Unraveling Acinetobacter's Journey to Antibiotic Resistance: A Comprehensive Review

Bindu D1*, Saramma Mini Jacob², Chitralekha Saikumar³, Mymoonah Risha⁴, Mr. E.Vasudevan⁵

- 1. Associate Professor, Department of Microbiology, Sree Balaji Medical College and Hospital, Chrompet, Chennai, BIHER.
- 2. Director, Research and Development Wing, Sree Balaji Medical College and Hospital, Chrompet, Chennai, BIHER,
 - 3. Professor, Department of Microbiology, Sree Balaji Medical College and Hospital, Chrompet, Chennai, BIHER.
 - 4. Tutor, Department of Microbiology, Sree Balaji Medical College and Hospital, Chrompet, Chennai-44, Tamilnadu, India, affiliated to BIHER
- 5. Tutor, Department of Biochemistry, Sree Balaji Medical College and Hospital, No.7 Works Road, Chrompet, Chennai 600044.

E-mail id: vasukalai24@gmail.com, ORCID ID: 0000-0002-8923-7199

*Corresponding author Dr.D.Bindu E-mail ID:mail2bindhu@rediffmail.com

Cite this paper as: Bindu D, Saramma Mini Jacob, Chitralekha Saikumar, Mymoonah Risha, E.Vasudevan (2024) Unraveling Acinetobacter's Journey to Antibiotic Resistance: A Comprehensive Review. *Frontiers in Health Informatics*, 13 (3), 9215-9226

Abstract:

Acinetobacter baumannii has emerged as a major healthcare-associated pathogen due to its high level of antibiotic resistance, posing a worldwide health concern. The bacterium employs various mechanisms to acquire and disseminate resistance, including mobile genetic elements like insertion sequences, transposons, and plasmids. The resistance mechanisms employed by A. baumannii include antibiotic modification, reduced membrane permeability, active efflux pumps, and alterations in antibiotic targets. The production of β -lactamases, particularly Acinetobacter-derived cephalosporinases, contributes to resistance against carbapenems and cephalosporins. The worldwide spread of multidrug-resistant bacteria has increased drastically due to the limited alternatives to therapy available leading to the increased rates of death and morbidity. To address this challenge, researchers are exploring combination therapies and novel antimicrobial adjuvants to enhance drug efficacy.

Keywords: Acinetobacter baumannii, antibiotic resistance, beta-lactamases, combination therapy

Introduction:

Acinetobacter baumannii (A .baumannii) has developed as a significant hospital-acquired pathogen, especially in critical care units, causing serious infections with high fatality and morbidity rates¹. Its capability to acquire multidrug resistance has led the World Health Organization to prioritize it for new antibiotic development ². These bacteria are implicated in various infections, including pneumonia, bacteremia, and urinary tract infections. The success of A. baumannii as an infective agent is attributed to its ability to develop drug resistance and tolerate harsh environments rapidly ³. A. baumannii's virulence factors include outer membrane proteins, biofilm formation, and lipopolysaccharide, while its resistance mechanisms involve β -lactamases, efflux systems, and altered antibiotic target sites⁴. Quorum sensing acts as a part of biofilm formation, though its impact on other virulence factors remains unclear ⁵. The emergence of strains resistant to many antibiotics and carbapenem poses a significant threat

to public health, particularly in hospital settings ⁶. Understanding the resistance mechanisms and factors that lead to the virulence of *A. baumannii* is crucial for developing effective treatment strategies³. Current approaches include colistin-based combination therapy and stringent infection control measures ³. However, the increasing spread of resistant strains necessitates the development of novel antibiotics and alternative treatments, such as antimicrobial peptides^{3,6}.

Historical Background of Acinetobacter:

The genus Acinetobacter, discovered in 1911, comprises Gram-negative, non-fermenting coccobacilli, aerobic opportunistic pathogens producing various nosocomial infections⁷. Initially believed to be a single species, A. calcoaceticus, the genus has undergone significant taxonomic changes, with 19 genomospecies identified by 19968. Phylogenetic analysis using 16S rDNA sequencing confirmed Acinetobacter as an organism belonging to gamma subclass proteobacteriae., revealing distinct species clusters and potential novel species⁹ (Rainey et al., 1994). Historically, Acinetobacter species were classified under various genera, including Mima, Herellea, and Moraxella. The most clinically relevant biotypes are A. calcoaceticus var. lwoffi, and A. calcoaceticus var. anitratus which are associated with infections in immunocompromised patients, often linked to medical devices and equipment 10. Among the Acinetobacter spp., the prevalent species is A .baumannii which produces significant nosocomial infection¹¹. Initially sensitive to most antibiotics in the early 1970s, Acinetobacter rapidly developed resistance to various antimicrobials¹². By the 2000s, high resistance rates to carbapenems were reported in Europe and the USA¹². Previous research showed increasing resistance to widely used antibiotics, including ampicillin-sulbactam, cephalosporins, and aztreonam^{11,13}. Imipenem remained effective against all strains in earlier studies¹³, but recent reports indicate emerging resistance to reserved antibiotics like tigecycline and colistin ¹². The rapid development of antibiotic resistance in Acinetobacter species emphasizes the necessity of continuing observation and prudent antibiotic usage to reserve treatment options for these challenging pathogens.

Clinical significance of Acinetobacter species:

Acinetobacter infections have emerged as an important cause of hospital-acquired infections worldwide, especially in intensive care units¹⁴. These opportunistic bacteria primarily cause blood infections and ventilator-associated pneumonia. A. baumannii is the topmost clinically relevant species, often affecting immunocompromised patients. The ability of bacteria to endure on hospital surfaces, develop multidrug resistance, and cause serious infections in critically ill patients contributes to its clinical significance¹⁴. Acinetobacter species exhibit multidrug resistance, with high resistance rates to carbapenems and other antibiotics^{15,16}. The fatality rate associated with multidrug-resistant infections produced by Acinetobacter is significant, ranging from 7.9% to 43% in some studies^{17,18,19}. Colistin and tigecycline remain effective treatment options in many cases¹⁶. The evolving antibiotic resistance in Acinetobacter species poses a significant challenge for infection control and treatment strategies¹⁹

Mechanisms of antibiotic resistance

Gram-negative, non-fermentative A. baumannii bacteria are distinguished by their strong inherent resistance to antibiotics, mainly due to decreased outer membrane permeability coupled with secondary mechanisms like efflux pumps and inducible cephalosporinases²⁰. A. baumannii is considered a prototype of multiresistant bacteria, capable of acquiring resistance through genetic elements and mutations affecting porin expression and efflux pumps^{21,22}. The interplay between reduced permeability and active efflux systems contributes to resistance against unrelated antimicrobial agents²¹. Additionally, these pathogens can acquire resistance genes encoding β -lactamases and aminoglycoside-modifying enzymes²³. The accumulation of numerous resistance methods, including mutations in topoisomerases and diminished expression of outer membrane proteins, may lead to the expansion of multiple resistant or even pan-resistant strains²³.

Beta lactamases:

Acinetobacter species, particularly A. baumannii, has increasing antimicrobial resistance, primarily due to β-lactamases²⁴. These enzymes belong to Ambler classes A to D, with PER, IMP, AmpC, and OXA-23 being dominant. The beta-lactamases produced by Acinetobacter include Class A Beta-lactamases: These include TEM and SHV enzymes. Class B Metallo-beta-lactamases (MBLs): Examples are IMP (Imipenemase), VIM (Verona integron-encoded metallo-beta-lactamase), and NDM (New Delhi metallo-beta-lactamase. Class C Beta-lactamases: These are also known as cephalosporinases. Class D Beta-lactamases: OXA-type carbapenemases, such as OXA-58, OXA-23, and OXA-24, are particularly prevalent in A. baumannii and are a main contributor for carbapenem resistance. The prevalence of strains producing multiple β-lactamases has increased over time,

correlating with higher resistance rates to various antibiotics²⁴. Historically, TEM-type penicillinases were most common, with CARB-type and cephalosporinases emerging later²⁵. Class D carbapenemases are frequent, while class A and B carbapenemases are also significant²⁶. The spread of multidrug-resistant *Acinetobacter* strains harboring many genes for the production of β -lactamase has become a serious issue, often associated with mobile genetic elements like ISAba1 and integrons²⁷.

Target modification:

Mutations in genes encoding antibiotic targets, such as gyrA and parC, contribute to fluoroquinolone resistance ²⁷. Additionally, the acquisition of plasmid-associated resistance genes further enhances antibiotic resistance ²⁷. Resistance to Aminoglycoside in *A. baumannii* is primarily mediated by aminoglycoside-modifying enzymes (AMEs)²⁸. These enzymes, including acetyltransferases, nucleotidyltransferases, and phosphotransferases, modify specific sites on the aminoglycoside molecule, rendering it ineffective²⁹. The AME genes usually found in *A. baumannii* include aacC1, aacC2, aacA4, and aphA6, with varying prevalence rates²⁸. The presence of these genes correlates with resilent resistance rates to aminoglycosides such as amikacin, gentamicin,, and tobramycin²⁸. Additionally, aminoglycoside-modifying enzyme genes, such as aacC1, aacC2, and aacA4, contribute to resistance against multiple antibiotics in A. baumannii. The widespread occurrence of AMEs in *A. baumannii* highlights the need for new strategies to combat aminoglycoside resistance, such as developing enzyme inhibitors or new aminoglycosides resistant to modification²⁹.

Efflux pumps:

Multidrug resistance is greatly influenced by efflux pumps especially belonging to the resistance-nodulation-division (RND) superfamily. Overexpression of AdeABC, AdeIJK, and AdeFGH pumps, regulated by various mechanisms, provides resistance to an extensive range of antibiotics and biocides³⁰. Additionally, non-RND efflux systems and acquired narrow-spectrum pumps contribute to resistance. Tet(A) and Tet(B) efflux pumps are specific for tetracyclines. Timely detection and recognition of multidrug-resistant *A .baumannii* strains are critical for controlling their spread in healthcare settings³¹. Efflux pumps and porin channel deletions also contribute to resistance against multiple antibiotic classes.

Decreased permeability:

Acinetobacter species exhibit high inherent resistance to many antibiotics, partly owing to decreased outer membrane permeability. The major porin in *A. baumannii*, OmpAAb, shows reduced permeability compared to other bacterial porins, contributing to antibiotic resistance³². In *A. calcoaceticus*, mutants resistant to various β-lactams demonstrated reduced outer membrane permeability and reduced production of a 46.5 kDa porin protein³³. This decreased permeability, combined with altered penicillin-binding proteins, enhances resistance to β-lactams. In *A. baumannii*, reduced membrane permeability and constitutive expression of efflux pumps interact ot produce both intrinsic and acquired multidrug resistance²¹. The existence of multidrug efflux pumps such as AdeABC and AdeIJK, β-lactamases, and low permeability of OmpAAb are important factors contributing to the high levels of intrinsic antibiotic resistance seen in A. baumannii³².

Biofilm formation:

Research have repeatedly shown a close relationship between biofilm production and antibiotic resistance in *Acinetobacter* isolates^{34,35,36,37}. Biofilm-producing strains showed higher resistance to various antibiotics, including ampicillin-sulbactam, amikacin, ciprofloxacin, and ceftazidime³⁷. Imipenem resistance is substantially linked to biofilm production ³⁵. The prevalence of biofilm-producing *Acinetobacter* isolates ranged from 60% to 68% across studies, with a high proportion of these isolates exhibiting MDR^{36,37}. Colistin demonstrated the highest sensitivity among tested antibiotics ³⁶. The use of EDTA showed promise in reducing biofilm formation by 55-75% ³⁵. These findings highlight the therapeutic challenges posed by biofilm-producing, multidrug-resistant *Acinetobacter* species in clinical settings.

Genetic mechanisms:

Horizontal gene transfer (HGT) is a significant mechanism in the transfer of antibiotic resistance genes (ARGs) among bacteria, particularly in *Acinetobacter* species. Bacterial predation by *A. baylyi* significantly enhances cross-species HGT³⁸. *A. baumannii* employs various HGT mechanisms, including transduction, natural transformation and outer membrane vesicle-mediated transfer, to acquire carbapenemase genes³⁹. Experimental studies with *A. baylyi* demonstrate that ARGs can spread through HGT without antibiotic selection, but their long-term persistence

depends on fitness costs and genetic mobility⁴⁰. Microfluidic techniques have revealed that both HGT and vertical gene transfer (VGT) contribute to ARG transmission in bacterial communities. The presence of antibiotics can influence HGT and VGT rates differently, depending on their inhibitory mechanisms and targets⁴¹. Understanding these complex dynamics is necessary for anticipating and combating the spread of resistance to antibiotics in microbial populations.

Role of plasmids and integrons:

Integrons and plasmids have crucial roles in dissemination of resistance to antibiotics among *Acinetobacter* species. Integrons are significantly correlated with multidrug resistance and epidemic behavior in *A. baumannii* ⁴². Conjugative mega-plasmids facilitate the spread of resistance genes between *Acinetobacter* species and can mobilize smaller plasmids⁴³. These mega-plasmids accumulate resistance genes to antibiotics through the incorporation of integrons and transposons in clinical strains⁴³. Mobile genetic elements such as conjugative plasmids, integrons, transposons, and insertion sequences are key factors in acquiring and disseminating antibiotic resistance in *Acinetobacter* ⁴⁴. The prevalent integrons in *A. baumannii* is class 1, often carrys various antibiotic resistance gene cassettes⁴⁵. Hybrid integrons and the diversity of gene cassettes presence highlight the complex method of resistance acquisition in species of *Acinetobacter*⁴⁵.

Evolution of Multidrug Resistance (MDR) in Acinteobacter:

The development of drug resistance in *Acinetobacter* species had been a growing concern from the year 1970s. Initially sensitive to most antibiotics, resistance to β -lactams and aminoglycosides emerged rapidly⁴⁶. By the late 1990s, resistance rates to various antibiotics, including ciprofloxacin and imipenem, had increased significantly⁴⁷. This trend continued into the 2000s, with studies in Iran showing increased rate of resistance to carbapenems, lipopeptides, and aminoglycosides⁴⁸. The timeline of resistance development shows a progression from cephalosporin resistance in 1975 to widespread carbapenem resistance by 2000, particularly in Europe and the USA¹². Colistin and tigecycline remained effective options, but emerging resistance to these last-resort antibiotics are reported¹².

Current prevalence and resistance patterns:

Global trends of resistance:

Global trends show a concerning increase in antibiotic resistance among *Acinetobacter* species, particularly *A. baumannii*. Accoring to Studies, in both non-OECD and -OECD countries reveal high resistance rates to routinely used antibiotics, with OECD nations experiencing a faster increase in recent years⁴⁹. In Ethiopia, a five-year analysis demonstrated rising multidrug resistance and carbapenem non-susceptibility in *Acinetobacter* species⁵⁰. Similarly, a study in India reported high resistance levels to various antibiotics, including ciprofloxacin, cefepime, and amikacin⁵¹. Multidrug-resistant *A. baumannii's* global proliferation is linked to transfer of a few clones between hospitals and regions, amplified by increased antibiotic use⁵². These trends pose a significant threat to infection control, with some infections becoming untreatable using existing antimicrobial agents, necessitating urgent action from healthcare systems and pharmaceutical companies⁵².

Trends in India:

Acinetobacter species are the leading cause of hospital-acquired infections, particularly in India. Studies from various regions of India report isolation rates of 2.9-4.8% from clinical samples, with *A. baumannii* being the predominant species⁵³. These bacteria exhibit high levels of antibiotic resistance, with multidrug-resistant strains accounting for 54.7% of isolates in one study⁵⁴. Resistance rates to commonly used antibiotics vary across regions, with cephalosporins and fluoroquinolones showing particularly high resistance¹⁵. Carbapenems remain relatively effective, though resistance rates of 19-41.67% have been reported¹⁵,⁵⁴. Risk factors for *Acinetobacter* infections include advanced age, prolonged hospital stay, invasive procedures, and ICU admission ^{53,54}.

Recent studies in India have reported high rates of resistance to antimicrobial among *Acinetobacter* species, particularly within hospital settings. In Gujarat, resistance rates to commonly used antibiotics ranged from 41.67% to 79.71% ¹⁵. A 5-year surveillance at a trauma center revealed increasing resistance trends, with over 90% resistance to multiple antibiotics⁵¹. Metallo-β-lactamase production and Extended-spectrum β-lactamase and was identified in 14.4% and 31.5% of isolates, respectively⁵⁵. Risk factors for *Acinetobacter* infections included elderly age, prolonged hospital stay, comorbidities, and invasive procedures⁵⁴. Multidrug resistance was observed

in 54.7% of isolates, with 5.8% being pan-drug resistant⁵⁴. Carbapenems and piperacillin/tazobactam showed lower resistance rates compared to other antibiotics, while colistin remained effective against pan-drug resistant strains^{51,54}.

Resistance Profiles:

Acinetobacter baumannii exhibits varying resistance profiles across healthcare settings. A. baumannii isolates showed highest antimicrobial resistance, with susceptibility rates below 20% in Critical care units⁵⁶. The environmental contamination is widespread (16.48%), in nursing facilities with concerning rates of resistance even in medical and rehabilitation settings⁵⁷. A. baumannii is more frequently isolated from ICUs (52.92%) and respiratory departments (12.33%), primarily from sputum specimens (94.62%)⁵⁶. In tertiary care hospitals, A. baumannii displays high resistance to multiple antibiotics, including imipenem (5.2%), meropenem (9.75%), and ceftazidime (74.1%)⁵⁸. Resistance mechanisms may include antibiotic-modifying enzymes, extended-spectrum βlactamases production, and target site modification⁵⁹. The frequency and resistance patterns among the A. baumannii underscore its significance as a challenging nosocomial pathogen across various healthcare settings. A .baumannii has developed as a major pathogen, developing resistance to last-resort antibiotics like colistin, carbapenems, and tigecycline⁶⁰. Colistin resistance reported globally with the highest rates in Asia, is primarily due to lipopolysaccharide modifications or the PmrAB two-component system⁶¹. The resistance that evolved during a treatment of colistin and tigecycline during treatment often leads to persistent or recurrent infections⁶². Monotherapy of colistin is insufficient to avoid resistance, necessitating combination therapies as a potential solution⁶¹. Colistin/rifampicin and colistin/carbapenem combinations have shown promising results in vitro, in vivo, and clinically⁶¹. Early identification and recognition of multidrug-resistant A. baumannii are Critical for controlling its spread⁶³.

Molecular Characterisation of Resistant Strains:

Identification of key resistant genes

A .baumannii, a major source of hospital-acquired infections, rapidly develops antibiotic resistance. Multiple studies have identified key resistance genes in A. baumannii isolates. All the A. baumannii isolates that were examined were found to have blaOXA-51-like and ampC genes linked to β-lactam resistance^{64,65}. Common resistance genes include blaTEM, strB, and tet(B)⁶⁵. Whole genome sequencing revealed blaADC-25 as the most prevalent resistance gene across all sequence types, conferring β-lactam resistance⁶⁶. Multiple clonal types have been identified, with some strains possessing up to 12 resistance determinants ^{65,67}. Notably, blaOXA-58-like and blaPER-like genes were initially identified in MDR A. baumannii isolates of USA⁶⁷. Continuous monitoring of resistance profiles is crucial for effective infection control and treatment.

Molecular techniques play an important role in identifying and characterizing antibiotic resistance in *Acinetobacter* species, particularly *A. baumannii*. Whole genome sequencing and PCR-based methods, including PCR-RFLP and RT-qPCR, are commonly used for species identification and resistance gene detection ^{68,69}. Analysis of the 16S rRNA Sequences and rpoB genes has proven effective for accurate species-level identification ⁶⁸. Mass spectrometry, specifically targeted label-free proteomics using selected reaction monitoring, enables rapid quantitative detection of resistance-associated proteins, including β-lactamases and efflux pump components ⁶⁹. These molecular approaches have revealed that *A. baumannii* acquires resistance by various mechanisms, via horizontal gene transfer and mutations leading to gene disruption or altered expression ⁶³. Addressing these mechanisms is critical for devising effective treatments to tackle multidrug-resistant A. baumannii, a major problem in hospital settings⁷⁰.

Molecular studies on *Acinetobacter* species have revealed important trends in antimicrobial resistance and epidemiology. *A. baumannii* resistant to carbapenem strains have been identified in many nations, with OXA-58 and OXA-23 carbapenemases playing significant roles^{71,72}. Molecular typing methods, such as pulsed-field gel electrophoresis, have shown shifts in clonal distribution over time⁷¹. *Acinetobacter* genomic species 3 has emerged as a predominant species in some settings. The spread of resistance genes is facilitated by insertion sequences like ISAba1 and inter-species plasmid transfer⁷². International clones I, II, and III have been determined as major causes of outbreaks⁷⁰. Various molecular typing methods are now available for epidemiological studies, each with its advantages and limitations⁷³. These findings underscore the importance of management of antimicrobial and infection control methods.

Environmental and healthcare-related factors contributing to resistance:

Hospital surroundings contribute significantly to fostering resistance to antibiotics of *A. baumannii*. Studies have detected MDR *A. baumannii* in various hospital environments, including water, surfaces, and air with intensive care units (ICUs) being particularly vulnerable ^{74,75}. Environmental contamination is a significant reservoir for outbreaks, necessitating thorough cleaning and disinfection to control spread ^{75,76}. Curtains and other dry fabrics have been identified as important dissemination sources ⁷⁶. *A. baumannii* from a hospital context often exhibit resistance to multiple drugs and possess various virulence factors, posing a serious public health threat ⁷⁷. Effective control measures include implementing rigorous infection control protocols, restricting carbapenem use, and regularly changing curtains ⁷⁶. Early detection and prompt intervention are crucial to preventing the dissemination of resistant *A. baumannii* in hospital settings ⁷⁴.

Influence of environmental reservoirs:

Acinetobacter species, particularly A. baumannii, are important pathogens with environmental reservoirs that contribute to outbreaks and community-acquired infections. Environmental surveillance in hospital settings can predict and help control MRAB infections⁷⁸. The genus Acinetobacter has undergone ecological differentiation, with some lineages evolving towards host association⁷⁹. Extra-hospital reservoirs such as pets, slaughtered animals, human lice, and human carriage potentially contribute to community-acquired infections ⁸⁰. Acinetobacter species may be found in several natural settings, including surface water, wastewater, sewage, human skin, plants, animals, and food ⁸¹. While some species play beneficial roles in soil improvement and detoxification, others, like A. baumannii, are significant pathogens. Understanding these environmental reservoirs is crucial for controlling Acinetobacter infections and predicting their emergence in both community and hospital environments.

Clinical management and treatment challenges:

Infections caused by Carbapenem-resistant *Acinetobacter baumannii* (CRAB) pose major therapeutic problems due to limited options and high mortality rates⁸². Current treatments include a combination of high-dose ampicillin-sulbactam and tigecycline or polymyxins⁸³. Colistin with sulbactam has shown superior therapeutical efficacy compared to colistin monotherapy or colistin with tigecycline for extensively drug-resistant (XDR) and MDR *A. baumannii* infections⁸⁴. Tigecycline has demonstrated considerable antimicrobial activity against MDR *Acinetobacter*, but clinical data supporting its use, especially for ventilator-associated pneumonia or bacteremia, remain limited⁸⁵. However, polymyxins have dosing difficulties and significant side effects⁸³. Newer options like eravacycline and cefiderocol show potential but lack sufficient data for use as sole agents^{83,86}. Combination therapy proves to have been the most effective approach, with the involvement of infectious disease specialists recommended for optimal management⁸³ Novel therapeutics:

Bacteriophage therapy is now recognized as an effective approach to combat multidrug-resistant *A. baumannii*, a critical priority pathogen⁸⁷. Various strategies have been explored including phage cocktails, single phage therapy, and combination therapy with antibiotics⁸⁸. Enzymes like endolysins and depolymerases derived from phages have also shown potential in targeting A. baumannii⁸⁷. In-vivo investigation of phage treatment has shown improvement in survival rates and bacterial clearance in mouse models⁸⁹. The phage YMC13/01/C62 ABA BP (Bφ-C62) has exhibited strong lytic activity against carbapenem-resistant strains in vitro and in vivo⁸⁹. While bacteriophages offer a promising alternative to traditional antibiotics, further research is needed to address challenges in their clinical application, particularly for in vivo⁹⁰. Future treatment options may include bacteriophages and antimicrobial peptides⁸⁸. Overall, the development of novel medications is crucial to addressing the urgent need for effective CRAB treatments⁸⁶.

Conclusion:

Acinetobacter species, especially A. baumannii, have emerged as major nosocomial infectious agents, causing infections in intensive care units. These bacteria are difficult because of the intrinsic and acquired antimicrobial resistance, with some strains resistant to all currently available antibiotics except colistin. The virulence of Acinetobacter stems from its ability to evade host immunity and trigger sepsis through lipopolysaccharide-mediated mechanisms. Treatment options are limited, with imipenem, amikacin, ampicillin/sulbactam, colistin, and tigecycline showing some efficacy. However, the optimal therapy remains unclear, and combination treatments may be necessary. The ideal treatment for infections caused by MDR A. baumannii is not yet determined, highlighting the necessity of well-designed clinical studies to guide therapeutic decisions Additionally, knowledge of local susceptibility patterns is crucial for selecting appropriate empirical or targeted therapy. Given the high mortality rates linked with infections caused by multidrug-resistant Acinetobacter, prevention through aggressive

control measures is crucial. New therapeutic options are urgently needed to address this global threat.

References:

- 1. Elhosseiny NM, Attia AS. Acinetobacter: an emerging pathogen with a versatile secretome. Emerg Microbes Infect. 2018 Mar 21;7(1):33. doi: 10.1038/s41426-018-0030-4. PMID: 29559620; PMCID: PMC5861075.
- 2. Howard, Aoife et al. "Acinetobacter baumannii." Virulence 3 (2012): 243 250.
- 3. Badie, Omar H. et al. "Acinetobacter baumannii: An Overview of Virulence Factors, Resistance Mechanisms and Treatment Options of the Emerging Pathogen." *ERU Research Journal* (2024): n. pag.
- 4. Bhargava, Nidhi et al. "Quorum sensing in Acinetobacter: an emerging pathogen." *Critical Reviews in Microbiology* 36 (2010): 349 360.
- 5. Nguyen M, Joshi SG. Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: a scientific review. J Appl Microbiol. 2021 Dec;131(6):2715-2738. doi: 10.1111/jam.15130. Epub 2021 May 21. PMID: 33971055.
- 6. Lin, Ming-Feng and Chung-Yu Lan. "Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside." *World journal of clinical cases* 2 12 (2014): 787-814
- 7. Rajkumari, Sanjana et al. "Prevalence and Antibiogram of Acinetobacter Species Isolated from Various Clinical Samples in a Tertiary Care Hospital." *Journal of College of Medical Sciences-Nepal* 16 (2020): 26-32.
- 8. Nemec, Alexandr. "[Taxonomy of the genus Acinetobacter]." Epidemiologie, mikrobiologie, imunologie: casopis Spolecnosti pro epidemiologii a mikrobiologii Ceske lekarske spolecnosti J.E. Purkyne 45 1 (1996): 23-9.
- 9. Rainey, Fred A. et al. "The phylogenetic structure of the genus Acinetobacter." *FEMS microbiology letters* 124 3 (1994): 349-53. Stratton, Charles W. et al. "Acinetobacter." *Infection Control* 4 (1983): 226 230.
- 10. Stratton, Charles W. et al. "Acinetobacter." Infection Control 4 (1983): 226 230.
- 11. Dimple, Raina et al. "Speciation and antibiotic resistance pattern of Acinetobacter species in a tertiary care hospital in Uttarakhand." *International Journal of Medical Research and Health Sciences* 5 (2016): 172-179..
- 12. Sarkar, Rathindra Nath, et al. "Rising Levels of Antibiotic Resistance in Bacteria: A cause for Concern." *The Journal of the Association of Physicians of India* 65 9 (2017): 107.
- 13. Gerner-Smidt P, Frederiksen W. Acinetobacter in Denmark: I. Taxonomy, antibiotic susceptibility, and pathogenicity of 112 clinical strains. APMIS. 1993 Nov;101(11):815-25. doi: 10.1111/j.1699-0463.1993.tb00186.x. PMID: 8286090.
- 14. Alsan M, Klompas M. Acinetobacter baumannii: An Emerging and Important Pathogen. J Clin Outcomes Manag. 2010 Aug;17(8):363-369. PMID: 26966345; PMCID: PMC4782967.
- 15. Vaja, Dr.Kunjal et al. "A Prevalence Study of Acinetobacter Species and Their Sensitivity Pattern in a Tertiary Care Hospital Rajkot City of Gujarat (India): A Hospital Based Study." *IOSR Journal of Dental and Medical Sciences* 15 (2016): 54-58.
- 16. Pandya, Nirav and Anil Kumar Chaudhary. "Emergence of Multidrug resistant Acinetobacter baumannii as Nosocomial Pathogen: Clinical Significance and Antimicrobial Sensitivity." *International Journal of Health Sciences and Research* 5 (2015): 189-195.
- 17. Falagas, Matthew E. et al. "Attributable mortality of Acinetobacter baumannii infections in critically ill patients: a systematic review of matched cohort and case-control studies." *Critical Care* 10 (2006): R48 R48.
- 18. Grupper, Mordechai et al. "Attributable Mortality of Nosocomial Acinetobacter Bacteremia." *Infection Control & Hospital Epidemiology* 28 (2007): 293 298.
- 19. Meshram N, Meshram S. Discernment of *Acinetobacter* Species in World Scenario. *J Pure Appl Microbiol.* 2023;17(3):1400-1409. doi: 10.22207/JPAM.17.3.11
- 20. Hancock, Robert E. W.. "Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria." *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 27 Suppl 1 (1998): S93-9 .

21. Vila, Jordi et al. "Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii." *The Journal of antimicrobial chemotherapy* 59 6 (2007): 1210-5.

- 22. Vila, Jordi. "Mechanisms of antimicrobial resistance in Acinetobacter baumannii." *Reviews in Medical Microbiology* 9 (1998): 87-98.
- 23. Černiauskienė K, Dambrauskienė A, Vitkauskienė A. Associations between β-Lactamase Types of *Acinetobacter baumannii* and Antimicrobial Resistance. Medicina (Kaunas). 2023 Jul 28;59(8):1386. doi: 10.3390/medicina59081386. PMID: 37629675; PMCID: PMC10456718.
- 24. Joly-Guillo, M L et al. "Distribution of beta-lactamases and phenotype analysis in clinical strains of Acinetobacter calcoaceticus." *The Journal of antimicrobial chemotherapy* 22 5 (1988): 597-604.
- 25. Bedenić, Branka. "[Beta-lactamases and their role in resistance. PART 2: beta-lactamases in 21st century]." *Lijecnicki vjesnik* 127 1-2 (2005): 12-21.
- 26. Sun, Xiaoyu et al. "Molecular characterization of Ambler class A to D β-lactamases, ISAba1, and integrons reveals multidrug-resistant Acinetobacter spp. isolates in northeastern China." *Journal of Chemotherapy* 28 (2016): 469 475.
- 27. Mohammed MA, Salim MTA, Anwer BE, Aboshanab KM, Aboulwafa MM. Impact of target site mutations and plasmid associated resistance genes acquisition on resistance of Acinetobacter baumannii to fluoroquinolones. Sci Rep. 2021 Oct 11;11(1):20136. doi: 10.1038/s41598-021-99230-y. PMID: 34635692; PMCID: PMC8505613.
- 28. Aliakbarzade K, Farajnia S, Karimi Nik A, Zarei F, Tanomand A. Prevalence of Aminoglycoside Resistance Genes in Acinetobacter baumannii Isolates. Jundishapur J Microbiol. 2014 Oct;7(10):e11924. doi: 10.5812/jjm.11924. Epub 2014 Oct 1. PMID: 25632323; PMCID: PMC4295313.
- 29. Ramírez, María Soledad and Marcelo E. Tolmasky. "Aminoglycoside modifying enzymes." *Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy* 13 6 (2010): 151-71.
- 30. Coyne, Sébastien et al. "Efflux-Mediated Antibiotic Resistance in Acinetobacter spp." *Antimicrobial Agents and Chemotherapy* 55 (2010): 947 953.
- 31. Bonnin, Rémy A. et al. "Screening and deciphering antibiotic resistance in Acinetobacter baumannii: a state of the art." *Expert Review of Anti-infective Therapy* 11 (2013): 571 583.
- 32. Sugawara, Etsuko and Hiroshi Nikaido. "OmpA Is the Principal Nonspecific Slow Porin of Acinetobacter baumannii." *Journal of Bacteriology* 194 (2012): 4089 4096.
- 33. Obara, Masanobu and Taiji Nakae. "Mechanisms of resistance to beta-lactam antibiotics in Acinetobacter calcoaceticus." *The Journal of antimicrobial chemotherapy* 28 6 (1991): 791-800.
- 34. Bala, Manju et al. "Biofilm producing multidrug resistant Acinetobacter species from a tertiary care hospital: a therapeutic challenge." *International Journal of Research in Medical Sciences* 4 (2016): 3024-3026
- 35. Anish, C. M. et al. "Evaluation of Biofilm Production in Acinetobacter baumannii concerning Imipenem Resistance." (2017). Int J Sci Res Publ 7(12) (ISSN: 2250-3153). http://www.ijsrp.org/research-paper-1217.php?rp=P72708
- 36. Amin, Muzafar et al. "Biofilm formation and multidrug resistance in nosocomial isolates of Acinetobacter." *Indian Journal of Microbiology Research* 5 (2018): 425-429.
- 37. Badave, Gitanjali Kailas and Dhananjay Kulkarni. "Biofilm Producing Multidrug Resistant Acinetobacter baumannii: An Emerging Challenge." *Journal of clinical and diagnostic research : JCDR* 9 1 (2015): DC08-10
- 38. Cooper RM, Tsimring L, Hasty J. Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance. Elife. 2017 Nov 1;6:e25950. doi: 10.7554/eLife.25950. PMID: 29091031; PMCID: PMC5701796.
- 39. Da Silva GJ, Domingues S. Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii. Microorganisms. 2016 Aug 23;4(3):29. doi: 10.3390/microorganisms4030029. PMID: 27681923; PMCID: PMC5039589.
- 40. Sezmis AL, Woods LC, Peleg AY, McDonald MJ. Horizontal Gene Transfer, Fitness Costs and Mobility Shape the Spread of Antibiotic Resistance Genes into Experimental Populations of Acinetobacter Baylyi.

Mol Biol Evol. 2023 Mar 4;40(3):msad028. doi: 10.1093/molbev/msad028. PMID: 36788632; PMCID: PMC9985319.

- 41. Li, Bing et al. "Dissecting horizontal and vertical gene transfer of antibiotic resistance plasmid in bacterial community using microfluidics." *Environment international* 131 (2019): 105007.
- 42. Koeleman, Johannes G. M. et al. "Identification of Epidemic Strains of Acinetobacter baumannii by Integrase Gene PCR." *Journal of Clinical Microbiology* 39 (2001): 8 13.
- 43. Mindlin, Sofia et al. "Ubiquitous Conjugative Mega-Plasmids of Acinetobacter Species and Their Role in Horizontal Transfer of Multi-Drug Resistance." *Frontiers in Microbiology* 12 (2021): n. pag.
- 44. Noel, Hannah R. et al. "Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination." *Annals of the New York Academy of Sciences* 1518 (2022): 166 182.
- 45. Ploy, Marie-Cécile et al. "Molecular Characterization of Integrons in Acinetobacter baumannii: Description of a Hybrid Class 2 Integron." *Antimicrobial Agents and Chemotherapy* 44 (2000): 2684 2688.
- 46. Joly-Guillou, Marie Laure and Eugénie Bergogne-Bérézin. "[Evolution of Acinetobacter calcoaceticus in the hospital milieu, from 1971 to 1984]." *Presse medicale* 14 46 (1985): 2331-5
- 47. Ruiz, Joaquim et al. "Evolution of Resistance among Clinical Isolates of Acinetobacter over a 6-Year Period." European Journal of Clinical Microbiology and Infectious Diseases 18 (1999): 292-295.
- 48. Moradi, Jale et al. "Antibiotic Resistance of Acinetobacter baumannii in Iran: A Systemic Review of the Published Literature." *Osong Public Health and Research Perspectives* 6 (2015): 79 86.
- 49. Xie, Ruiqiang et al. "Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries." *Emerging Microbes & Infections* 7 (2018): Mar 14;7(1):31. doi: 10.1038/s41426-018-0038-9. PMID: 29535298; PMCID: PMC5849731.
- 50. Ayenew Z, Tigabu E, Syoum E, Ebrahim S, Assefa D, Tsige E. Multidrug resistance pattern of Acinetobacter species isolated from clinical specimens referred to the Ethiopian Public Health Institute: 2014 to 2018 trend analysis. PLoS One. 2021 Apr 29;16(4):e0250896. doi: 10.1371/journal.pone.0250896. Erratum in: PLoS One. 2024 Jun 12;19(6):e0305646. doi: 10.1371/journal.pone.0305646. PMID: 33914829; PMCID: PMC8084144.
- 51. Kumari, Minu et al. "A 5-year surveillance on antimicrobial resistance of Acinetobacter isolates at a level-I trauma centre of India." *Journal of Laboratory Physicians* 11 (2019): 34 38.
- 52. Clark, Nina M et al. "Emergence of antimicrobial resistance among Acinetobacter species: a global threat." *Current Opinion in Critical Care* 22 (2016): 491–499.
- 53. Saha, Swarnatrisha et al. "A study of Acinetobacter infections in a tertiary care hospital in Northeast India." *International Journal of Research in Medical Sciences* 6 (2018): 2076.
- 54. Dash, Muktikesh et al. "Frequency, risk factors, and antibiogram of Acinetobacter species isolated from various clinical samples in a tertiary care hospital in Odisha, India." *Avicenna Journal of Medicine* 3 (2013): 97 102.
- 55. Gupta, Neetu et al. "Isolation and identification of Acinetobacter species with special reference to antibiotic resistance." *Journal of Natural Science, Biology, and Medicine* 6 (2015): 159 162.
- 56. Bang-fe, Ye. "Difference in antimicrobial resistance of Acinetobacter baumannii isolated from patients at different wards." (2014). Medicine
- 57. Cassone, Marco et al. "1246. Acinetobacter baumannii in the Post-Acute Care Setting: Prevalence and Resistance Rates in Patients, Health Care Personnel and the Environment." *Open Forum Infectious Diseases* 5 (2018): S379 S379.
- 58. Rit, Kalidas and Rajdeep Saha. "Multidrug-resistant acinetobacter infection and their susceptibility patterns in a tertiary care hospital." *Nigerian Medical Journal : Journal of the Nigeria Medical Association* 53 (2012): 126 128.
- 59. Prado, A. Hernández et al. "[Phenotypic characterization of Acinetobacter baumannii isolates in a high-complexity healthcare institution in the city of Cali]." *Biomedica : revista del Instituto Nacional de Salud* 34 Suppl 1 (2015): 101-7.
- 60. Asif, Muhammad Usman et al. "Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities." *Infection and Drug Resistance* 11 (2018): 1249 1260.

61. Cai, Yun et al. "Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies." *The Journal of antimicrobial chemotherapy* 67 7 (2012): 1607-15.

- 62. Karakonstantis, Stamatis. "A systematic review of implications, mechanisms, and stability of in vivo emergent resistance to colistin and tigecycline in Acinetobacter baumannii." *Journal of Chemotherapy* 33 (2020): 1 11.
- 63. Bonnin, Rémy A. et al. "Screening and deciphering antibiotic resistance in Acinetobacter baumannii: a state of the art." *Expert Review of Anti-infective Therapy* 11 (2013): 571 583.
- 64. Phan-Canh, Trinh et al. "Identification of Acinetobacter baumannii and detection of β lactam antibiotic resistance genes in clinical samples by multiplex PCR." *bioRxiv* (2020): n. pag.
- 65. Mak, Jennifer K et al. "Antibiotic resistance determinants in nosocomial strains of multidrug-resistant Acinetobacter baumannii." *The Journal of antimicrobial chemotherapy* 63 1 (2009): 47-
- 66. Brigmon, Matthew Marcus et al. "1451. Genetic Analysis of Antibiotic Resistance Profiles of Acinetobacter baumannii Using Whole Genome Sequencing." *Open Forum Infectious Diseases* (2020): Volume 7, Issue Supplement 1, October 2020, Page S728, https://doi.org/10.1093/ofid/ofaa439.1632
- 67. Hujer, Kristine M. et al. "Analysis of Antibiotic Resistance Genes in Multidrug-Resistant Acinetobacter sp. Isolates from Military and Civilian Patients Treated at the Walter Reed Army Medical Center." *Antimicrobial Agents and Chemotherapy* 50 (2006): 4114 4123
- 68. Khosravi, Azar Dokht et al. "Molecular Methods for Identification of Acinetobacter Species by Partial Sequencing of the rpoB and 16S rRNA Genes." *Journal of clinical and diagnostic research : JCDR* 9 7 (2015): DC09-13.
- 69. Cecchini, Tiphaine et al. "Deciphering Multifactorial Resistance Phenotypes in Acinetobacter baumannii by Genomics and Targeted Label-free Proteomics*." *Molecular & Cellular Proteomics* 17 (2017): 442 456.
- 70. Jamal, Saba et al. "Molecular mechanisms of antimicrobial resistance in Acinetobacter baumannii, with a special focus on its epidemiology in Lebanon." *Journal of global antimicrobial resistance* 15 (2018): 154-163.
- 71. Koulourida, Vassiliki et al. "Trends in the molecular epidemiology of carbapenem resistant acinetobacter baumannii in a tertiary Greek hospital." *Hippokratia* 15 4 (2011): 343-5.
- 72. Boo, Teck Wee et al. "Molecular characterization of carbapenem-resistant Acinetobacter species in an Irish university hospital: predominance of Acinetobacter genomic species 3." *Journal of medical microbiology* 58 Pt 2 (2009): 209-16.
- 73. Rafei, Rayane et al. "Current molecular methods in epidemiological typing of Acinetobacter baumannii." *Future microbiology* 9 10 (2014): 1179-94.
- 74. Shamsizadeh Z, Nikaeen M, Nasr Esfahani B, Mirhoseini SH, Hatamzadeh M, Hassanzadeh A. Detection of antibiotic resistant Acinetobacter baumannii in various hospital environments: potential sources for transmission of Acinetobacter infections. Environ Health Prev Med. 2017 May 8;22(1):44. doi: 10.1186/s12199-017-0653-4. PMID: 29165152; PMCID: PMC5664838.
- 75. Aygün, Gökhan et al. "Environmental contamination during a carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit." *The Journal of hospital infection* 52 4 (2002): 259-62.
- 76. Das, Ira et al. "Carbapenem-resistant Acinetobacter and role of curtains in an outbreak in intensive care units." *The Journal of hospital infection* 50 2 (2002): 110-4.
- 77. Al-Kadmy, Israa M. S. et al. "Molecular characterization of Acinetobacter baumannii isolated from Iraqi hospital environment." *New Microbes and New Infections* 21 (2017): 51 57.
- 78. Cheng, Vincent Chi-Chung et al. "Control of multidrug-resistant Acinetobacter baumannii in Hong Kong: Role of environmental surveillance in communal areas after a hospital outbreak." *AJIC (American Journal of Infection Control)* 46 (2018): 60–66.
- 79. García-Garcerá, Marc et al. "Metagenomic assessment of the interplay between the environment and the genetic diversification of Acinetobacter." *Environmental Microbiology* 19 (2017): 5010 5024.
- 80. Eveillard, Matthieu et al. "Reservoirs of Acinetobacter baumannii outside the hospital and potential involvement in emerging human community-acquired infections." *International journal of infectious*

diseases: IJID: official publication of the International Society for Infectious Diseases 17 10 (2013): e802-5.

- 81. Adewoyin, Mary Ayobami and Anthony Ifeanyi Okoh. "The natural environment as a reservoir of pathogenic and non-pathogenic Acinetobacter species." *Reviews on Environmental Health* 33 (2018): 265 272.
- 82. Zhang S, Di L, Qi Y, Qian X, Wang S. Treatment of infections caused by carbapenem-resistant *Acinetobacter baumannii*. Front Cell Infect Microbiol. 2024 Jul 18;14:1395260. doi: 10.3389/fcimb.2024.1395260. PMID: 39081869; PMCID: PMC11287075.
- 83. Bartal, Carmi et al. "Carbapenem-resistant Acinetobacter baumannii: Colonization, Infection and Current Treatment Options." *Infectious Diseases and Therapy* 11 (2022): 683 694.
- 84. Kengkla, Kirati et al. "Comparative efficacy and safety of treatment options for MDR and XDR Acinetobacter baumannii infections: a systematic review and network meta-analysis." *Journal of Antimicrobial Chemotherapy* 73 (2018): 22–32.
- 85. Karageorgopoulos, Drosos E. et al. "Tigecycline for the treatment of multidrug-resistant (including carbapenem-resistant) Acinetobacter infections: a review of the scientific evidence." *The Journal of antimicrobial chemotherapy* 62 1 (2008): 45-55.
- 86. Isler B, Doi Y, Bonomo RA, Paterson DL. New Treatment Options against Carbapenem-Resistant *Acinetobacter baumannii* Infections. Antimicrob Agents Chemother. 2018 Dec 21;63(1):e01110-18. doi: 10.1128/AAC.01110-18. PMID: 30323035; PMCID: PMC6325237
- 87. Rai S, Kumar A. Bacteriophage therapeutics to confront multidrug-resistant Acinetobacter baumannii a global health menace. Environ Microbiol Rep. 2022 Jun;14(3):347-364. doi: 10.1111/1758-2229.12988. Epub 2021 Jul 6. PMID: 34196126.
- 88. Zhang, Y.; Lin, Y.; Galgano, S.; Houdijk, J.; Xie, W.; Jin, Y.; Lin, J.; Song, W.; Fu, Y.; Li, X.; et al. Recent Progress in Phage Therapy to Modulate Multidrug-Resistant *Acinetobacter baumannii*, including in Human and Poultry. *Antibiotics* **2022**, *11*, 1406. https://doi.org/10.3390/antibiotics11101406
- 89. Jeon, Jongsoo et al. "In Vivo Application of Bacteriophage as a Potential Therapeutic Agent To Control OXA-66-Like Carbapenemase-Producing Acinetobacter baumannii Strains Belonging to Sequence Type 357." *Applied and Environmental Microbiology* 82 (2016): 4200 4208.
- 90. Yoon Kyung Chang, Rachel et al. "Novel antimicrobial agents for combating antibiotic-resistant bacteria." *Advanced drug delivery reviews* (2022): 114378.