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ABSTRACT:  

Block size deduplication is a method employed in storage systems to enhance storage efficiency by 
recognizing and removing duplicate data blocks. It involves segmenting data into fixed-size blocks or chunks, 
typically ranging from kilobytes to several megabytes, and then identifying redundant blocks within the 
dataset. Instead of storing duplicate blocks multiple times, this technique stores only one instance of each 
unique block and maintains references to that block for subsequent duplicates. By eliminating redundant 
data, block size deduplication reduces storage overhead and enhances storage efficiency, particularly in 
environments where multiple copies of the same data are stored. This approach is commonly utilized in 
backup solutions, file systems, and storage appliances to optimize storage space and streamline data 
management. Moreover, the document explores practical implementations and real-life examples 
demonstrating the effectiveness of flat block size deduplication in enhancing scalability, cutting costs, and 
boosting system reliability within cloud settings. This overview lays the ground-work for a thorough 
examination of flat block size deduplication methods and their influence on cloud memory management, 
underscoring their significance and relevance in contemporary computing systems. 

Keywords: Content-Based Page Sharing (CBPS), Text Intersection Deduplication System (TIDS), Feedback 
Deduplication System (FDS), Virtual Machine (VM). 

1. INTRODUCTION 

Cloud memory management plays a vital role in contemporary computing, especially in cloud-based systems 
where efficient resource allocation is crucial. A prominent technique that has gained considerable attention is 
flat block size deduplication, which entails identifying and removing duplicate data blocks within cloud 
memory. This process reduces storage overhead and enhances overall system performance. Introducing flat 
block size deduplication techniques represents a significant advancement in cloud memory management 
approaches. By examining data at the block level rather than the file level, these techniques can achieve higher 
deduplication rates and more detailed resource optimization. This document investigates the principles, 
obstacles, and advantages of implementing flat block size deduplication in cloud memory management, 
exploring how these techniques identify duplicate blocks, handle metadata, and maintain data integrity while 
optimizing storage capacity. Boundary deduplication is a data optimization method that targets and removes 
duplicate data within specific boundaries or segments, such as files or logical units, rather than at the block 
level. The process commences by identifying these boundaries, followed by breaking down the data into 
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smaller fragments for comparison using hash functions. Matching hash values are used to pinpoint duplicate 
fragments, enabling the system to retain only one instance of each unique fragment and substitute duplicates 
with references or pointers. This strategy saves storage space, boosts data retrieval speed, and streamlines 
storage efficiency, making it a valuable approach in backup systems, cloud storage, and data archiving where 
reducing redundancy and enhancing storage utilization are key objectives. Block size deduplication is a method 
of data deduplication utilized in storage systems to enhance storage efficiency by identifying and removing 
duplicate data blocks. This technique involves segmenting data into fixed-size blocks or chunks, ranging from 
kilobytes to megabytes, and then identifying matching blocks within the dataset. Instead of storing redundant 
blocks multiple times, block size deduplication retains only one copy of each unique block and keeps references 
or pointers to that block for subsequent duplicates. By doing so, this approach minimizes storage overhead by 
eliminating redundant data and boosts storage efficiency, particularly in scenarios where multiple copies of the 
same data exist within the system. Block size deduplication is widely employed in backup solutions, file 
systems, and storage appliances to save storage space and enhance data management capabilities.  

2. RELATED WORKS  

Bosman et al. [1] brought attention to the potential risks associated with memory deduplication, highlighting 
how seemingly harmless features could be exploited by sophisticated attackers. Their study demonstrated that 
deduplication-based primitives could be manipulated to disclose sensitive information, posing a threat to 
system security. This specifies the importance of high security measures in deduplication strategies. Cui et al. 
[3] recently introduced UWare, a middleware aimed at enhancing data transfer efficiency through encrypted 
cloud storage. Their research aimed to address customer concerns regarding side-channel leakage while 
retaining the benefits of deduplication. They focused on leveraging similarity features and employing the 
Proof-of-Work (PoW) protocol to strike a balance between deduplication effectiveness and system throughput. 
Garg et al. [5] utilized graphics processing units (GPUs) to enhance deduplication efficiency. Their proposed 
method, Catalyst, offloaded the memory deduplication workload to GPU devices, enabling rapid identification 
of potentially duplicated pages. Results indicated that Catalyst significantly accelerated data sharing speed 
from memory compared to traditional methods. Kaur et al. [9] explored data deduplication in cloud computing 
and its potential to reduce storage costs, network traffic, and power consumption. They stressed the importance 
of innovative deduplication methods to enhance the efficiency of large-scale storage systems. Ning et al. [11] 
introduced group-based memory deduplication as a novel defense against covert channel attacks in multi-tenant 
clouds. Their approach provided group-level isolation, safeguarding virtual machines (VMs) from side-channel 
attacks by enabling group members to manage guest memory using shared secrets. Raoufi et al. [13] presented 
PageCmp, a memory-based page comparator that minimizes data sent during deduplication. By leveraging 
charge-sharing phenomena in DRAM's bulk bitwise operations, they significantly reduced bandwidth usage 
while maintaining acceptable execution time and power consumption levels. 

3. RESEARCH METHODOLOGY 

The initial phase of this study is dedicated to enhancing cloud memory management through the application of 
flat block size deduplication techniques. This involves tackling key challenges inherent in cloud memory 
management and exploring the impacts of deduplication methods specifically designed for flat block sizes. The 
objective is to provide a comprehensive analysis of how these deduplication techniques affect performance 
within cloud environments. To achieve this, the study begins with a thorough review of existing literature, 
aiming to expand on current knowledge, identify gaps, and highlight opportunities for innovation. This review 
will serve as a foundation, setting the stage for a deeper investigation into the practical implications and benefits 
of flat block size deduplication in cloud storage systems. The methodology of the research includes the 
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deployment and testing of flat block size deduplication techniques within a cloud memory environment. This 
involves configuring the cloud storage system to incorporate deduplication algorithms that focus on blocks of 
uniform size. The performance of these techniques will be assessed based on several critical metrics, including 
storage savings, data access speeds, and computational load. By rigorously collecting and analyzing data, the 
study aims to quantify the benefits and limitations of flat block size deduplication. Key performance indicators 
such as the reduction in storage footprint, the efficiency of data retrieval operations, and the impact on system 
processing load will be closely monitored. This data will be collected through a series of controlled experiments 
designed to simulate real-world usage scenarios in cloud environments. The experiments will be structured to 
measure the direct effects of deduplication on storage utilization and system performance, providing a clear 
picture of its advantages and potential drawbacks. Furthermore, the research will also delve into the scalability 
of flat block size deduplication techniques. This involves examining how well these methods can be scaled up 
to handle larger datasets and more complex storage requirements typically encountered in cloud settings. By 
evaluating the scalability, the study aims to identify any bottlenecks or performance degradation that might 
arise as the system expands. The findings from this research are expected to offer valuable insights that can 
guide the development and optimization of cloud memory systems. The ultimate goal is to enhance the 
efficiency and management of cloud resources, thereby reducing costs and improving system reliability. By 
providing evidence-based recommendations, the study aims to contribute to the ongoing evolution of cloud 
storage technologies, making them more efficient, scalable, and effective in meeting the growing demands of 
modern computing environments. This research seeks to advance the understanding of flat block size 
deduplication techniques in cloud memory management, providing a detailed analysis of their performance 
impacts and practical benefits. Through systematic investigation and data-driven insights, the study aims to 
pave the way for more efficient and robust cloud storage solutions. Detailed Block Size Deduplication 
workflow architecture is described in Figure1. 

 

Figure 1: Block Size Deduplication workflow architecture 

3.1  Text Intersection Deduplication System (TIDS) 

In the Text Intersection and Deduplication System (TIDS), deduplication follows the processing phase, 
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employing a two-tiered intersection approach to classify files within a text corpus as popular or unpopular. 
Initially, documents are grouped based on text features extracted through named entity recognition (NER) and 
term frequency (TF) analysis. The process involves four stages: root word detection, data cleansing, stemming, 
and threshold factor determination. 

Tokenization breaks sentences into individual words for root word identification, while data cleansing removes 
unnecessary words. Stemming refines the text by eliminating morphemes, and a threshold factor identifies key 
text attributes. TF determines the significance of text components by their frequency within the document, 
although it may overlook critical elements. NER compensates for this by extracting specific entities such as 
people, locations, and objects mentioned in the texts. Documents retrieved through TF and NER form a 
collection of objects pointing to folders containing text files based on these attributes. 

In the second tier, the intersection method classifies these objects as popular or unpopular. This classification 
facilitates the removal of redundant text corpora, optimizing storage space through deduplication. Popular files 
are retained across all cloud instances, while less popular ones are deleted from secondary servers and 
preserved only on the main server. This approach ensures efficient storage management and reduces 
redundancy in the cloud environment, enhancing overall storage efficiency and resource utilization. 

3.2   Secure Deduplication in Cloud Storage with Efficient Multilevel Key Management (SDCM) 

Hackers can exploit side-channel attacks like data deduplication and file identification to breach cloud-stored 
data security. To counter these threats, researchers suggest using secure deduplication and robust two-level 
key management. Secure deduplication enhances privacy by restricting access to authorized users. User 
authentication for storing and retrieving text files in two cloud services is verified using proof of ownership 
(POW), as proposed by Upadhyay, D. et al. (2021). The process begins with inline deduplication to identify 
duplicate files using the SHA-2 method. When a duplicate file is detected, file details and owner information 
are added to the POW list. A convergent key, generated based on file content, encrypts newly discovered files 
asymmetrically before storage in the cloud. The POW list is updated with user and file information, two-level 
keys (one derived from the convergent key and the other random), and an encrypted convergent key generated 
during the user session. Registered users receive the two-level keys via email to confirm ownership, ensuring 
secure text file retrieval. Only authorized users can access the services by providing the two-level keys: the 
random key and the encrypted convergent key stored in their email. The random key decrypts the convergent 
key, allowing for text file decryption and download.  This method enhances data privacy and streamlines file 
retrieval, improving overall security in cloud storage. By securing deduplication and employing robust key 
management, cloud storage systems can better protect against unauthorized access and maintain data integrity. 

3.3 Feedback Deduplication System (FDS) 

This research suggests that maintaining multiple copies of data in the cloud servers can lead to increased 
requirements of storage. To address this issue and alleviate the strain on public cloud storage, Zhou, B., & 
Wen, J. T. (2016) propose the implementation of feedback-based deduplication. The feedback technique, akin 
to text intersection, aims to identify the popularity of files within an input text corpus based on user evaluations. 
The process involves two main steps. Initially, text documents are grouped based on textual characteristics 
extracted from a new text corpus. Techniques namely entity recognition and word frequency analysis are 
employed to identify text attributes, with a threshold factor determining the top text qualities. Named Entity 
Retrieval (NER) is utilized to extract named entities like people, places, and organizations from the input 
corpora. Feedback ratings are initiated post-TF and NER processes. Each text file starts with a zero access 
counter, which is updated with user interactions such as "view," "download," and "share." Upon completion of 
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the user's session, the average access points for each file are calculated to establish a threshold value. Files 
exceeding this threshold in downloads are deemed popular, while those falling below are considered unpopular. 
Popular files are retained across all cloud instances, while unpopular files are removed from secondary servers. 
This feedback-based deduplication process effectively reduces unnecessary storage space by eliminating data 
redundancies. 

3.4 Document Weight Deduplication System (DWDS)  

DWDS employs a structured approach for model training using an input text corpus divided into two main 
components. Initially, documents are stored in the cloud via DropBox. Key features are identified using term 
frequency (TF) and named entity recognition (NER) techniques, as highlighted by Pugazhendi, E. et al. 
(2021). Next, the popularity of new text documents is determined by analyzing these text characteristics. 
Duplicate documents are eliminated after feature identification to facilitate efficient retrieval and analysis. 

The research utilizes these identified features to locate additional papers and assess their frequency within the 
retrieved document set. Document weight, calculated using the average threshold factor, assesses the 
popularity of each paper. Files with a document weight above the threshold factor are classified as popular, 
while those below are deemed unpopular. Popular text files are retained across all cloud instances, while 
unpopular content is removed from secondary servers. 

By employing weight-based deduplication, DWDS reduces data redundancies, reclaiming unnecessary 
storage space efficiently. This approach ensures that only valuable, high-demand documents occupy cloud 
storage, optimizing resource utilization. The weight-based method not only improves storage efficiency but 
also enhances document retrieval processes by maintaining a streamlined, relevant dataset. Through this 
system, DWDS effectively manages cloud-stored documents, balancing the need for accessibility with 
efficient storage management. 

4. ALGORITHM  

Upon acceptance of the output (m,n), the Agents Server provides the secret key pair as input. This input 
includes the file FS and the agent's secret keys (m,n), resulting in the output of the file label and index. The 
process initiates with the user utilizing EK_sym alongside the file labels w_2 and FS to produce the cipher text 
CF.The input consists of values such as w_1, w_2, name, FS, and k_fpk, representing file identifiers and 
labels. This process yields a file tag and the private key pk (EK_sym) for the initial user. Subsequently, the 
first user forms an authenticator set by utilizing the FPK key k_fpk and the cipher text CF. Upon reception of 
the input file FS and the secret key pair (m, n) from the agent, the system produces w_1 and w_2. Subsequently, 
the user generates the symmetric encryption key EK_sym using the file labels and FS, incorporating it into the 
CF. The user then computes their private key pk with inputs such as file label w_2, file FS, and file identifier 
name. Furthermore, the user requesting the file employs the POW method on the cloud to authenticate 
ownership. For every auditing challenge, both the CF and the corresponding authentication set u are 
necessary. Through this process, an auditing proof is generated to ensure that the entire cipher text CF is stored 
in the cloud. The auditing challenge is utilized as input for evidence verification. If the proof is valid, the 
system outputs "true"; otherwise, it outputs "false." This verification is achieved by examining the challenge 
and the proof. 

At this stage, the reliable Key Distribution Service (KDS) establishes the essential public parameters for the 
system, along with the public key (n) for the cloud provider and the private key (m) for the users (PS). Key 
generation in cloud computing is a fundamental concept that depends on the specific characteristics of the 
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system. KDS plays a crucial role in converting encrypted text and transmitting confidential information. Key 
selection is performed by the KDS to facilitate the conversion of encrypted text. 

Assuming F1 represents an order p multiplicative group, the KDS unit defines four hash functions to select 
keys for public and private parameters, as follows: 

 HH1: {0,1}* → F1 
 HH2: F1 → {0,1}^p (p-Security Parameter) 
 hh1: {0,1}* → {0,1}^p 
 hh2: {0,1}* → W_p* 

These four hash functions are determined using the pseudo-random function f: {0,1}* × K_prf → W_p* and 
the security parameter. A private key (m ∈ W_p*) is randomly selected, and the public key (n) is calculated as 
r^m. 

Through the utilization of the security parameter and the pseudo-random function f: {0,1}* × K_prf → W_p*, 
these hash functions are established, leading to the random selection of a private key (m ∈ W_p*) and the 
computation of the public key (n = r^m). 

During data uploads to the cloud, processes such as inter- and intra-deduplication, along with intra-tag 
creation, are carried out. Each user in every domain (D=1, 2, 3,..., n) must generate a unique intra-tag to enable 
data deduplication. Intra-deduplication is performed by the first agent when a user uploads the file FS to check 
for duplicates within the same domain. Once intra-deduplication is conducted within domains and duplicates 
are identified, users can utilize the original private key to upload files with the same name in 
the same domain. The data upload phase comprises data encryption/key recovery intra-deduplication, intra-tag 
creation, and inter-deduplication. 

Before uploading data FS, user U in domain Di (where I=1, 2,..., n) adds an intra-tag to prevent data 
duplication. Intra-deduplication is performed by agent Ai to detect duplication within the domain Di. If no 
duplicates are found, cross-domain inter-deduplication is required by the Central Processing System (CPS). 
Upon detecting duplication, user U acquires the convergent key generated by the original uploader. 

When the first user, U_1, in domain D_i^'s wishes to upload file FS, they select a random integer r_m and use 
the symmetric key private key (pk=K_sym, MAC_sym) to create an intra-file tag as follows: α_(d_i 
)=(d_i^(hh_1 ) g^(r_m )) ----------------- (4.5) 

The initial user uploads a file to the agent using the parameters length_FS and α_(d_i ). The file's size is denoted 
by Length_FS. To check for the existence of a file copy (FS), a comparison is made between a_(d_i ) and the 
previously recorded tag value from D_i. 

4.1 Algorithm Setup 

The main task of the Agent is to generate file indexes (w_1) and file labels (w_2) for users in each domain 
(D_1, D_2, D_3, etc.). The file index is responsible for identifying duplicates stored in the cloud. 
Authentication keys have been created and encrypted based on the file label. Each domain accommodates both 
one-time users and returning users, with the first user utilizing an agent to upload the file index to the cloud. 
Upon data delivery to the cloud through an agent, a check is performed to determine if a previous file with the 
same file index exists, with the agent maintaining a copy of the file index table. 
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When there is no cloud storage, the first user encrypts the file FS using the symmetric encryption key 
(EK_sym). To begin, a blindfolded hash function R' is computed using a random integer c ∈ W_p*. The hash 
value calculation is defined by Equation (4.6): R^' = HH_1(FS) r^c --------------------- (4.6) 

Upon receiving the hash value (R') from the original user, the agent uses a private key (m) to compute the value 
H' = R^'m, which is then communicated back to the original user. The initial user calculates δ = H^' n^(-c) for 
the Agent public key n, and proceeds to generate (w_1) and (w_2): 

 ω_1 = HH_2(δ‖2┤) ------------- file index for duplicate data check 
 ω_2 = HH_2(δ‖2┤) ------------- file label for symmetric encryption keys and MAC keys (EK_sym, 
K_sym, MAC_sym) 

After creating the file index (w_1), it is transmitted to the agent and stored. If a file already exists with the same 
index, a notification is sent to the original user, and no new file is uploaded to the cloud. The file index is 
uploaded to the cloud if there are no similar entries maintained by the agent. Cloud computing verifies the file 
index value. To encrypt the file as C_FS = Enc(FS, EK_sym), the first user determines the symmetric key 
value EK_sym, calculated as hh_1 multiplied by w_2 FS, assuming the cloud retains the file index value. The 
encrypted text consists of several smaller blocks. 

4.2 Authentication Algorithm 

The first user generates a file tag, authenticator set u, private key pk=(K_sym, MAC_sym), and encryption key 
file, all of which are stored in the cloud. The original user has saved the private key and symmetric key pair 
(pk=(K_sym, MAC_sym)). During data retrieval, the file is decrypted using EK Sym. A random value (qa) 
and a file tag (prf) are produced using the private key (pk). The Proof Verification method is completed after 
validating the file tag ε, decrypting the encrypted content, recovering the PRF key kprf, and generating a 
random number ϋ. 

K_sym=hh1(identifier‖ω_2|(|FS|)|1┤) and K_MAC=hh1(identifier‖ω_2|(|FS|)|1┤) are generated by the original 
user, where the identifier denotes the file's name and w_2 represents the file label. The private key is 
represented as pk=(K_sym, K_mac). Random values ω and K_prf are randomly generated with ω ∈ W_p^* 
and K_prf ∈ W_p^*, respectively. 

The file tag is defined as α=α_0‖MAC┤(K_MAC)(α_0), where α_0=nϫEnc(K_prfϫφ,┤K_sym)┤. The initial 
user computes the authenticator I for each block c_i∈W_p^* (i∈[1,n]) of the ciphertext as follows: 
ℵ_i=f(K_prf)(i)+ωc_i. The set of authenticators is denoted by φ={ℵ_i}1≤i≤n. The initial user uploads {C_FS} 
and the file tag to the cloud before deleting the messages from local storage and keys. The cloud then creates 
a link to the file F for the first user. 

4.3 Proof Generation 

When a user requests proof from the cloud, they send an auditing challenge to the cloud. Upon receiving the 
challenge, the cloud provides the user with auditing proof. The user randomly selects an i-elements subset I 
(I⊆[1,n]) and assigns a random value, v_i∈W_p^*, to each i. This subset I and the corresponding values 
{v_i}_i∈I form the auditing challenge sent to the cloud. 
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Upon receiving the auditing challenge from the user, the cloud calculates a linear combination of encrypted 
data blocks: Ψ=∑(l∈I)▒〖v_i q_i 〗 ------------------- (4.8) The authenticator combination set η is 
computed as: η=∑(l∈I)▒〖v_i η_i 〗 After receiving the auditing evidence and the file tag, the user undergoes 
proof verification using the symmetric key and MAC key extracted from the file tag. The user evaluates the 
verification equation to determine its validity: η=∑(l∈I)▒〖v_i f(k_prf ) (i)〗+Ψφ ------------------ (4.9) 

If the data exists in the user's entire file, the equation is correct, demonstrating that the user's files are securely 
stored in the cloud. 

Algorithm : Flat Block Size Deduplication 

Input:  

        Data to be deduplicated (Data) 

Steps: 

1. Divide Data into fixed-size blocks (Block_Size). 
2. Compute a hash (Hash) for each block using a cryptographic hash function. 
∑ ℵ୧ =୪∈[ଵ,୬] ∑ f୩౦౨౜୪∈[ଵ,୬] (i) + φ∑ c୧୧∈[ଵ,୬]   

3. Compare the Hash of each block with existing hashes in the system. 
4. If Hash already exists: 
o Create a reference or pointer to the existing block. 
o Skip storing the duplicate block. 
5. If Hash is new: 
o Store the block along with its Hash. 
Output:  

        Deduplicated data (Deduped_Data) 

 

5. RESULTS AND DISCUSSION 

Assessing the effectiveness and efficiency of systems through performance evaluation is crucial for 
understanding how well a system or component meets its objectives. This involves systematically measuring 
and analyzing various metrics and parameters to provide a comprehensive picture of system performance. In 
the context of cloud memory management utilizing flat block size deduplication techniques, performance 
evaluation plays a pivotal role. Cloud environments demand efficient resource utilization and optimal 
performance due to their large-scale and dynamic nature. Flat block size deduplication techniques, which 
segment data into fixed-size blocks to identify and eliminate duplicates, offer potential benefits in terms of 
storage efficiency and cost savings. However, the actual impact of these techniques must be thoroughly 
assessed to understand their true value and effectiveness. 

Key performance metrics such as storage space savings, data access times, and computational overhead are 
critical in this evaluation process. Storage space savings indicate how effectively the deduplication technique 
reduces the data footprint, which directly correlates with cost savings in cloud storage. Data access times reflect 
the efficiency of data retrieval operations, influencing overall system responsiveness and user experience. 
Computational overhead measures the additional processing required to perform deduplication, impacting the 
system's overall performance and scalability. 
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By carefully analyzing these metrics, researchers can gain valuable insights into how flat block size 
deduplication influences the efficiency and resource utilization in cloud environments. This evaluation helps 
identify any trade-offs between storage savings and performance impacts, guiding the optimization of 
deduplication techniques for better cloud memory management. Ultimately, performance evaluation ensures 
that deduplication methods contribute positively to the overall efficiency of cloud storage systems, supporting 
informed decision-making and continuous improvement. 

Table 1: Encryption time comparison table 

File Size (KB) Encryption Time 

Block Size 
Deduplication 

Boundary Deduplication Flat Block 
Size 

Deduplication 

1 0.6 0.7 0.3 

2 0.21 0.33 1.11 

4 1.57 1.22 1.01 

8 2.14 1.4 0.92 

 

 

Figure 2: Encryption time comparison chart 

The data presented in Table 1 and Figure 2 highlights the encryption time (in seconds) for various file sizes 
(in kilobytes) using three deduplication methods: Block Size Deduplication, Boundary Deduplication, and Flat 
Block Size Deduplication. For a 1KB file, Block Size Deduplication took 0.6 seconds, Boundary Deduplication 
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took 0.7 seconds, and Flat Block Size Deduplication took 0.3 seconds. As the file size increased to 2KB, Block 
Size Deduplication's encryption time decreased significantly to 0.21 seconds, while Boundary Deduplication's 
time increased to 0.33 seconds, and Flat Block Size Deduplication's time increased notably to 1.11 seconds.  

 

This pattern continued with larger file sizes, indicating that Block Size Deduplication generally had the shortest 
encryption times. At a 4KB file size, Boundary Deduplication briefly had a longer encryption time than Block 
Size Deduplication before the times aligned again for larger files. Overall, the data suggests that Block Size 
Deduplication consistently delivers the fastest encryption times across various file sizes compared to the other 
deduplication techniques. 

Table 2: Decryption time comparison table 

File Size (KB) Decryption Time 

Block Size 
Deduplication 

Boundary 
Deduplication 

Flat Block Size 
Deduplication 

1 0.1251 0.0203 0.0148 

2 0.0398 0.0288 0.0244 

4 0.0514 0.0423 0.0229 

8 0.0923 0.0829 0.0560 

 

 

Figure 3: Decryption time comparison chart 

The data provided in Table 2 and Figure 3 showcases the decryption time (in seconds) for various file sizes 
(in kilobytes) using three different deduplication techniques: Block Size Deduplication, Boundary 
Deduplication, and Flat Block Size Deduplication. For a 1KB file size, Block Size Deduplication required 
0.1251 seconds for decryption, Boundary Deduplication took 0.0203 seconds, and Flat Block Size 
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Deduplication took 0.0148 seconds. With an increase in file size to 2KB, all methods saw a notable decrease 
in decryption times, with Block Size Deduplication at 0.0398 seconds, Boundary Deduplication at 0.0288 
seconds, and Flat Block Size Deduplication at 0.0244 seconds. This pattern persisted, with decryption times 
generally decreasing as file sizes increased. Notably, Block Size Deduplication consistently showed higher 
decryption times compared to the other methods, especially noticeable at larger file sizes where the differences 
became more pronounced. Conversely, Flat Block Size Deduplication consistently exhibited the lowest 
decryption times, highlighting its efficiency in decrypting data across various file sizes when compared to other 
deduplication techniques. 

6. CONCLUSION AND FUTURE SCOPE 

This paper explores cloud memory management with a focus on implementing flat block size deduplication 
techniques. The primary aim is to streamline data storage in cloud environments by identifying and eliminating 
redundant data blocks. By adopting flat block size deduplication, this approach seeks to optimize memory 
utilization, reduce storage costs, and enhance overall performance of cloud-based systems. The paper examines 
the specific methodologies and strategies involved, highlighting both their benefits and potential limitations. It 
provides valuable insights into how flat block size deduplication can significantly improve the efficiency of 
cloud memory management processes. Looking ahead, future research could investigate more advanced 
deduplication techniques tailored to various data formats, integrate quantum-resistant cryptographic protocols 
to enhance data security, and develop dynamic access control systems for flexible data sharing.  Additionally, 
incorporating blockchain technology could improve data governance, while AI-driven optimization and 
automation could streamline cloud operations. Addressing ethical and regulatory issues in cloud computing, 
as well as focusing on hybrid and multi-cloud frameworks, could enhance interoperability and effective 
resource management across diverse cloud landscapes. Embracing these future research directions has the 
potential to optimize cloud infrastructures, strengthen security protocols, refine data governance strategies, and 
promote responsible and efficient cloud computing practices 
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