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Abstract: 
Acinetobacter baumannii has emerged as a major healthcare-associated pathogen due to its high level of antibiotic 
resistance, posing a worldwide health concern. The bacterium employs various mechanisms to acquire and 
disseminate resistance, including mobile genetic elements like insertion sequences, transposons, and plasmids. The 
resistance mechanisms employed by A. baumannii include antibiotic modification, reduced membrane 
permeability, active efflux pumps, and alterations in antibiotic targets. The production of β-lactamases, 
particularly Acinetobacter-derived cephalosporinases, contributes to resistance against carbapenems and 
cephalosporins.  The worldwide spread of multidrug-resistant bacteria has increased drastically due to the limited 
alternatives to therapy available leading to the increased rates of death and morbidity. To address this challenge, 
researchers are exploring combination therapies and novel antimicrobial adjuvants to enhance drug efficacy.  
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Introduction: 
Acinetobacter baumannii (A .baumannii) has developed as a significant hospital-acquired pathogen, especially in 
critical care units, causing serious infections with high fatality and morbidity rates1. Its capability to acquire 
multidrug resistance has led the World Health Organization to prioritize it for new antibiotic development 2. These 
bacteria are implicated in various infections, including pneumonia, bacteremia, and urinary tract infections. The 
success of A. baumannii as an infective agent is attributed to its ability to develop drug resistance and tolerate harsh 
environments rapidly 3. A. baumannii's virulence factors include outer membrane proteins, biofilm formation, and 
lipopolysaccharide, while its resistance mechanisms involve β-lactamases, efflux systems, and altered antibiotic 
target sites4. Quorum sensing acts as a part of biofilm formation, though its impact on other virulence factors 
remains unclear 5. The emergence of strains resistant to many antibiotics and carbapenem poses a significant threat 
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to public health, particularly in hospital settings 6. Understanding the resistance mechanisms and factors that lead 
to the virulence of A. baumannii is crucial for developing effective treatment strategies3. Current approaches 
include colistin-based combination therapy and stringent infection control measures 3. However, the increasing 
spread of resistant strains necessitates the development of novel antibiotics and alternative treatments, such as 
antimicrobial peptides3,6 . 
Historical Background of Acinetobacter: 
The genus Acinetobacter, discovered in 1911, comprises Gram-negative, non-fermenting coccobacilli, aerobic 
opportunistic pathogens producing various nosocomial infections7. Initially believed to be a single species, A. 
calcoaceticus, the genus has undergone significant taxonomic changes, with 19 genomospecies identified by 19968. 
Phylogenetic analysis using 16S rDNA sequencing confirmed Acinetobacter as an organism belonging to gamma 
subclass proteobacteriae., revealing distinct species clusters and potential novel species9 (Rainey et al., 1994). 
Historically, Acinetobacter species were classified under various genera, including Mima, Herellea, and Moraxella. 
The most clinically relevant biotypes are A. calcoaceticus var. lwoffi, and A. calcoaceticus var. anitratus which are 
associated with infections in immunocompromised patients, often linked to medical devices and equipment10.  
Among the Acinetobacter spp., the prevalent species is A .baumannii which produces significant nosocomial 
infection11. Initially sensitive to most antibiotics in the early 1970s, Acinetobacter rapidly developed resistance to 
various antimicrobials12. By the 2000s, high resistance rates to carbapenems were reported in Europe and the 
USA12. Previous research showed increasing resistance to widely used antibiotics, including ampicillin-sulbactam, 
cephalosporins, and aztreonam11,13. Imipenem remained effective against all strains in earlier studies13, but recent 
reports indicate emerging resistance to reserved antibiotics like tigecycline and colistin 12. The rapid development 
of antibiotic resistance in Acinetobacter species emphasizes the necessity of continuing observation and prudent 
antibiotic usage to reserve treatment options for these challenging pathogens.  
Clinical significance of Acinetobacter species:  
Acinetobacter infections have emerged as an important cause of hospital-acquired infections worldwide, especially 
in intensive care units14. These opportunistic bacteria primarily cause blood infections and ventilator-associated 
pneumonia.  A. baumannii is the topmost clinically relevant species, often affecting immunocompromised patients. 
The ability of bacteria to endure on hospital surfaces, develop multidrug resistance, and cause serious infections in 
critically ill patients contributes to its clinical significance14.  Acinetobacter species exhibit multidrug resistance, 
with high resistance rates to carbapenems and other antibiotics15,16. The fatality rate associated with multidrug-
resistant infections produced by Acinetobacter is significant, ranging from 7.9% to 43% in some studies17,18,19. 
Colistin and tigecycline remain effective treatment options in many cases16. The evolving antibiotic resistance in 
Acinetobacter species poses a significant challenge for infection control and treatment strategies19  
Mechanisms of antibiotic resistance 
Gram-negative, non-fermentative A. baumannii bacteria are distinguished by their strong inherent resistance to 
antibiotics, mainly due to decreased outer membrane permeability coupled with secondary mechanisms like efflux 
pumps and inducible cephalosporinases20. A. baumannii is considered a prototype of multiresistant bacteria, 
capable of acquiring resistance through genetic elements and mutations affecting porin expression and efflux 
pumps21,22. The interplay between reduced permeability and active efflux systems contributes to resistance against 
unrelated antimicrobial agents21. Additionally, these pathogens can acquire resistance genes encoding β-lactamases 
and aminoglycoside-modifying enzymes23. The accumulation of numerous resistance methods, including 
mutations in topoisomerases and diminished expression of outer membrane proteins, may lead to the expansion of 
multiple resistant or even pan-resistant strains23.   
Beta lactamases: 
Acinetobacter species, particularly A. baumannii, has increasing antimicrobial resistance, primarily due to β-
lactamases24. These enzymes belong to Ambler classes A to D, with PER, IMP, AmpC, and OXA-23 being 
dominant. The beta-lactamases produced by Acinetobacter include Class A Beta-lactamases: These include TEM 
and SHV enzymes. Class B Metallo-beta-lactamases (MBLs): Examples are IMP (Imipenemase), VIM (Verona 
integron-encoded metallo-beta-lactamase), and  NDM (New Delhi metallo-beta-lactamase. Class C Beta-
lactamases: These are also known as cephalosporinases. Class D Beta-lactamases: OXA-type carbapenemases, 
such as OXA-58, OXA-23, and OXA-24, are particularly prevalent in A. baumannii and are a main contributor for 
carbapenem resistance  The prevalence of strains producing multiple β-lactamases has increased over time, 
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correlating with higher resistance rates to various antibiotics24. Historically, TEM-type penicillinases were most 
common, with CARB-type and cephalosporinases emerging later25. Class D carbapenemases are frequent, while 
class A and B carbapenemases are also significant26. The spread of multidrug-resistant Acinetobacter strains 
harboring many genes for the production of β-lactamase has become a serious issue, often associated with mobile 
genetic elements like ISAba1 and integrons27.  
Target modification: 
Mutations in genes encoding antibiotic targets, such as gyrA and parC, contribute to fluoroquinolone resistance27. 
Additionally, the acquisition of plasmid-associated resistance genes further enhances antibiotic resistance27. 
Resistance to Aminoglycoside in A .baumannii is primarily mediated by aminoglycoside-modifying enzymes 
(AMEs)28. These enzymes, including acetyltransferases, nucleotidyltransferases, and phosphotransferases, modify 
specific sites on the aminoglycoside molecule, rendering it ineffective29. The AME genes usually found in A. 
baumannii include aacC1, aacC2, aacA4, and aphA6, with varying prevalence rates28. The presence of these genes 
correlates with resilent resistance rates to aminoglycosides such as amikacin, gentamicin,, and 
tobramycin28.  Additionally, aminoglycoside-modifying enzyme genes, such as aacC1, aacC2, and aacA4, 
contribute to resistance against multiple antibiotics in A. baumannii.  The widespread occurrence of AMEs in A 
.baumannii highlights the need for new strategies to combat aminoglycoside resistance, such as developing enzyme 
inhibitors or new aminoglycosides resistant to modification29. 
 
 Efflux pumps: 
Multidrug resistance is greatly influenced by efflux pumps especially belonging to the  resistance-nodulation-
division (RND) superfamily. Overexpression of AdeABC, AdeIJK, and AdeFGH pumps, regulated by various 
mechanisms, provides resistance to an extensive range of antibiotics and biocides30. Additionally, non-RND efflux 
systems and acquired narrow-spectrum pumps contribute to resistance. Tet(A) and Tet(B) efflux pumps are specific 
for tetracyclines. Timely detection and recognition of multidrug-resistant A .baumannii strains are critical for 
controlling their spread in healthcare settings31. Efflux pumps and porin channel deletions also contribute to 
resistance against multiple antibiotic classes. 
Decreased permeability: 
Acinetobacter species exhibit high inherent resistance to many antibiotics, partly owing to decreased outer 
membrane permeability. The major porin in A. baumannii, OmpAAb, shows reduced permeability compared to 
other bacterial porins, contributing to antibiotic resistance32. In A. calcoaceticus, mutants resistant to various β-
lactams demonstrated reduced outer membrane permeability and reduced production of a 46.5 kDa porin protein33. 
This decreased permeability, combined with altered penicillin-binding proteins, enhances resistance to β-lactams. 
In A. baumannii, reduced membrane permeability and constitutive expression of efflux pumpsinteract ot produce 
both intrinsic and acquired multidrug resistance21. The existence of multidrug efflux pumps such as AdeABC and 
AdeIJK, β-lactamases, and low permeability of OmpAAb are important factors contributing to the high levels of 
intrinsic antibiotic resistance seen in A. baumannii32. 
Biofilm formation: 
Research have repeatedly shown a close relationship between biofilm production and antibiotic resistance in 
Acinetobacter isolates34,35,36,37. Biofilm-producing strains showed higher resistance to various antibiotics, including 
ampicillin-sulbactam, amikacin, ciprofloxacin, and ceftazidime37. Imipenem resistance is substantially linked to 
biofilm production 35. The prevalence of biofilm-producing Acinetobacter isolates ranged from 60% to 68% across 
studies, with a high proportion of these isolates exhibiting MDR36,37. Colistin demonstrated the highest sensitivity 
among tested antibiotics 36. The use of EDTA showed promise in reducing biofilm formation by 55-75% 35. These 
findings highlight the therapeutic challenges posed by biofilm-producing, multidrug-resistant Acinetobacter 
species in clinical settings. 
Genetic mechanisms:  
Horizontal gene transfer (HGT) is a significant mechanism in the transfer of antibiotic resistance genes (ARGs) 
among bacteria, particularly in Acinetobacter species. Bacterial predation by A. baylyi significantly enhances cross-
species HGT38. A. baumannii employs various HGT mechanisms, including transduction, natural transformation 
and outer membrane vesicle-mediated transfer, to acquire carbapenemase genes39. Experimental studies with A. 
baylyi demonstrate that ARGs can spread through HGT without antibiotic selection, but their long-term persistence 
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depends on fitness costs and genetic mobility40. Microfluidic techniques have revealed that both HGT and vertical 
gene transfer (VGT) contribute to ARG transmission in bacterial communities. The presence of antibiotics can 
influence HGT and VGT rates differently, depending on their inhibitory mechanisms and targets41. Understanding 
these complex dynamics is necessary for anticipating and combating the spread of resistance to antibiotics in 
microbial populations. 
Role of plasmids and integrons: 
Integrons  and plasmids have crucial roles in dissemination of resistance to antibiotics among  Acinetobacter 
species. Integrons are significantly correlated with multidrug resistance and epidemic behavior in A. baumannii 42. 
Conjugative mega-plasmids facilitate the spread of resistance genes between Acinetobacter species and can 
mobilize smaller plasmids43. These mega-plasmids accumulate resistance genes  to antibiotics through the 
incorporation of integrons and transposons in clinical strains43. Mobile genetic elements such as conjugative 
plasmids, integrons, transposons, and insertion sequences are key factors in acquiring and disseminating antibiotic 
resistance in Acinetobacter 44. The prevalent integrons in A. baumannii is class 1, often carrys various antibiotic 
resistance gene cassettes45. Hybrid integrons and the diversity of gene cassettes presence highlight the complex 
method of resistance acquisition in  species of Acinetobacter45. 
Evolution of Multidrug Resistance (MDR) in Acinteobacter: 
The development of drug resistance in Acinetobacter species had been a growing concern from the year 1970s. 
Initially sensitive to most antibiotics, resistance to β-lactams and aminoglycosides emerged rapidly46. By the late 
1990s, resistance rates to various antibiotics, including ciprofloxacin and imipenem, had increased significantly47. 
This trend continued into the 2000s, with studies in Iran showing increased rate of resistance to carbapenems, 
lipopeptides, and aminoglycosides48. The timeline of resistance development shows a progression from 
cephalosporin resistance in 1975 to widespread carbapenem resistance by 2000, particularly in Europe and the 
USA12. Colistin and tigecycline remained effective options, but emerging resistance to these last-resort antibiotics 
are reported12. 
Current prevalence and resistance patterns: 
Global trends of resistance: 
Global trends show a concerning increase in antibiotic resistance among Acinetobacter species, particularly A. 
baumannii. Accoring to Studies, in both non-OECD and -OECD countries reveal high resistance rates to routinely 
used antibiotics, with OECD nations experiencing a faster increase in recent years49. In Ethiopia, a five-year 
analysis demonstrated rising multidrug resistance and carbapenem non-susceptibility in Acinetobacter species50. 
Similarly, a study in India reported high resistance levels to various antibiotics, including ciprofloxacin, cefepime, 
and amikacin51. Multidrug-resistant A. baumannii’s global proliferation is linked to transfer of a few clones 
between hospitals and regions, amplified by increased antibiotic use52. These trends pose a significant threat to 
infection control, with some infections becoming untreatable using existing antimicrobial agents, necessitating 
urgent action from healthcare systems and pharmaceutical companies52. 
 
 
Trends in India: 
Acinetobacter species are the leading cause of hospital-acquired infections, particularly in India. Studies from 
various regions of India report isolation rates of 2.9-4.8% from clinical samples, with A. baumannii being the 
predominant species53. These bacteria exhibit high levels of antibiotic resistance, with multidrug-resistant strains 
accounting for 54.7% of isolates in one study54. Resistance rates to commonly used antibiotics vary across regions, 
with cephalosporins and fluoroquinolones showing particularly high resistance15. Carbapenems remain relatively 
effective, though resistance rates of 19-41.67% have been reported15,54. Risk factors for Acinetobacter infections 
include advanced age, prolonged hospital stay, invasive procedures, and ICU admission 53,54.  
Recent studies in India have reported high rates of resistance to antimicrobial among Acinetobacter species, 
particularly within hospital settings. In Gujarat, resistance rates to commonly used antibiotics ranged from 41.67% 
to 79.71% 15. A 5-year surveillance at a trauma center revealed increasing resistance trends, with over 90% 
resistance to multiple antibiotics51. Metallo-β-lactamase production and Extended-spectrum β-lactamase and was 
identified in  14.4%  and 31.5% of isolates, respectively55 . Risk factors for Acinetobacter infections included 
elderly age, prolonged hospital stay, comorbidities, and invasive procedures54. Multidrug resistance was observed 
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in 54.7% of isolates, with 5.8% being pan-drug resistant54 . Carbapenems and piperacillin/tazobactam showed 
lower resistance rates compared to other antibiotics, while colistin remained effective against pan-drug resistant 
strains51,54 . 
Resistance Profiles: 
Acinetobacter baumannii exhibits varying resistance profiles across healthcare settings. A. baumannii isolates 
showed highest antimicrobial resistance, with susceptibility rates below 20%  in Critical care units56.  The 
environmental contamination is widespread (16.48%), in nursing facilities with concerning rates of resistance even 
in medical and rehabilitation settings57. A. baumannii is more frequently isolated from ICUs (52.92%) and 
respiratory departments (12.33%), primarily from sputum specimens (94.62%)56. In tertiary care hospitals, A. 
baumannii displays high resistance to multiple antibiotics, including imipenem (5.2%), meropenem (9.75%), and 
ceftazidime (74.1%)58 . Resistance mechanisms may include antibiotic-modifying enzymes, extended-spectrum β-
lactamases production, and target site modification59. The frequency and resistance patterns among the A. 
baumannii underscore its significance as a challenging nosocomial pathogen across various healthcare settings. 
A .baumannii has developed as a major pathogen, developing resistance to last-resort antibiotics like colistin, 
carbapenems, and tigecycline60. Colistin resistance reported globally with the highest rates in Asia, is primarily due 
to lipopolysaccharide modifications or the PmrAB two-component system61. The resistance that evolved during a 
treatment of colistin and tigecycline during treatment often leads to persistent or recurrent infections62. 
Monotherapy of colistin is insufficient to avoid resistance, necessitating combination therapies as a potential 
solution61. Colistin/rifampicin and colistin/carbapenem combinations have shown promising results in vitro, in 
vivo, and clinically61. Early identification and recognition of multidrug-resistant A. baumannii are Critical for 
controlling its spread63.  
Molecular Characterisation of Resistant Strains: 
Identification of key resistant genes  
A .baumannii, a major source of hospital-acquired infections, rapidly develops antibiotic resistance. Multiple 
studies have identified key resistance genes in A. baumannii isolates. All the A. baumannii isolates that were 
examined were found to have blaOXA-51-like and ampC genes linked to β-lactam resistance64,65. Common 
resistance genes include blaTEM, strB, and tet(B)65. Whole genome sequencing revealed blaADC-25 as the most 
prevalent resistance gene across all sequence types, conferring β-lactam resistance66. Multiple clonal types have 
been identified, with some strains possessing up to 12 resistance determinants 65,67. Notably, blaOXA-58-like and 
blaPER-like genes were initially identified in MDR A. baumannii isolates of USA67. Continuous monitoring of 
resistance profiles is crucial for effective infection control and treatment. 
Molecular techniques play an important role in identifying and characterizing antibiotic resistance in Acinetobacter 
species, particularly A. baumannii. Whole genome sequencing and PCR-based methods, including PCR-RFLP and 
RT-qPCR, are commonly used for species identification and resistance gene detection 68,69. Analysis of the 16S 
rRNA Sequences and rpoB genes has proven effective for accurate species-level identification68. Mass 
spectrometry, specifically targeted label-free proteomics using selected reaction monitoring, enables rapid 
quantitative detection of resistance-associated proteins, including β-lactamases and efflux pump components69. 
These molecular approaches have revealed that A. baumannii acquires resistance by various mechanisms, via 
horizontal gene transfer and mutations leading to gene disruption or altered expression63. Addressing these 
mechanisms is critical for devising effective treatments to tackle multidrug-resistant A. baumannii, a major 
problem in hospital settings70. 
Molecular studies on Acinetobacter species have revealed important trends in antimicrobial resistance and 
epidemiology. A. baumannii resistant to carbapenem strains have been identified in many nations, with OXA-58 
and OXA-23 carbapenemases playing significant roles71,72. Molecular typing methods, such as pulsed-field gel 
electrophoresis, have shown shifts in clonal distribution over time71. Acinetobacter genomic species 3 has emerged 
as a predominant species in some settings. The spread of resistance genes is facilitated by insertion sequences like 
ISAba1 and inter-species plasmid transfer72. International clones I, II, and III have been determined as major causes 
of outbreaks70. Various molecular typing methods are now available for epidemiological studies, each with its 
advantages and limitations73. These findings underscore the importance of management of antimicrobial and 
infection control methods. 
Environmental and healthcare-related factors contributing to resistance: 
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Hospital surroundings contribute significantly to fostering resistance to antibiotics of A .baumannii. Studies have 
detected MDR A. baumannii in various hospital environments, including water, surfaces, and air with intensive 
care units (ICUs) being particularly vulnerable74,75. Environmental contamination is a significant reservoir for 
outbreaks, necessitating thorough cleaning and disinfection to control spread75,76. Curtains and other dry fabrics 
have been identified as important dissemination sources76. A. baumannii from a hospital context often exhibit 
resistance to multiple drugs and possess various virulence factors, posing a serious public health threat77. Effective 
control measures include implementing rigorous infection control protocols, restricting carbapenem use, and 
regularly changing curtains76. Early detection and prompt intervention are crucial to preventing the dissemination 
of resistant A. baumannii in hospital settings74. 
Influence of environmental reservoirs: 
Acinetobacter species, particularly A. baumannii, are important pathogens with environmental reservoirs that 
contribute to outbreaks and community-acquired infections. Environmental surveillance in hospital settings can 
predict and help control MRAB infections78. The genus Acinetobacter has undergone ecological differentiation, 
with some lineages evolving towards host association79. Extra-hospital reservoirs such as pets, slaughtered animals, 
human lice, and human carriage potentially contribute to community-acquired infections 80. Acinetobacter species 
may be found in several natural settings, including surface water, wastewater, sewage, human skin, plants, animals, 
and food 81. While some species play beneficial roles in soil improvement and detoxification, others, like A. 
baumannii, are significant pathogens. Understanding these environmental reservoirs is crucial for controlling 
Acinetobacter infections and predicting their emergence in both community and hospital environments. 
Clinical management and treatment challenges: 
Infections caused by Carbapenem-resistant Acinetobacter baumannii (CRAB) pose major therapeutic problems 
due to limited options and high mortality rates82. Current treatments include a combination of high-dose ampicillin-
sulbactam and tigecycline or polymyxins83. Colistin with sulbactam has shown superior therapeutical efficacy 
compared to colistin monotherapy or colistin with tigecycline for extensively drug-resistant (XDR) and MDR A. 
baumannii infections84. Tigecycline has demonstrated considerable antimicrobial activity against MDR 
Acinetobacter, but clinical data supporting its use, especially for ventilator-associated pneumonia or bacteremia, 
remain limited85. However, polymyxins have dosing difficulties and significant side effects83. Newer options like 
eravacycline and cefiderocol show potential but lack sufficient data for use as sole agents83,86. Combination therapy 
proves to have been the most effective approach, with the involvement of infectious disease specialists 
recommended for optimal management83 Novel therapeutics:  
Bacteriophage therapy is now recognized as an effective approach to combat multidrug-resistant A. baumannii, a 
critical priority pathogen87. Various strategies have been explored including phage cocktails, single phage therapy, 
and combination therapy with antibiotics88. Enzymes like endolysins and depolymerases derived from phages have 
also shown potential in targeting A. baumannii87. In-vivo investigation of phage treatment has shown improvement 
in survival rates and bacterial clearance in mouse models89. The phage YMC13/01/C62 ABA BP (Bϕ-C62) has 
exhibited strong lytic activity against carbapenem-resistant strains in vitro and in vivo89. While bacteriophages 
offer a promising alternative to traditional antibiotics, further research is needed to address challenges in their 
clinical application, particularly for in vivo90. Future treatment options may include bacteriophages and 
antimicrobial peptides88. Overall, the development of novel medications is crucial to addressing the urgent need 
for effective CRAB treatments86. 
Conclusion: 
Acinetobacter species, especially A. baumannii, have emerged as major nosocomial infectious agents, causing 
infections in intensive care units. These bacteria are difficult because of the intrinsic and acquired antimicrobial 
resistance, with some strains resistant to all currently available antibiotics except colistin. The virulence of 
Acinetobacter stems from its ability to evade host immunity and trigger sepsis through lipopolysaccharide-
mediated mechanisms. Treatment options are limited, with imipenem, amikacin, ampicillin/sulbactam, colistin, 
and tigecycline showing some efficacy. However, the optimal therapy remains unclear, and combination treatments 
may be necessary. The ideal treatment for infections caused by MDR A. baumannii is not yet determined, 
highlighting the necessity of well-designed clinical studies to guide therapeutic decisions Additionally, knowledge 
of local susceptibility patterns is crucial for selecting appropriate empirical or targeted therapy. Given the high 
mortality rates linked with infections caused by multidrug-resistant Acinetobacter, prevention through aggressive 
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control measures is crucial. New therapeutic options are urgently needed to address this global threat. 
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