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Abstract:

Acinetobacter baumannii has emerged as a major healthcare-associated pathogen due to its high level of antibiotic
resistance, posing a worldwide health concern. The bacterium employs various mechanisms to acquire and
disseminate resistance, including mobile genetic elements like insertion sequences, transposons, and plasmids. The
resistance mechanisms employed by A. baumannii include antibiotic modification, reduced membrane
permeability, active efflux pumps, and alterations in antibiotic targets. The production of p-lactamases,
particularly Acinetobacter-derived cephalosporinases, contributes to resistance against carbapenems and
cephalosporins. The worldwide spread of multidrug-resistant bacteria has increased drastically due to the limited
alternatives to therapy available leading to the increased rates of death and morbidity. To address this challenge,
researchers are exploring combination therapies and novel antimicrobial adjuvants to enhance drug efficacy.
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Introduction:

Acinetobacter baumannii (A .baumannii) has developed as a significant hospital-acquired pathogen, especially in
critical care units, causing serious infections with high fatality and morbidity rates!. Its capability to acquire
multidrug resistance has led the World Health Organization to prioritize it for new antibiotic development 2. These
bacteria are implicated in various infections, including pneumonia, bacteremia, and urinary tract infections. The
success of A. baumannii as an infective agent is attributed to its ability to develop drug resistance and tolerate harsh
environments rapidly *. 4. baumannii's virulence factors include outer membrane proteins, biofilm formation, and
lipopolysaccharide, while its resistance mechanisms involve B-lactamases, efflux systems, and altered antibiotic
target sites*. Quorum sensing acts as a part of biofilm formation, though its impact on other virulence factors
remains unclear °. The emergence of strains resistant to many antibiotics and carbapenem poses a significant threat
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to public health, particularly in hospital settings ®. Understanding the resistance mechanisms and factors that lead
to the virulence of A. baumannii is crucial for developing effective treatment strategies®. Current approaches
include colistin-based combination therapy and stringent infection control measures °. However, the increasing
spread of resistant strains necessitates the development of novel antibiotics and alternative treatments, such as
antimicrobial peptides®® .
Historical Background of Acinetobacter:
The genus Acinetobacter, discovered in 1911, comprises Gram-negative, non-fermenting coccobacilli, aerobic
opportunistic pathogens producing various nosocomial infections’. Initially believed to be a single species, A.
calcoaceticus, the genus has undergone significant taxonomic changes, with 19 genomospecies identified by 19968,
Phylogenetic analysis using 16S rDNA sequencing confirmed Acinetobacter as an organism belonging to gamma
subclass proteobacteriae., revealing distinct species clusters and potential novel species’ (Rainey et al., 1994).
Historically, Acinetobacter species were classified under various genera, including Mima, Herellea, and Moraxella.
The most clinically relevant biotypes are 4. calcoaceticus var. Iwoffi, and 4. calcoaceticus var. anitratus which are
associated with infections in immunocompromised patients, often linked to medical devices and equipment'’.
Among the Acinetobacter spp., the prevalent species is A .baumannii which produces significant nosocomial
infection'!. Initially sensitive to most antibiotics in the early 1970s, Acinetobacter rapidly developed resistance to
various antimicrobials'?. By the 2000s, high resistance rates to carbapenems were reported in Europe and the
USA!2. Previous research showed increasing resistance to widely used antibiotics, including ampicillin-sulbactam,
cephalosporins, and aztreonam'"!3, Imipenem remained effective against all strains in earlier studies'3, but recent
reports indicate emerging resistance to reserved antibiotics like tigecycline and colistin 2. The rapid development
of antibiotic resistance in Acinetobacter species emphasizes the necessity of continuing observation and prudent
antibiotic usage to reserve treatment options for these challenging pathogens.
Clinical significance of Acinetobacter species:
Acinetobacter infections have emerged as an important cause of hospital-acquired infections worldwide, especially
in intensive care units'*. These opportunistic bacteria primarily cause blood infections and ventilator-associated
pneumonia. A. baumannii is the topmost clinically relevant species, often affecting immunocompromised patients.
The ability of bacteria to endure on hospital surfaces, develop multidrug resistance, and cause serious infections in
critically ill patients contributes to its clinical significance'®. Acinetobacter species exhibit multidrug resistance,
with high resistance rates to carbapenems and other antibiotics!>!®. The fatality rate associated with multidrug-
resistant infections produced by Acinetobacter is significant, ranging from 7.9% to 43% in some studies!”!81°,
Colistin and tigecycline remain effective treatment options in many cases'®. The evolving antibiotic resistance in
Acinetobacter species poses a significant challenge for infection control and treatment strategies '’
Mechanisms of antibiotic resistance
Gram-negative, non-fermentative 4. baumannii bacteria are distinguished by their strong inherent resistance to
antibiotics, mainly due to decreased outer membrane permeability coupled with secondary mechanisms like efflux
pumps and inducible cephalosporinases®. 4. baumannii is considered a prototype of multiresistant bacteria,
capable of acquiring resistance through genetic elements and mutations affecting porin expression and efflux
pumps?!?2. The interplay between reduced permeability and active efflux systems contributes to resistance against
unrelated antimicrobial agents?!. Additionally, these pathogens can acquire resistance genes encoding B-lactamases
and aminoglycoside-modifying enzymes®*. The accumulation of numerous resistance methods, including
mutations in topoisomerases and diminished expression of outer membrane proteins, may lead to the expansion of
multiple resistant or even pan-resistant strains®.
Beta lactamases:
Acinetobacter species, particularly A. baumannii, has increasing antimicrobial resistance, primarily due to B-
lactamases®. These enzymes belong to Ambler classes A to D, with PER, IMP, AmpC, and OXA-23 being
dominant. The beta-lactamases produced by Acinetobacter include Class A Beta-lactamases: These include TEM
and SHV enzymes. Class B Metallo-beta-lactamases (MBLs): Examples are IMP (Imipenemase), VIM (Verona
integron-encoded metallo-beta-lactamase), and NDM (New Delhi metallo-beta-lactamase. Class C Beta-
lactamases: These are also known as cephalosporinases. Class D Beta-lactamases: OXA-type carbapenemases,
such as OXA-58, OXA-23, and OXA-24, are particularly prevalent in A. baumannii and are a main contributor for
carbapenem resistance The prevalence of strains producing multiple p-lactamases has increased over time,
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correlating with higher resistance rates to various antibiotics?*. Historically, TEM-type penicillinases were most
common, with CARB-type and cephalosporinases emerging later?>. Class D carbapenemases are frequent, while
class A and B carbapenemases are also significant®®. The spread of multidrug-resistant Acinetobacter strains
harboring many genes for the production of B-lactamase has become a serious issue, often associated with mobile
genetic elements like ISAbal and integrons®’.

Target modification:

Mutations in genes encoding antibiotic targets, such as gyrA and parC, contribute to fluoroquinolone resistance?’.
Additionally, the acquisition of plasmid-associated resistance genes further enhances antibiotic resistance?’.
Resistance to Aminoglycoside in A .baumannii is primarily mediated by aminoglycoside-modifying enzymes
(AMEs)?. These enzymes, including acetyltransferases, nucleotidyltransferases, and phosphotransferases, modify
specific sites on the aminoglycoside molecule, rendering it ineffective’®. The AME genes usually found in 4.
baumannii include aacC1, aacC2, aacA4, and aphA6, with varying prevalence rates?®. The presence of these genes
correlates with resilent resistance rates to aminoglycosides such as amikacin, gentamicin,, and
tobramycin®®. Additionally, aminoglycoside-modifying enzyme genes, such as aacCl, aacC2, and aacA4,
contribute to resistance against multiple antibiotics in A. baumannii. The widespread occurrence of AMEs in 4
.baumannii highlights the need for new strategies to combat aminoglycoside resistance, such as developing enzyme
inhibitors or new aminoglycosides resistant to modification®’.

Efflux pumps:

Multidrug resistance is greatly influenced by efflux pumps especially belonging to the resistance-nodulation-
division (RND) superfamily. Overexpression of AdeABC, AdelJK, and AdeFGH pumps, regulated by various
mechanisms, provides resistance to an extensive range of antibiotics and biocides*’. Additionally, non-RND efflux
systems and acquired narrow-spectrum pumps contribute to resistance. Tet(A) and Tet(B) efflux pumps are specific
for tetracyclines. Timely detection and recognition of multidrug-resistant 4 .baumannii strains are critical for
controlling their spread in healthcare settings®!. Efflux pumps and porin channel deletions also contribute to
resistance against multiple antibiotic classes.

Decreased permeability:
Acinetobacter species exhibit high inherent resistance to many antibiotics, partly owing to decreased outer
membrane permeability. The major porin in 4. baumannii, OmpAAb, shows reduced permeability compared to
other bacterial porins, contributing to antibiotic resistance®?. In 4. calcoaceticus, mutants resistant to various -
lactams demonstrated reduced outer membrane permeability and reduced production of a 46.5 kDa porin protein®?.
This decreased permeability, combined with altered penicillin-binding proteins, enhances resistance to -lactams.
In A. baumannii, reduced membrane permeability and constitutive expression of efflux pumpsinteract ot produce
both intrinsic and acquired multidrug resistance®!. The existence of multidrug efflux pumps such as AdeABC and
AdelJK, B-lactamases, and low permeability of OmpAADb are important factors contributing to the high levels of
intrinsic antibiotic resistance seen in A. baumannii*2,

Biofilm formation:

Research have repeatedly shown a close relationship between biofilm production and antibiotic resistance in
Acinetobacter isolates**333%37_ Biofilm-producing strains showed higher resistance to various antibiotics, including
ampicillin-sulbactam, amikacin, ciprofloxacin, and ceftazidime®’. Imipenem resistance is substantially linked to
biofilm production *°. The prevalence of biofilm-producing Acinetobacter isolates ranged from 60% to 68% across
studies, with a high proportion of these isolates exhibiting MDR3¢37. Colistin demonstrated the highest sensitivity
among tested antibiotics *¢. The use of EDTA showed promise in reducing biofilm formation by 55-75% *°. These
findings highlight the therapeutic challenges posed by biofilm-producing, multidrug-resistant Acinetobacter
species in clinical settings.

Genetic mechanisms:

Horizontal gene transfer (HGT) is a significant mechanism in the transfer of antibiotic resistance genes (ARGs)
among bacteria, particularly in Acinetobacter species. Bacterial predation by A. baylyi significantly enhances cross-
species HGT®. 4. baumannii employs various HGT mechanisms, including transduction, natural transformation
and outer membrane vesicle-mediated transfer, to acquire carbapenemase genes®. Experimental studies with A.
baylyi demonstrate that ARGs can spread through HGT without antibiotic selection, but their long-term persistence
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depends on fitness costs and genetic mobility*’. Microfluidic techniques have revealed that both HGT and vertical
gene transfer (VGT) contribute to ARG transmission in bacterial communities. The presence of antibiotics can
influence HGT and VGT rates differently, depending on their inhibitory mechanisms and targets*'. Understanding
these complex dynamics is necessary for anticipating and combating the spread of resistance to antibiotics in
microbial populations.

Role of plasmids and integrons:

Integrons and plasmids have crucial roles in dissemination of resistance to antibiotics among Acinetobacter
species. Integrons are significantly correlated with multidrug resistance and epidemic behavior in A. baumannii **.
Conjugative mega-plasmids facilitate the spread of resistance genes between Acinetobacter species and can
mobilize smaller plasmids*. These mega-plasmids accumulate resistance genes to antibiotics through the
incorporation of integrons and transposons in clinical strains*’. Mobile genetic elements such as conjugative
plasmids, integrons, transposons, and insertion sequences are key factors in acquiring and disseminating antibiotic
resistance in Acinetobacter **. The prevalent integrons in A. baumannii is class 1, often carrys various antibiotic
resistance gene cassettes®’. Hybrid integrons and the diversity of gene cassettes presence highlight the complex
method of resistance acquisition in species of Acinetobacter®.

Evolution of Multidrug Resistance (MDR) in Acinteobacter:

The development of drug resistance in Acinetobacter species had been a growing concern from the year 1970s.
Initially sensitive to most antibiotics, resistance to B-lactams and aminoglycosides emerged rapidly*. By the late
1990s, resistance rates to various antibiotics, including ciprofloxacin and imipenem, had increased significantly*’.
This trend continued into the 2000s, with studies in Iran showing increased rate of resistance to carbapenems,
lipopeptides, and aminoglycosides®®. The timeline of resistance development shows a progression from
cephalosporin resistance in 1975 to widespread carbapenem resistance by 2000, particularly in Europe and the
USA'2, Colistin and tigecycline remained effective options, but emerging resistance to these last-resort antibiotics
are reported'?.

Current prevalence and resistance patterns:

Global trends of resistance:

Global trends show a concerning increase in antibiotic resistance among Acinetobacter species, particularly A.
baumannii. Accoring to Studies, in both non-OECD and -OECD countries reveal high resistance rates to routinely
used antibiotics, with OECD nations experiencing a faster increase in recent years*’. In Ethiopia, a five-year
analysis demonstrated rising multidrug resistance and carbapenem non-susceptibility in Acinetobacter species.
Similarly, a study in India reported high resistance levels to various antibiotics, including ciprofloxacin, cefepime,
and amikacin’!. Multidrug-resistant A. baumannii’s global proliferation is linked to transfer of a few clones
between hospitals and regions, amplified by increased antibiotic use>2. These trends pose a significant threat to
infection control, with some infections becoming untreatable using existing antimicrobial agents, necessitating
urgent action from healthcare systems and pharmaceutical companies™.

Trends in India:

Acinetobacter species are the leading cause of hospital-acquired infections, particularly in India. Studies from
various regions of India report isolation rates of 2.9-4.8% from clinical samples, with A. baumannii being the
predominant species®. These bacteria exhibit high levels of antibiotic resistance, with multidrug-resistant strains
accounting for 54.7% of isolates in one study>*. Resistance rates to commonly used antibiotics vary across regions,
with cephalosporins and fluoroquinolones showing particularly high resistance's. Carbapenems remain relatively
effective, though resistance rates of 19-41.67% have been reported'>,>. Risk factors for Acinetobacter infections
include advanced age, prolonged hospital stay, invasive procedures, and ICU admission >3-4,

Recent studies in India have reported high rates of resistance to antimicrobial among Acinetobacter species,
particularly within hospital settings. In Gujarat, resistance rates to commonly used antibiotics ranged from 41.67%
to 79.71% '5. A 5-year surveillance at a trauma center revealed increasing resistance trends, with over 90%
resistance to multiple antibiotics’!. Metallo-B-lactamase production and Extended-spectrum B-lactamase and was
identified in 14.4% and 31.5% of isolates, respectively™ . Risk factors for Acinetobacter infections included
elderly age, prolonged hospital stay, comorbidities, and invasive procedures®*. Multidrug resistance was observed
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in 54.7% of isolates, with 5.8% being pan-drug resistant®* . Carbapenems and piperacillin/tazobactam showed

lower resistance rates compared to other antibiotics, while colistin remained effective against pan-drug resistant
strains’'>4
Resistance Profiles:
Acinetobacter baumannii exhibits varying resistance profiles across healthcare settings. A. baumannii isolates
showed highest antimicrobial resistance, with susceptibility rates below 20% in Critical care units’®. The
environmental contamination is widespread (16.48%), in nursing facilities with concerning rates of resistance even
in medical and rehabilitation settings®’. 4. baumannii is more frequently isolated from ICUs (52.92%) and
respiratory departments (12.33%), primarily from sputum specimens (94.62%). In tertiary care hospitals, A.
baumannii displays high resistance to multiple antibiotics, including imipenem (5.2%), meropenem (9.75%), and
ceftazidime (74.1%)® . Resistance mechanisms may include antibiotic-modifying enzymes, extended-spectrum -
lactamases production, and target site modification®®. The frequency and resistance patterns among the A.
baumannii underscore its significance as a challenging nosocomial pathogen across various healthcare settings.
A .baumannii has developed as a major pathogen, developing resistance to last-resort antibiotics like colistin,
carbapenems, and tigecycline®. Colistin resistance reported globally with the highest rates in Asia, is primarily due
to lipopolysaccharide modifications or the PmrAB two-component system®!. The resistance that evolved during a
treatment of colistin and tigecycline during treatment often leads to persistent or recurrent infections®.
Monotherapy of colistin is insufficient to avoid resistance, necessitating combination therapies as a potential
solution®'. Colistin/rifampicin and colistin/carbapenem combinations have shown promising results in vitro, in
vivo, and clinically®'. Early identification and recognition of multidrug-resistant A. baumannii are Critical for
controlling its spread®.
Molecular Characterisation of Resistant Strains:
Identification of key resistant genes
A .baumannii, a major source of hospital-acquired infections, rapidly develops antibiotic resistance. Multiple
studies have identified key resistance genes in A. baumannii isolates. All the 4. baumannii isolates that were
examined were found to have blaOXA-51-like and ampC genes linked to B-lactam resistance®%. Common
resistance genes include blaTEM, strB, and tet(B)®. Whole genome sequencing revealed blaADC-25 as the most
prevalent resistance gene across all sequence types, conferring B-lactam resistance®®. Multiple clonal types have
been identified, with some strains possessing up to 12 resistance determinants *¢’. Notably, blaOXA-58-like and
blaPER-like genes were initially identified in MDR A. baumannii isolates of USA%’. Continuous monitoring of
resistance profiles is crucial for effective infection control and treatment.
Molecular techniques play an important role in identifying and characterizing antibiotic resistance in Acinetobacter
species, particularly A. baumannii. Whole genome sequencing and PCR-based methods, including PCR-RFLP and
RT-gPCR, are commonly used for species identification and resistance gene detection %, Analysis of the 16S
rRNA Sequences and rpoB genes has proven effective for accurate species-level identification®®. Mass
spectrometry, specifically targeted label-free proteomics using selected reaction monitoring, enables rapid
quantitative detection of resistance-associated proteins, including B-lactamases and efflux pump components®.
These molecular approaches have revealed that A. baumannii acquires resistance by various mechanisms, via
horizontal gene transfer and mutations leading to gene disruption or altered expression®. Addressing these
mechanisms is critical for devising effective treatments to tackle multidrug-resistant A. baumannii, a major
problem in hospital settings’.
Molecular studies on Acinetobacter species have revealed important trends in antimicrobial resistance and
epidemiology. A. baumannii resistant to carbapenem strains have been identified in many nations, with OXA-58
and OXA-23 carbapenemases playing significant roles’"’>. Molecular typing methods, such as pulsed-field gel
electrophoresis, have shown shifts in clonal distribution over time’!. Acinetobacter genomic species 3 has emerged
as a predominant species in some settings. The spread of resistance genes is facilitated by insertion sequences like
ISAbal and inter-species plasmid transfer’?. International clones I, I1, and 111 have been determined as major causes
of outbreaks™. Various molecular typing methods are now available for epidemiological studies, each with its
advantages and limitations”. These findings underscore the importance of management of antimicrobial and
infection control methods.
Environmental and healthcare-related factors contributing to resistance:
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Hospital surroundings contribute significantly to fostering resistance to antibiotics of 4 .baumannii. Studies have
detected MDR A. baumannii in various hospital environments, including water, surfaces, and air with intensive
care units (ICUs) being particularly vulnerable’*”>. Environmental contamination is a significant reservoir for
outbreaks, necessitating thorough cleaning and disinfection to control spread’’®. Curtains and other dry fabrics
have been identified as important dissemination sources’®. A. baumannii from a hospital context often exhibit
resistance to multiple drugs and possess various virulence factors, posing a serious public health threat”’. Effective
control measures include implementing rigorous infection control protocols, restricting carbapenem use, and
regularly changing curtains’. Early detection and prompt intervention are crucial to preventing the dissemination
of resistant 4. baumannii in hospital settings’.

Influence of environmental reservoirs:

Acinetobacter species, particularly A. baumannii, are important pathogens with environmental reservoirs that
contribute to outbreaks and community-acquired infections. Environmental surveillance in hospital settings can
predict and help control MRAB infections’®. The genus Acinetobacter has undergone ecological differentiation,
with some lineages evolving towards host association”. Extra-hospital reservoirs such as pets, slaughtered animals,
human lice, and human carriage potentially contribute to community-acquired infections %°. Acinetobacter species
may be found in several natural settings, including surface water, wastewater, sewage, human skin, plants, animals,
and food ®!. While some species play beneficial roles in soil improvement and detoxification, others, like A.
baumannii, are significant pathogens. Understanding these environmental reservoirs is crucial for controlling
Acinetobacter infections and predicting their emergence in both community and hospital environments.

Clinical management and treatment challenges:

Infections caused by Carbapenem-resistant Acinetobacter baumannii (CRAB) pose major therapeutic problems
due to limited options and high mortality rates®?. Current treatments include a combination of high-dose ampicillin-
sulbactam and tigecycline or polymyxins®. Colistin with sulbactam has shown superior therapeutical efficacy
compared to colistin monotherapy or colistin with tigecycline for extensively drug-resistant (XDR) and MDR 4.
baumannii infections®. Tigecycline has demonstrated considerable antimicrobial activity against MDR
Acinetobacter, but clinical data supporting its use, especially for ventilator-associated pneumonia or bacteremia,
remain limited®. However, polymyxins have dosing difficulties and significant side effects®’. Newer options like
eravacycline and cefiderocol show potential but lack sufficient data for use as sole agents®**, Combination therapy
proves to have been the most effective approach, with the involvement of infectious disease specialists
recommended for optimal management®® Novel therapeutics:

Bacteriophage therapy is now recognized as an effective approach to combat multidrug-resistant 4. baumannii, a
critical priority pathogen®’. Various strategies have been explored including phage cocktails, single phage therapy,
and combination therapy with antibiotics®®. Enzymes like endolysins and depolymerases derived from phages have
also shown potential in targeting A. baumannii®’. In-vivo investigation of phage treatment has shown improvement
in survival rates and bacterial clearance in mouse models®’. The phage YMC13/01/C62 ABA BP (B¢$-C62) has
exhibited strong lytic activity against carbapenem-resistant strains in vitro and in vivo®®. While bacteriophages
offer a promising alternative to traditional antibiotics, further research is needed to address challenges in their
clinical application, particularly for in vivo®™. Future treatment options may include bacteriophages and
antimicrobial peptides®®. Overall, the development of novel medications is crucial to addressing the urgent need
for effective CRAB treatments®.

Conclusion:

Acinetobacter species, especially A. baumannii, have emerged as major nosocomial infectious agents, causing
infections in intensive care units. These bacteria are difficult because of the intrinsic and acquired antimicrobial
resistance, with some strains resistant to all currently available antibiotics except colistin. The virulence of
Acinetobacter stems from its ability to evade host immunity and trigger sepsis through lipopolysaccharide-
mediated mechanisms. Treatment options are limited, with imipenem, amikacin, ampicillin/sulbactam, colistin,
and tigecycline showing some efficacy. However, the optimal therapy remains unclear, and combination treatments
may be necessary. The ideal treatment for infections caused by MDR A. baumannii is not yet determined,
highlighting the necessity of well-designed clinical studies to guide therapeutic decisions Additionally, knowledge
of local susceptibility patterns is crucial for selecting appropriate empirical or targeted therapy. Given the high

mortality rates linked with infections caused by multidrug-resistant Acinetobacter, prevention through aggressive
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control measures is crucial. New therapeutic options are urgently needed to address this global threat.
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