

[48] LSTM Architecture Suitable for handling time-
series data, leading to 
accurate seizure detection. 

Can be computationally 
expensive and slow to train. 

[49] Deep Convolutional LSTM (C-
LSTM) Neural Network 

Integrates the advantages 
of CNNs and LSTMs, 
effectively capturing both 
the spatial features and 
temporal features. 

High memory usage and 
computational cost due to 
complex architecture. 

[50] Bi-LSTM Effective in capturing 
bidirectional dependencies 

Requires large computational 
resources and may overfit with 
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in EEG signals. small datasets. 
[51] Deep Convolutional Bi-LSTM 

RNN 
Combines CNN and Bi-
LSTM for effective feature 
extraction and temporal 
pattern learning. 

High computational 
requirements, especially in 
training phases. 

[52] Difference Attention ResNet-
LSTM Network 

Integrates attention 
mechanism with ResNet-
LSTM, improving focus on 
critical features. 

Complex architecture may lead 
to longer training times and 
higher computational needs. 

[53] Bi-LSTM Network Efficiently handles 
sequential EEG data, 
providing accurate seizure 
classification. 

High memory and processing 
power required for large 
datasets. 

[54] LSTM Network Reliable in managing 
sequential data, providing 
accurate seizure detection 
across different cases. 

Prone to overfitting without 
proper regularization, 
especially with small datasets. 

[55] Deep Learning Approach Offers a robust framework 
for seizure detection by 
leveraging deep learning 
capabilities. 

Requires extensive datasets and 
computational resources for 
training. 

[56] Graph Attention Network with 
Bi-LSTM 

Enhances seizure detection 
by combining spatial and 
temporal features through 
attention mechanisms. 

Complex network design can 
result in long training times and 
difficulty in tuning. 

[57] Deep Bi-LSTM Network Proficient in capturing 
complex temporal 
relationships in the EEGs 
for accurate seizure 
detection. 

Computationally intensive, 
particularly with large EEG 
datasets. 

[58] Two-layer LSTM Network Improves prediction 
accuracy by layering 
LSTM networks, 
enhancing depth and 
feature extraction. 

Increased model complexity 
can lead to longer training 
times and potential overfitting. 

[59] Multilayer LSTM Discriminant 
Network with Dynamic Mode 
Koopman Decomposition 

Offers advanced feature 
extraction, improving 
seizure detection accuracy 
and generalization. 

Complex design may require 
more computational resources 
and careful tuning. 

[60] Residual and Bi-LSTM Combines residual 
connections with Bi-LSTM 
to enhance seizure 
detection accuracy and 
robustness. 

Increased complexity might 
lead to longer inference times 
and higher resource 
consumption. 

[61] Deep Learning with Min-Max 
Scaler Normalization 

Enhances model 
performance by 
normalizing data, 
improving the detection of 
epileptic seizures. 

Limited to specific datasets; 
effectiveness may vary with 
different data distributions. 

[62] HVD-LSTM (Hierarchical 
Variational Dynamic LSTM) 

Combines hierarchical and 
variational dynamics for 
robust seizure detection 

Complexity in model design 
and training, which can 
increase computational costs. 
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and normal human activity. 
[63] Channel-Independent Seizure 

Detection 
Effective for pediatric 
seizures, providing a 
generalized approach that 
doesn't rely on specific 
channels. 

May not perform as well on 
adult EEG data or across 
different seizure types. 

[64] Deep Learning Approach Tailored for pediatric 
epilepsy, offering high 
accuracy in seizure 
detection for children. 

Limited generalization to adult 
populations; might require 
retraining for different 
demographics. 

[65] Deep RNN Provides early seizure 
detection, crucial for 
timely intervention. 

Needs extensive datasets for 
training and is susceptible to 
overfitting when working with 
smaller datasets. 

[66] Autonomous RNN Innovative method for 
distinguishing between 
seizures and non-seizures 
with high accuracy. 

Independent RNNs may miss 
temporal dependencies crucial 
for more complex seizure 
patterns. 

[67] RNN Effective in capturing 
temporal patterns in EEG 
for seizure detection. 

Potentially limited by the 
vanishing gradient problem in 
deeper networks. 

[68] Random Neural Network Exploits EEG signals 
efficiently for seizure 
episode detection with a 
novel network approach. 

Could necessitate additional 
computational resources and 
careful tuning for optimal 
performance. 

[69] Stacked Bidirectional LSTM 
with GAP (Global Average 
Pooling) 

Combines bidirectional 
LSTM and GAP for robust 
feature extraction and 
classification. 

Complex architecture might 
lead to increased training time 
and resource consumption. 

[70] RNN One of the earliest 
applications of RNNs for 
seizure prediction, 
providing a foundational 
approach. 

Constrained by technological 
and computational power 
limitations; may underperform 
by modern standards. 

[71] Cost-Sensitive Deep Active 
Learning 

Balances detection 
accuracy with cost 
sensitivity, rendering it 
appropriate for practical 
use. 

Complexity in model design 
and cost function tuning; may 
require extensive data for 
training. 

[72] DL with Temporal analysis of 
EEGs 

Smart and advanced 
neurocare methodology 
improves the EEG-
temporal analysis for 
improved seizure detection 
accuracy. 

Requires extensive EEG data 
for model training, and may not 
generalize well to different 
seizure types. 

[73] ONASNet-Based Transfer 
Learning with Brain-Rhythmic 
Recurrence Biomarkers 

Utilizes transfer learning 
and recurrence biomarkers 
for efficient and accurate 
seizure detection. 

Complexity in model design 
may lead to longer training 
times and resource use. 

[74] Multi-Representation Deep 
Learning 

Combines multiple 
representations for robust 
seizure detection across 

High computational cost and 
potential overfitting due to the 
complexity of the model. 
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diverse EEG data. 
[75] Deep Learning for Generalized 

and Focal Seizure Detection 
Effectively detects both 
generalized and focal 
seizures, offering broad 
applicability. 

May require a large and diverse 
dataset to maintain 
performance across different 
seizure types. 

[76] Entropy-Based Features with 
Multimodel Deep Learning 

Combines entropy-based 
features with deep learning 
for precise seizure 
diagnosis. 

Complex model architecture 
might increase computational 
requirements and training time. 

[77] Machine Learning Techniques Provides a diverse 
approach using multiple 
machine learning 
techniques for seizure 
detection. 

May lack the depth and 
precision of deep learning 
methods for more complex 
seizure patterns. 

[78] Attention-Based Trans-LSTM 
with Optimal Weighted Feature 
Integration 

Enhances seizure detection 
with attention mechanisms 
and optimal feature 
integration for better 
accuracy. 

Complex architecture could 
lead to longer training periods 
and require careful 
hyperparameter tuning. 

[79] Bi-LSTM Network with Path 
Signature and Attention 
Mechanism 

Incorporates path signature 
and attention for enhanced 
seizure detection accuracy 
in EEG analysis. 

High model complexity could 
increase the risk of overfitting 
and require significant 
computational power. 

[80] Rag-Bull Rider Optimization 
with Deep RNN 

Novel optimization 
technique combined with 
RNNs for efficient and 
accurate seizure detection. 

Optimization process might be 
computationally expensive and 
require fine-tuning for optimal 
results. 

Table 2: Comparative analysis of RNN & LSTM based existing solution 
 

 
Figure 2: Accuracy plot for variant of RNN models 
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2.4 Hybrid Models and Other Approaches 
The research papers in the collection focus on employing deep learning methods at distinguishing epileptic 
seizures depending on EEG signals, including the comparison of existing approaches and their strengths and 
weaknesses. 
 
Pan et al. (2022) used a HF EEG input of a deep learning model with a high accuracy of seizure detection, but 
the method is computationally intensive due to the complex input data. Hussain et al. (2021) employed 1D-
convolutional LSTM networks where LSTM networks are particularly good at identifying temporal 
dependencies in an EEG signal but they may take longer to train.  Bhandari and Huchaiah (2022) introduce a 
heuristic-based weighted feature selection with ensemble learning, flexible for large data set detection with the 
disadvantage of higher possibility of overfitting with a small data set. Poorani and Balasubramanie (2023) are 
centered on deep learning methods that prove to have high accuracy and reliability, though the computation 
intensity is also high. Hybrid model is proposed by Dhar & Garg (2023) with the integration of ResNet50 and 
support vector machines increases the detection accuracy of objects but there may occur some limitations to 
size up to the project. Asrithavalli et al. (2024) enhance the utilization of artificial neural networks accompanied 
by hybrid deep learning to detect malware with higher performance but suffer from hyperparameters’ 
optimization. Sadam and Nalini (2024) employ a scalogram based hybrid CNN model used for efficient 
processing of the EEG signals although it may be prone to noise in the data input. Singh and Kaur (2023) put 
forward an intelligent method through hybrid nonlinear EEG features, which is relatively effective but difficult 
for the practical application.  
  
 Nandini et al. (2023) also applies the combination of the atomic function-based wavelets that gives higher 
patient-independent detection accuracy at a possibly higher computational cost. The paper of Craley et al. (2019) 
combines the convolutional neural networks with probabilistic graphical models, which allows for effective 
detection, but the algorithm is very computational intensive. Glory et al. (2021) proposes the AHW-BGOA-
DNN model that uses the integration of deep learning with bio-inspired optimization; they have high accuracy 
but cumbersome while training the models. KR et al. (2023) present a Multi-Dimensional Hybrid CNN-
BiLSTM(MDH-CNN-BiLSTM) which improve the seizure detection, but potentially it has limitations in real-
time environment. 
 
Kumar et al. (2022) employ a CNN-GRU model, which takes spatial and temporal aspects into consideration; 
however, it can have higher training times. Rachappa et al. (2022) deal with the hybrid ensemble learning 
framework for the extensive detection with acceptable performance, while the model selection remains crucial. 
Based on the pre-seizure information, Zhu et al. (2024) develop the novel SE-TCN-BiGRU hybrid network, 
which can make the automatic seizure detection with a high precision level but requiring much computation 
load. More complex CNN arrangement is proposed in the Tanveer et al. (2021) where the author indicates a 
neonatal seizure detection model with high detection ratio through CNN yet a combined form of CNN.  
  
 The research work by Sunaryono et al. (2022) applies a one-dimensional CNN-DNN combined model while it 
is successful in the classification of seizures, the model gives rise to some computational constraints. In 2024, 
Amrani et al work on an explainable hybrid DNN model, which displays high accuracy and interpretability at 
the cost of the demand for large amounts of training data.  Lately, Hassan et al. (2022) developed a 1D CNN in 
combination with a supervised machine learning concept; it has moderate time complexity and high accuracy, 
but it requires pre-processing frequently. Shanmugam and Dharmar (2023) employ a CNN-LSTM architecture 
as the method of providing automatic seizure detection, however several levels of scalability concerns are 
pointed out.  Samee et al. (2022) attempt to fuse RNN and biLSTM, which work well in diagnosing the medical 
condition but encounters high computational cost. Prasanna et al. (2023) employs an integrated CNN 
methodology alongside thorough feature selection and an RNN-BLSTM classifier, achieving a high detection 
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rate, although it is hampered by prolonged training durations  
 Malekzadeh et al. (2021) demonstrate enhanced seizure detection through advanced computational techniques 
by integrating both handcrafted and DL features. In diagnosing the focal and generalized epilepsy, Najafi et al. 
(2022) employ an RNN-LSTM model, which offers very high accuracy though demanding extensive data pre-
processing. Jibon et al. identify a DeepRNN based hybrid framework and sequential graph convolutional 
network to boost the detection performance, however, they encounter scalability issues. For instance, Qiu et al. 
(2023) uses a difference attention ResNet-LSTM network that enhances the detection accuracy while increasing 
the model’s implementation difficulty. 
 
Ahmad et al. (2023) proposes a mixed DL procedure that is highly accurate for various data sizes while 
sustaining reasonable computational complexity, although the procedure’s hyperparameters were optimized. 
New hybrid models which are employed by Polat and Nour (2020) offers proper detection but encounters 
difficulties when it comes to real-time implementation. Pandey et al. (2023) also design a CNN – LSTM 
integrated model for automated seizure analysis but it tends to be computer resource intensive. Saidi et al. (2021) 
construct a classifier that is based on CNN-SVM and achieves high detection while possibly have hard scaling 
capabilities.  
  
 Similar to the HCLA_CGiLU model presented by Natu et al. (2023), HCLA_CBiGRU increases the detection 
rates but has computational issues. Behnam and Pourghassem (2015) employed the periodogram pattern feature-
based seizure detection algorithm that detects well but it takes a lot of computational power. Ali and Abd-
Elfattah combined an SVM-LOA hybrid model, which gives high detection rates, but suffers from several 
scalabilities. Yogarajan et al. (2023) proposed a binary dragonfly algorithm and deep neural network, which has 
a high detection in accuracy, but relatively high time complexity. Mekruksavanich, and Jitpattanakul (2024) 
presented the hybrid convolutional attention DL network for efficient detection, but it poses some issues of 
model complexity. Yuan et al. (2022) employed logarithmic Euclidean-Gaussian mixture models which are 
much effective in detection but computationally intensive.  A CNN-aided factor graph method is proposed by 
Salafian et al. (2021) which have efficient detection, but scalability may be a problem. The problem and 
detection methods are presented by Sameer and Gupta (2022), using a classical – quantum hybrid network with 
issues regarding implementation. The study Zhang et al. (2024) feature fusion and hybrid DL models on the 
same data for efficient seizure detection and prediction though increases the need for training data. Liu et al. 
(2020) use the symmetric and hybrid bilinear models and provide high detection accuracy but at the same time, 
lead to a high computational overhead. Table 3 provides a comprehensive overview of various hybrid models 
developed by different authors, including their publication year and the reported accuracy percentage has been 
depicted in figure 3.   
  

Work Type of RNN/LSTM 
architecture used 

Strengths Weaknesses 

[81] Hybrid Time-Frequency EEG 
Input with Deep Learning 

Improved accuracy in 
seizure detection using 
hybrid features; effective 
for diverse EEG signal 
characteristics. 

Potentially higher 
computational cost due to 
hybrid feature extraction; may 
require extensive data 
preprocessing. 

[82] 1D-Convolutional LSTMNN Proficient in capturing both 
spatial features and 
temporal features, thereby 
improving the accuracy of 

May suffer from overfitting on 
small datasets; requires careful 
tuning of hyperparameters. 
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seizure prediction  
[83] Hybrid approach combining 

heuristic-based weighted feature 
selection with ensemble 
learning techniques 

High accuracy due to 
feature selection and 
ensemble methods; robust 
against noisy data. 

Increased complexity in model 
training; longer training times 
due to ensemble methods. 

[84] Deep Learning with EEG Data High detection accuracy; 
effective in capturing 
complex EEG patterns. 

Requires large labeled datasets; 
high computational resource 
demands. 

[85] Hybrid Model integrating 
ResNet50 with Support Vector 
Machines(SVM) 

Integrates the advantages 
of deep learning and 
traditional machine 
learning to enhance 
accuracy, proving effective 
in feature extraction 

Increased model complexity; 
may require extensive 
computational resources. 

[86] Fusion of Artificial Neural 
Network with Hybrid Deep 
Learning 

Improved detection 
accuracy due to fusion 
approach; adaptable to 
different types of EEG 
data. 

Complex model architecture; 
higher computational demands. 

[87] Scalogram-Based Hybrid CNN 
Model 

High accuracy in time-
frequency domain analysis; 
effective in handling non-
stationary signals. 

Requires extensive 
computation; may not perform 
well on low-quality EEG 
signals. 

[88] Hybrid approach utilizing 
nonlinear EEG data features 
combined with adaptive signal 
decomposition techniques 

Effective in capturing 
nonlinear EEG patterns; 
improves detection 
accuracy. 

Complex feature extraction 
process; may be sensitive to 
noise. 

[89] Hybrid feature extraction using 
wavelets based on atomic 
functions 

Enhanced patient-
independent detection; 
robust to inter-subject 
variability. 

High computational cost; 
complex wavelet function 
design. 

[90] CNN and Probabilistic 
Graphical Modeling 

Combines deep learning 
with probabilistic 
modeling for better 
detection; handles 
multichannel EEG data 
effectively. 

Model complexity is high; may 
require large datasets for 
effective training. 

[91] AHW-BGOA-DNN Combines the Adaptive 
Harmony Whale (AHW) 
and Binary Grey Wolf 
Optimizer (BGOA) with 
Deep Neural Networks 
(DNN) for high accuracy; 
robust against noisy data. 

Complex model structure; may 
require extensive 
computational resources. 

[92] MDH-CNN-BiLSTM  Proficient in capturing both 
spatial features and 
temporal features; high 
accuracy in EEG signal 
scrutiny. 

Increased computational 
complexity; may require 
significant data preprocessing. 

[93] CNN-GRU Hybrid Model Combines CNN with GRU 
to enhance seizure 
detection, effectively 

Potential overfitting on small 
datasets; requires careful tuning 
of hyperparameters. 
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managing sequential data. 
[94] Hybrid Ensemble Learning 

Framework 
Utilizes ensemble learning 
to improve accuracy and 
robustness; effective with 
diverse EEG datasets. 

Increased model training time; 
higher computational demands 
due to ensemble techniques. 

[95] SE-TCN-BiGRU Hybrid 
Network 

Combines Squeeze-and-
Excitation (SE) blocks, 
Temporal Convolutional 
Networks (TCN), and Bi-
directional GRU for 
enhanced seizure 
detection. 

High model complexity; may 
require large datasets for 
optimal performance. 

[96] CNN Ensemble Model Uses an ensemble of CNNs 
for neonatal seizure 
detection; improves 
robustness and accuracy. 

High computational cost; may 
require extensive tuning for 
optimal performance. 

[97] Hybrid 1D-CNN and DNN 
Model 

Combines 1D CNN with 
DNN for classification; 
effective for time-series 
data. 

Complexity in model 
architecture; may suffer from 
overfitting on smaller datasets. 

[98] Hybrid DNN Offers interpretability in 
distinguishing between 
seizure and non-seizure 
events, as well as in seizure 
localization, utilizing 
multi-dimensional EEG 
signals. 

High computational resource 
requirements; complexity in 
understanding the model's 
interpretability aspects. 

[99] Hybrid 1D-CNN and ML 
Approach 

Combines 1D-CNN with 
traditional machine 
learning techniques; 
effective for real-time EEG 
data analysis. 

May require extensive 
hyperparameter tuning; 
potential issues with 
overfitting. 

[100] CNN-LSTM Hybrid Network Integrates CNN with 
LSTM networks to 
enhance seizure detection 
capabilities; handles both 
spatial and temporal 
features well. 

High computational demands; 
may require large labeled 
datasets. 

[101] RNN and BiLSTM Fusion Combines RNN with 
BiLSTM for accurate 
seizure diagnosis; handles 
sequential data effectively. 

High computational cost; may 
require extensive training data. 

[102] Combined CNN with 
exhaustive feature selection 
techniques and an RNN-
BLSTM classifier 

Integrates CNN with RNN-
BLSTM for extracting 
features and classification; 
high accuracy in seizure 
detection. 

Complex model architecture; 
longer training time due to 
exhaustive feature selection. 

[103] integrating both handcrafted 
and DL features 

Combines traditional 
feature extraction with DL 
for better detection 
accuracy; effective in 
diverse datasets. 

High model complexity; may 
require significant 
preprocessing and 
computational resources. 
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[104] RNN-LSTM Concentrates on 
differentiating between 
focal and generalized 
epilepsy through the use of 
RNN-LSTM networks; 
good generalization across 
different seizure types. 

May struggle with unbalanced 
datasets; potentially high 
computational demands. 

[105] DeepRNN based hybrid 
framework and sequential 
graph convolutional network 

Enhanced seizure 
detection; effective in 
capturing complex 
relationships in EEG data. 

High computational and 
memory requirements; may 
require large datasets. 

[106] Difference Attention ResNet-
LSTM Network 

Combines ResNet with 
LSTM using difference 
attention mechanisms for 
better seizure detection; 
high accuracy. 

Increased model complexity; 
requires careful tuning and 
large datasets for training. 

[107] Hybrid Deep Learning 
Approach 

Integrates multiple DL 
models to achieve robust 
seizure detection; 
adaptable to various EEG 
signal patterns. 

High computational demands; 
complex model training and 
deployment. 

[108] Hybrid Models with EEG 
Signals 

Utilizes hybrid models 
combining multiple 
techniques for effective 
seizure detection; robust 
against noise. 

Complex model design; may 
require extensive 
hyperparameter tuning. 

[109] Hybrid CNN and LSTM Model high accuracy in automated 
seizure detection. 

High computational resource 
requirements; potential 
overfitting on small datasets. 

[110] Hybrid CNN-SVM Classifier Effective classification of 
EEG signals; good 
performance with limited 
data. 

Complex model integration; 
requires careful parameter 
selection for optimal 
performance. 

[111] HCLA_CBiGRU: Hybrid 
Convolutional Bidirectional 
GRU Model 

Combines CNN with Bi-
GRU for enhanced 
extraction of features and 
temporal analysis; high 
detection accuracy. 

Increased model complexity; 
requires large datasets for 
effective training. 

[112] Periodogram Pattern Feature-
Based Detection with Multi-
Layer Perceptron (MLP) and 
Ant Colony Optimization 

Uses periodogram features 
with a hybrid model 
combining MLP and Ant 
Colony Optimization for 
seizure detection; 
optimized for efficiency. 

Limited scalability; may 
struggle with large and 
complex datasets. 

[113] Support Vector Machine (SVM) 
with Lion Optimization 
Algorithm (LOA)  
SVM-LOA Hybrid Model 

Improved seizure detection 
in long-term EEG 
recordings, demonstrating 
strong generalization 
capabilities. 

High computational demands; 
requires extensive parameter 
tuning. 

[114] Binary Dragonfly Algorithm 
and DNN 

accurate seizure detection; 
robust against noise. 

Complex model structure; 
longer training times due to the 
optimization algorithm. 
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[115] hybrid convolutional 
attention DL network 

Improved seizure 
detection; Achieving high 
accuracy 

High computational resources 
required; potential overfitting 
with small datasets. 

[116] Logarithmic Euclidean-
Gaussian Mixture Models (LE-
GMMs) and Deep Forest 
Learning 

automatic seizure 
detection; effective with 
complex EEG data. 

Increased complexity in model 
training; may require extensive 
preprocessing. 

[117] CNN-Aided Factor Graphs Combines CNN with factor 
graphs for efficient seizure 
detection; reduced 
computational cost 
compared to traditional 
methods. 

May struggle with large-scale 
datasets; requires careful 
parameter tuning. 

[118] Hybrid Classical-Quantum 
Network 

Integrates classical and 
quantum computing 
techniques for seizure 
detection; offers potential 
for enhanced speed and 
accuracy. 

Quantum components are still 
experimental; limited 
accessibility and high 
complexity. 

[119] Feature Fusion and Hybrid DL 
Model 

Blends feature fusion with 
hybrid DL model to detect 
and predict seizures, 
adaptable to different 
seizure types. 

High computational demand; 
requires extensive labeled data 
for training. 

[120] Symmetric and Hybrid Bilinear 
Model 

Uses symmetric and hybrid 
bilinear models for seizure 
classification; effective for 
multi-channel EEG data. 

Increased model complexity; 
may require significant 
computational resources and 
tuning. 

Table 3: Analysis of Hybrid based existing solutions. 

 
Figure 3: Accuracy plot for hybrid models. 
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3. Deep Learning Methods for Seizure Prediction 
3.1. Introduction to Seizure Prediction 

3.1.1. Differences between detection and prediction. 
Detection and prediction of seizure are two different but important goals while dealing with epilepsy. Detection 
captures a seizure when it is happening hence allowing the seizing party to attend to it conversely, Prediction 
aims to foresee the occurrence of seizures, thereby enabling the implementation of preventive measures. The 
rationale for seizure prediction is in the application of the technology, where the advantages in terms of 
enhanced care, patient safety, and significantly improved quality of life for patients are substantial. 
 
Importance and challenges of predicting seizures. 
However, the prediction of seizures remains problematic because of the following reasons. Thus, the nature of 
the signal and its fluctuations make it challenging to distinguish set precursory patterns for seizures. Further, it 
is exceedingly difficult to obtain both real-time processing and substantial accuracy and comparably negligible 
false-positive rates because pre-seizure signs are quite subtle and frequently ambiguous. The effective solution 
to these challenges and building of proper seizure prediction systems require the incorporation of sound 
computational algorithms and big data analysis.  
 

3.1. Techniques and Models 
Recurrent neural networks (RNNs) were considered by Bongiorni and Balbinot (2020) for the prognosis of 
seizures, focusing on their capacity to manage sequential information and model temporal features in EEG 
signals. Even though RNNs are appropriate for handling sequential data, they are not without their own 
drawbacks like the gradient vanishing issue, or the problem of excessive computation. Usman et al. (2020) 
provided a comprehensive evaluation of various deep learning methods for seizure prediction, offering an 
overall assessment of their performance in comparison to the aforementioned models. Thus, they emphasise the 
variety of advantages of different models, however, admit the difficulty and highly diverse trial-and-error 
process of improving these strategies. Analogous to the research conducted by Usman et al. (2021), the authors 
devised an ensemble learning model incorporating multiple deep neural network architectures to enhance 
prediction accuracy. work well if we are able to combine the strengths of individual models but can be 
cumbersome to compute and very complex.  Dissanayake et al. (2021) dealt with the development of seizure 
predictor that is not solely based on the patient’s data but rather employs the scalp EEG signals. Unlike other 
works, their intervention approach is more generalizable across different patients, which makes it more usable 
in practice. Nonetheless, the accomplishment of patient-independent models can be complex and the models’ 
performance can be inconsistent across patients.  In a recent study, Jana and Mukherjee (2021) proposed a 
method based on deep learning that takes into account an innovative process of channel selection regarding the 
EEG that results in a better efficiency of the model while requiring less data. While this approach enhances the 
two previous advantages, it also disadvantages the model by providing less information needed for the 
computation. Prathaban and Balasubramanian (2021) incorporated dynamic learning combining the EEG 
reconstructed by sparsity technique with CNN classifier. It is less noisy and models give higher accuracy but it 
requires specific hardware and setting to get better result.  Comparative analysis of existing solution for Seizure 
Prediction is depicted in Table 4. The accuracy of seizure prediction models reported by different authors has 
been plotted against their publication years in Figure 4. 
 

Work Type of Deep learning used Strengths Weaknesses 
[121] RNN Effective for sequential 

data like EEG; can capture 
temporal dependencies for 
seizure prediction. 

High computational cost; may 
suffer from 
vanishing/exploding gradients. 

[122] DL Techniques Utilizes multiple DL Requires large datasets; high 
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models for epileptic 
seizure prediction; high 
accuracy with complex 
data. 

computational power needed. 

[123] Deep Learning-Based Ensemble 
Learning 

Combines multiple deep 
learning models to improve 
prediction accuracy; robust 
against data variability. 

Increased complexity and 
computational cost; potential 
overfitting with small datasets. 

[124] Patient-Independent Seizure 
Prediction using Deep Learning 

Focuses on generalizability 
across different patients; 
high accuracy with scalp 
EEG signals. 

May require extensive data 
preprocessing; high 
computational demand. 

[125] Deep Learning with EEG 
Channel Optimization 

Optimizes EEG channels 
for efficient seizure 
prediction; reduces 
computational load. 

Channel selection may lead to 
loss of critical information; 
complex to implement. 

[126] Sparsity-Based EEG 
Reconstruction with Optimized 
CNN 

Combines sparsity-based 
reconstruction with CNN 
for improved seizure 
prediction; efficient feature 
extraction. 

Complex optimization process; 
high computational resources 
required. 

[127] Deep Learning for Seizure 
Prediction 

Efficient seizure prediction 
using deep learning; high 
accuracy. 

Requires extensive datasets for 
effective training and may be 
susceptible to overfitting 

[128] IoT-Based Seizure Prediction 
System 

Integrates deep learning 
with IoT for real-time 
seizure prediction; efficient 
and scalable. 

Dependent on network 
connectivity; security and 
privacy concerns. 

[129] Automated Seizure Prediction Uses advanced algorithms 
for fully automated seizure 
prediction; reduces human 
intervention. 

High computational cost; may 
require extensive tuning and 
validation. 

[130] DL Networks utilizing multi-
feature fusion and transfer 
learning 

Combines transfer learning 
with multi-feature fusion 
for accurate seizure 
prediction; adaptable to 
different datasets. 

High complexity; may require 
significant computational 
resources and expertise. 

[131] DL and Big Data for Seizure 
Prediction 

Combines big data 
analytics with DL; aims for 
a mobile system for real-
time prediction. 

High computational 
requirements; potential privacy 
concerns with big data. 

[132] Patient-Independent Seizure 
Prediction using DL 

Focuses on generalization 
across patients; uses deep 
learning models to improve 
prediction accuracy. 

May require extensive data 
preprocessing; high 
computational demand. 

[133] Model Uncertainty Learning for 
Seizure Prediction from EEG 
signals 

Incorporates model 
uncertainty learning to 
improve prediction 
reliability; reduces false 
positives. 

Complex implementation; 
requires large amounts of 
training data. 

[134] LSTM DL network Utilizes LSTM networks to 
capture long-term 

Computationally intensive; 
may suffer from vanishing 
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dependencies in EEG 
signals; effective in time-
series prediction. 

gradients in very long 
sequences. 

[135] End-to-End DL Provides a complete end-
to-end solution; reduces 
manual feature extraction. 

High complexity and 
computational cost; requires 
large annotated datasets. 

[136] CNN-LSTM Architecture  Integrates CNNs for 
extracting features with 
LSTM networks for 
identifying temporal 
patterns; effective in  
seizure prediction. 

Increased model complexity; 
may require significant 
computational resources. 

[137] ML for Seizure Prediction 
Using EEG 

Uses machine learning 
algorithms to predict 
seizures from EEG signals; 
interpretable model. 

May have limited accuracy 
compared to deep learning 
models; dependent on feature 
selection. 

[138] Critical Review of ML Seizure 
Prediction 

Discusses challenges and 
common practices in ML-
based seizure prediction; 
highlights potential issues. 

Focuses on criticism, offering 
fewer practical solutions; may 
not provide actionable insights 
for system design. 

[139] Adaptive Feature 
Representation Learning for 
Seizure Prediction 

Adapts feature 
representation dynamically 
to improve prediction 
accuracy; efficient in 
handling variability in data. 

Complexity in feature 
adaptation; may require 
extensive tuning and validation. 

[140] Energy-Efficient NN Focuses on reducing 
energy consumption while 
maintaining high 
prediction accuracy. 

May compromise on accuracy 
for energy efficiency; could be 
challenging to implement in 
real-time systems. 

[141] Supervised Contrastive 
Learning and Adder Network 
for Seizure Prediction 

Patient-specific approach; 
uses contrastive learning to 
improve feature 
representation and 
prediction accuracy. 

High complexity in training; 
may require substantial 
computational resources. 

[142] Spatio-Temporal-Spectral 
Hierarchical Graph 
Convolutional Network 

Employs graph 
convolutional networks for 
personalized seizure 
prediction, incorporating 
spatial, temporal, and 
spectral data. 

Complex model structure; May 
necessitate a substantial 
volume of labeled data for 
effective training 

[143] Efficient DL System for Seizure 
Prediction 

Designed for high 
efficiency in seizure 
prediction; may be suitable 
for real-time applications. 

The trade-off between 
efficiency and prediction 
accuracy; implementation 
might require fine-tuning. 

[144] Integrated model for seizure 
prediction independent of 
individual patient data 

Combines multiple DL 
techniques to generalize 
across patients. 

Increased model complexity; 
requires more computational 
power and data processing. 

[145] Interpretable Deep Learning 
Classifier for Seizure Prediction 

Focuses on model 
interpretability, allowing 
better understanding of the 
decision process. 

Enhancing interpretability may 
result in reduced accuracy or 
greater model complexity 

[146] Graph CNNs Utilizes graph structures Computationally intensive; 
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for robust seizure 
prediction; handles non-
Euclidean data effectively. 

may require significant 
resources for training and 
inference. 

[147] EEG Synchronization Patterns 
for Seizure Prediction using 
Bag-of-Wave Features 

Focuses on EEG 
synchronization patterns, 
providing a novel feature 
extraction method for 
seizure prediction. 

Feature extraction process may 
be complex; model 
performance may vary across 
different datasets. 

[148] Multiscale Domain Adaptation 
Networks 

Seeks to extract stable 
features from non-
stationary brain signals. 
effective in handling 
variability in EEG signals. 

High complexity; requires 
careful tuning and significant 
computational power. 

[149] Consistency-Based Training 
approach 

Introduces a novel training 
strategy that focuses on 
consistency to improve 
prediction accuracy. 

Complexity in training; might 
require large, diverse datasets 
for effective training. 

[150] Seizure Prediction through 
Contrastive Learning with a 
Spatio-Temporal-Spectral 
Network 

Effective in learning robust 
features; improves the 
model's capability to 
differentiate between 
seizure and non-seizure 
occurrences 

High computational cost; may 
require extensive tuning and 
large datasets. 

[151] Multi-View CNN for Seizure 
Prediction 

Utilizes multi-view CNNs 
to capture different 
perspectives of EEG data, 
improving accuracy. 

Increased model complexity; 
might be resource-intensive to 
train and deploy. 

[152] Common Spatial Pattern and 
CNN for Seizure Prediction 

Combines feature 
extraction techniques with 
CNN for improved 
prediction accuracy. 

Requires careful feature 
extraction; may not generalize 
well across different patient 
datasets. 

[153] Self-Explaining Deep Learning 
Model with a Multi-Scale 
Prototypical Part Network 

Focuses on model 
interpretability, allowing 
insights into the decision-
making process. 

Trade-off between 
interpretability and complexity; 
might be challenging to 
implement. 

[154] Combining Vision 
Transformers with Data 
Uncertainty Learning for 
Seizure Prediction 

Combines vision 
transformers with 
uncertainty learning, 
providing robust 
predictions. 

High computational 
requirements; complex model 
architecture. 

[155] Semi-Dilated CNNs for Seizure 
Prediction 

Utilizes semi-dilated 
convolutions for efficient 
seizure prediction, 
balancing accuracy and 
computational efficiency. 

Potential overfitting if not 
properly tuned; might require 
large datasets. 

[156] Automatic Feature Learning 
with Intracranial EEG 

Concentrates on 
quantitative analysis and 
automated feature 
extraction to improve 
prediction accuracy. 

Requires intracranial EEG data, 
which might not be available 
for all patients; complex model 
training. 

[157] Deep Transformer Model for 
Seizure Prediction 

Uses transformers for 
capturing temporal 

High complexity; 
computationally intensive and 
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relationships in EEG data; 
improving prediction 
performance. 

might require advanced 
hardware. 

[158] Deep Learning for Output 
Regularization of Seizure 
Prediction Classifier 

Focuses on regularizing the 
output to improve 
prediction reliability. 

Might reduce model flexibility; 
implementation can be 
challenging. 

[159] Two-Layer LSTM Model Uses LSTM layers to 
capture temporal 
dependencies in EEG data, 
improving prediction 
accuracy. 

Computationally expensive; 
may require significant 
memory and processing power. 

Table 4: Analysis of existing solution for Seizure Prediction 

  
Figure 4: Accuracy plot for seizure prediction models 

 
 3.2.1. Analysis of temporal and spectral features used. 

The temporal and spectral properties of seizures used in the models are recognized to be important and the 
increase in model performance caused by their use is evident. Bongiorni and Balbinot (2020) used RNNs to 
extract temporal relationship, which is perhaps the most critical feature of sequential data. The result of 
combining both temporal and spectral features was noted to improve on the performance as pointed out by 
Usman, Khalid and Aslam in their study of 2020. In their subsequent study (Usman, Khalid, and Bashir, 2021) 
they found that ensemble methods, where temporal and spectral features are combined, enhances robustness. 
Dissanayake et al. (2021) showed that the feature of this type allows achieving patient-independent results, and 
Jana & Mukherjee (2021) selecting EEG channels also pointed out that feature efficiency norms could be 
improved. 
 
3.3 Comparative Analysis of Prediction Models 
Several merits and challenges of each study and deep learning technique for seizure prediction are evidenced 
from the reviewed studies alongside the influence of the characteristics of seizure datasets on the prediction 
performances. 
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3.3.1. Strengths and Limitations: 
RNNs used by Bongiorni et al (2020) is quite effective in modelling temporal dependence characteristic of EEG 
data, that is, data that is modelled sequentially. However, the RNNs in general, may face the vanishing gradient 
problem when working with long term dependency and may be computationally expensive. 
 
As done by Usman et al (2020) the strength of this study is that it investigates diverse deep learning approaches 
considering temporal and spectral domains. However, it may limit the capability of dealing with high 
dimensionality and complexity of the EEG data should without the need of optimal methods. Usman et al (2021) 
later explains that the ensemble learning technique helps to strengthen the performance of multiple models. This 
approach can successfully overcome shortcomings of single models or predictors but at the same time may 
increase computational demand and requires a substantial amount of training data. 
 
The Dissanayake et al. (2021) work that gives the emphasis to the patient-independent prediction may be the 
best target in this regard to achieve the goal of generalizing the model across patient populations. However, one 
downside of generalization is when the data set is not diverse or some participants’ patterns are not sufficiently 
represented. Jana et al (2021) enhance the computational speed without deteriorating the prediction 
performances. This limitation might mean that channel optimisation could potentially exclude information that 
is useful to performance. 
 
3.3.2. Impact of Dataset Characteristics: 
The size, diversification, and the quality of data substantially affect the prediction ability of the system. Some 
papers published in 2021, such as Usman et al (2021) and Dissanayake et al. (2021), underlined that only with 
big and diversified data it is possible to train strong models. Often, when the used datasets are rather limited in 
size or do not represent the population sufficiently, it is found that models cannot effectively learn to deal with 
the variability of EEG signals and obtain over fitted or significantly inferior performance. 
  
4. Bot/Chatgpt based Seizure prediction/detection 
Kasthuri et al. (2024) introduce a chatbot designed for epilepsy patients, leveraging DL and Natural Language 
Processing (NLP) to provide personalized precautionary advice. This chatbot aims to enhance patient 
engagement and offer timely, tailored support. However, its effectiveness is contingent on the quality of input 
data and may face challenges in complex medical scenarios. 
 
Tirumala et al. (2024) assess the performance of AI models ChatGPT and ChatSonic in addressing patient 
queries about epilepsy. This research assesses the precision and effectiveness of these models in providing 
reliable information. While these AI models can enhance patient education, their responses may sometimes be 
inaccurate or raise data privacy concerns. 
 
Pandey et al. (2022) discuss "Ted the Therapist," a mental healthcare chatbot that employs NLP and Deep 
Learning to support mental health. This chatbot offers anonymity and accessibility, which can be beneficial for 
users hesitant to seek traditional therapy. Nevertheless, it may fall short in addressing severe mental health 
issues and cannot replace professional therapy.  
 
Lupión et al. (2022) explore the use of effordable IoT devices integrated with a federated ML algorithm for 
seizure detection. This approach aims to make seizure monitoring more affordable and accessible, particularly 
in resource-limited settings. Nevertheless, it might face issues concerning device precision, data privacy, and 
the necessity for comprehensive validation 
 
Landais et al. (2024) discuss the potential of AI large language models in improving epilepsy care. They 
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highlight the promise of these models in providing valuable insights and support to patients and healthcare 
providers. Yet, the practical implementation and reliability of these models in real-world settings require further 
evaluation. 
 
Yang et al. (2024) introduce EpiSemoGPT, a fine-tuned large language model designed for localizing 
epileptogenic zones based on seizure semiology. This model demonstrates performance comparable to that of 
expert epileptologists, offering a significant advancement in precision for epilepsy diagnosis. However, its 
effectiveness and integration into clinical practice need further exploration. 
 
Boßelmann et al. (2023) question whether AI language models like ChatGPT are ready to enhance the care of 
individuals with epilepsy. This paper explores the possible advantages and drawbacks of these models in clinical 
settings, underscoring the need for ongoing research to ensure their reliability and effectiveness. 
 
Recent research demonstrates the transformative potential of AI and NLP in epilepsy care. Kasthuri et al. (2024) 
developed a precaution chatbot using NLP and deep learning, enhancing patient support but facing challenges 
with input quality and complexity. Tirumala et al. (2024) assessed ChatGPT and ChatSonic's responses to 
epilepsy queries, revealing benefits in patient education but also issues with accuracy and privacy. Pandey et al. 
(2022) created "Ted the Therapist," a chatbot offering anonymous mental health support, yet it struggles with 
severe conditions. Lupión et al. (2022) presented a cost-effective seizure detection system using IoT devices 
and federated learning, promising affordability but raising concerns about accuracy and privacy. Landais et al. 
(2024) explored AI language models in epilepsy care, noting their potential and need for practical validation. 
Yang et al. (2024) presented EpiSemoGPT, a model for precise epileptogenic zone localization, showing 
performance on par with experts but requiring further integration studies. Boßelmann et al. (2023) evaluated AI 
language models like ChatGPT for epilepsy care, highlighting both promise and the need for more research to 
address practical issues. Overall, these studies highlight AI and NLP’s potential to enhance epilepsy 
management while addressing challenges in accuracy and clinical application. Table 5 depicts the analysis of 
existing solution for seizure detection and prediction based on Bot/GPT models. Figure 5 visualizes the accuracy 
of bot/chatgpt models respectively reported by different authors, plotted against their publication years. 
 

Work Technique Used Merits Demerits 
[160] NLP, Deep Learning 

Sequential Model 
Provides personalized 
precautionary advice for 
epilepsy patients through a 
chatbot, enhancing 
accessibility and patient 
engagement. 

May have limitations in 
handling complex medical 
scenarios; dependent on 
quality of input data. 

[161] Comparison of AI Models 
(ChatGPT, ChatSonic) 

Evaluates the effectiveness 
of AI-generated responses, 
potentially improving 
patient education and 
support. 

AI models may provide 
inaccurate or inappropriate 
responses; ethical concerns 
regarding patient data 
privacy. 

[162] NLP, Deep Learning Provides mental healthcare 
support through a chatbot, 
offering accessibility and 
anonymity to users. 

Limited in addressing 
severe mental health 
conditions; may not replace 
traditional therapy methods. 

[163] IoT, Federated Machine 
Learning 

Low-cost solution for 
seizure detection, 
enhancing accessibility in 
resource-limited settings. 

May face challenges in data 
privacy and security; 
effectiveness depends on 
device accuracy. 
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[164] AI Large Language Models Explores the potential of 
LLMs in improving 
epilepsy care, offering 
innovative solutions for 
patient management. 

LLMs may provide 
inconsistent advice; ethical 
concerns regarding AI in 
healthcare. 

[165] Fine-tuned LLM 
(EpiSemoGPT) 

Achieves performance 
comparable to specialists in 
localizing epileptogenic 
zones, aiding in clinical 
decision-making. 

Still in preclinical stages; 
may require extensive 
validation before 
widespread use. 

[166] AI Language Models 
(ChatGPT) 

Critically evaluates the 
readiness of AI models to 
support epilepsy care, 
identifying potential 
benefits and challenges. 

Still in preclinical stages; 
may require extensive 
validation before 
widespread use. 

 
Table 5: Analysis of existing solution based on Bot/GPT models 

 
Figure 5: Accuracy plot for Bot/GPT models 

5. Datasets and Preprocessing  
5.1. Commonly Used Datasets 

Free EEG datasets are the initial primary sources of information for epilepsy, which provides various and large 
data volumes that is required to create and fine-tune seizure prediction and detection algorithms. These datasets 
contain actual recorded EEG signals and usually come with separate periods of seizures and non-seizure 
activities and are duly marked for the beginning and ending of seizures by an expert. Key datasets include 
CHB-MIT Scalp EEG Database: The data set comprises of EEG signals of 23 paediatrics patients suffering 
from intractable seizures [167]. It gives a large amount of information with extensive annotations, which makes 
it a reference source for many seizure prediction researches.  
TUH EEG Corpus: This time, the dataset is characterized by its size and heterogeneity: it comprises EEG 
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recordings of patients of different age and with various diseases. They are one of the biggest, more accessible 
datasets freely available to the general public it aids in the development of generalized models which can be 
effective on as many patients as possible [168].  
 
EPILEPSIAE Database: It is characterized by the collection of high-quality and long-duration EEG recordings 
from several epilepsy centers [169]. This also contains annotations of recordings of seizure and non-seizure 
periods which are used in the development and assessment of the predictive models [170]. 
 
 EEG Database from the University of Bonn: This dataset is utilized for binary classification tasks where the 
data contains seizure and other data. Derived from 5 fscal, each consisting of 100 single-channel EEG segments, 
this dataset is valuable for initial model development and comparative analysis [171]. 
 
NeuroVista Seizure Prediction Dataset: Long-term EEG, together with the implanted devices in the patient’s 
body, gives the data for the dynamics of the seizures and had not been studied before as a dataset [172]. 
  

5.2. Data Preprocessing Techniques 
EEG data usually undergoes certain procedures which are aimed at cleaning the data and preparing it for the 
further analysis. It should be noted that all the mentioned reference papers use several stages of signal 
preprocessing to enhance the quality of EEG signals for better models’ performance. Some of the significant 
preprocessing techniques include: 
 
5.2.1. Artifact Removal: 
   Independent Component Analysis (ICA): Used by many studies, including Usman et al. (2021), ICA 
separates EEG signals into separate components, assisting in eliminating artifacts like muscle contractions, eye 
blinks, and other non-neural noise [173]. 
 
   Wavelet Transform: Jana and Mukherjee (2021) applied the wavelet transforms to think about the EEG 
series which makes it easy for the series to get rid of noises and artifacts [174]. 
 
5.2.2. Normalization and Standardization: 
   Z-score Normalization: Typically applied to standardize the data to have a mean of zero and a standard 
deviation of one, which helps in comparing different channels and recording sessions. Examples of this 
technique were described in such work as Dissanayake et al. (2021) [175]. 
 
   Min-Max Scaling: The following procedure is also employed to adjust the EEG signals to the range of 0 to 
1, for instance in the work of Bongiorni and Balbinot (2020). 
 
5.2.3. Filtering: 
   Band-pass Filtering: In a similar manner, Usman et al. (2020) use the band-pass filters to maintain the 
desirable frequencies ranging between 0.5 Hz to 40 Hz and filter out other frequencies particularly those 
considered as noisy bands. 
 
   Notch Filtering: Employed to eliminate high frequency interferences from the power line typically at 50 or 
60 Hz to prevent it from influencing the analysis. This technique was used in various studies but notably in the 
studies by Usman et al., 2021. 
 
5.2.4. Segmentation: 
   Fixed-Length Segmentation: EEG data is normally analyzed in forms of segments or windows of a specific 
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length and width so that they can be analyzed separately. This method is applied in most of the related studies 
like Jana and Mukherjee (2021) to help in the processing and analysis of data from continuous EEG. 
 
   Event-Based Segmentation: In some cases, segments are created based on some events, for instance, the 
beginning of a seizure as this will enable researchers to concentrate on the significant occurrences in the EEG 
recordings. 
 
The abovementioned preprocessing methods are vital for improving the quality of EEG data, reducing noise 
and artifacts, as well as deriving relevant features for the proper identification and forecasting of seizures. 
 
5.3 Challenges in Data Handling 
Processing EEG data with the purpose of seizure detection and prediction requires overcoming a number of 
critical problems. Signal interferences originating from muscle movements and blinks or from external sources, 
may overlay signals of interest, further complicating the analysis. Furthermore, the nature of seizures is 
characterized as rare events while non-seizure epochs occur more frequently, which introduces additional 
challenges in the training. Due to the characteristics of EEG data with numerous channels, and high sampling 
rates, the computational costs for data processing are high. The cyclical nature of the data is a significant 
challenge, coupled with the fact that no two patients’ EEG patterns can vary, and even the same patient may 
show unlike patterns at different times. Detection of seizure event is very significant for better diagnosis and 
treatment, yet the process of labeling these events might be quite subjective and very time consuming as well. 
Last but not the least, the legal and ethical issues concerning the protection of patient’s privacy and 
confidentiality of EEG information in clinical practice is often difficult. 
 
6.  Evaluation Metrics and Performance Analysis  

• Accuracy: Relates the percentage of accurately detected seizures and non-seizures against 
all detected events.  

• Sensitivity: High sensitivity is very effective and important in reducing the number of 
seizures that are not detected. 

• Specificity: High specificity enables the model not to give a lot of false signals. 
• Precision: Estimates the percentage of the predicted seizures that are real, which is a 

measure of the accuracy of the model’s seizures prediction. 
• F1 Score: The cosy of recall that eliminates the false positive rate as well as the false 

negative rate that keeps the balance of measurement. 
• Area Under the ROC Curve (AUC-ROC): Evaluates the model's ability to distinguish 

between seizure and non-seizure events across various thresholds, with higher values 
indicating better performance. 

•  
7. Discussion  
7.1.   Summary of Key Findings 
7.1.1.  Predictive Performance and Techniques: 
   Deep Learning Models: Recent studies have leveraged various DL architectures for epileptic seizure 
prediction, showing promising results. CNNs and LSTM networks are frequently used due to their ability to 
capture spatial and temporal patterns in EEG data. For instance, Usman et al. (2020) demonstrated effective 
seizure prediction using DL techniques, while Tsiouris et al. (2018) and Xu et al. (2020) showcased the strength 
of LSTM networks in capturing long-term dependencies. 
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   Ensemble Methods: Ensemble approaches, such as those discussed by Usman et al. (2021), combine 
predictions from multiple models to enhance overall accuracy and robustness. These methods often improve 
performance but add complexity to model training and deployment. 
 
   Hybrid Models: Several studies, like those by Zhao et al. (2022) and Deng et al. (2023), explore hybrid 
models that integrate different types of neural networks, such as Vision Transformers with CNNs, to handle 
data uncertainty and improve prediction accuracy. 
 
7.1.2.  Patient Independence and Generalization: 
   Patient-Independent Models: Research has focused on creating models that do not rely on patient-specific 
data, aiming to make seizure prediction more generalizable across different individuals. For example, 
Dissanayake et al. (2020) and Kiral-Kornek et al. (2018) developed patient-independent models using deep 
learning to address this need. 
 
   Transfer Learning: Yu et al. (2022) and other studies utilize transfer learning to adapt models trained on one 
dataset to new datasets, enhancing model generalization and performance across diverse patient populations. 
 
7.1.3. Optimization and Efficiency: 
Model Optimization: Papers like those by Prathaban and Balasubramanian (2021) discuss optimizing CNN 
classifiers and employing dynamic learning frameworks to improve efficiency and accuracy in seizure 
prediction. 
 
 Energy Efficiency: Zhao et al. (2021) and Gao et al. (2023) focus on energy-efficient neural networks, 
addressing the computational costs associated with deep learning models and striving for practical deployment 
in real-world scenarios. 
 
 7.2 Implications for Research and Practice 
In clinical use, richer deep learning structures can contribute to better identification and prognosis of seizures, 
which can facilitate better patient care and increase the patient’s quality of life due to timely interventions. Next 
steps should include investigations into models for various patient types as well as new studies surrounding data 
input modalities and enhanced optimization methodologies for enhancing performance.  
 
 7.3 Strengths and Weaknesses of Current Approaches 
Strengths: 
1. Enhanced Accuracy and Performance: 
  DL models, particularly CNNs and LSTMs, have shown great accuracy in forecasting seizures by effectively 
capturing intricate patterns in EEG signals. This is evident from various studies, such as those by Usman et al. 
(2020) and Xu et al. (2020). 
 
2. Generalizability and Adaptability: 
Techniques like transfer learning and patient-independent models have improved the generalizability of seizure 
prediction systems. Models that do not rely on patient-specific data, as discussed by Dissanayake et al. (2020), 
provide broader applicability. 
 
3. Hybrid Approaches: 
   Combining different neural network architectures, such as Vision Transformers and CNNs, has shown 
promise in addressing data uncertainty and enhancing prediction capabilities, as seen in Zhao et al. (2022) and 
Deng et al. (2023). 
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4. Optimization and Efficiency: 
   Efforts to optimize models for efficiency, such as the dynamic learning frameworks and energy-efficient 
networks discussed by Prathaban and Balasubramanian (2021) and Zhao et al. (2021), are crucial for practical 
deployment. 
 
Weaknesses: 
1. Computational Complexity: 
Many DL models, especially those involving LSTMs and hybrid architectures, demand significant 
computational power and extended training periods. This can be a limitation for real-time applications and 
resource-constrained environments. 
 
2. Model Complexity and Interpretability: 
 The complexity of ensemble and hybrid models often leads to challenges in interpretability and transparency, 
which can be a drawback for clinical adoption. Understanding and explaining model predictions remain a 
significant hurdle. 
 
3. Generalization Across Diverse Populations: 
While patient-independent models improve generalization, achieving consistent performance across a wide 
range of individuals with varying seizure types and EEG characteristics is still challenging. 
 
4.Data Quality and Preprocessing: 
The effectiveness of these models heavily depends on the quality of the input data and preprocessing techniques. 
Variability in EEG signal quality and preprocessing methods can impact model performance and reliability. 
 

8. Conclusion 
This review focuses on the aspects of epileptic seizure detection and prediction techniques using deep learning 
techniques such as the CNN, RNN, and LSTM. By integrating spatial & temporal features of EEG, improved 
hybrid models have enhanced the outcomes in terms of higher accuracy & reliability. As a result of data 
variability, noise and computation intensiveness these models appear to be ideal for real-time seizure 
monitoring. 
 
More studies should be conducted in areas that promote individually fit models for patient’s EEG fluctuations 
as well as designing usable and efficient preprocessing strategies to manage noise. Therefore, data augmentation 
techniques are required to handle the problem of data imbalance. Multimodal data fusion and high-level 
optimization approaches can be incorporated to improve upon the existing results. New forms of deep learning 
such as transformers and unsupervised learning may pave way for better analysis of EEG data. It is therefore 
crucial to emphasise the three-way cooperation between researchers, clinicians and engineers to transform such 
developments into the clinical scene for a better management of epilepsy.  
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