Unlocking Therapeutic Symphonies: Innovations in Clinical Decision Support for Drug-Disease Interactions in Kidney Transplantation

Chonoor Shakiba, Ayda Esmaeili, Habibollah Pirnejad, Zahra Niazkhani
126

Views


Abstract

Introduction: Drug-disease interactions (DDSIs) are associated with increasing morbidity, mortality, and healthcare costs. These interactions are preventable if recognized and managed properly. Medication safety is critical in kidney transplant patients due to polypharmacy, co-morbidities, and susceptibility to adverse events. Clinical decision support systems (CDSSs) can play a key role therein. Therefore, this study aims to report on the process of developing an innovative, patient-centered, context-aware CDSS for managing DDSIs in kidney recipients.

Material and Methods: Clinically important DDSIs were identified in the medications of patients at a kidney transplant outpatient clinic. Subsequently, rules for their detection and management were extracted based on pharmacology references and clinical expertise. A CDSS was developed and piloted following recommendations on medication CDSS design principles.

Results: The knowledge base for this CDSS was developed with clinical context sensitivity. We defined priority levels for alerts, established associated display rules, and determined necessary actions based on the transplantation clinical workflow. The DDSI-CDSS correctly detected 37 DDSIs and displayed nine warnings and 28 cautionary alerts for the medications of 113 study patients (32.7% DDSI rate). The system fired three warnings for diltiazem in bradyarrhythmia, and two for each of the following medications and underlying diseases: aspirin in asthma, erythropoietin alfa in hypertension, and gemfibrozil in gall bladder disease. The potential consequences of the identified DDSIs were GI complications (17%), deterioration of the existing disease/condition (6.1%), and an increased risk of arrhythmias (2.6%), thrombosis (2.6%), and hypertension (1.7%). Complying with system alerts and recommendations would potentially prevent all these DDSIs.

Conclusion: This study delineates the process of developing an evidence-based DDSI-CDSS for kidney transplantation, laying the groundwork for future advancements. Our results underscore the clinical significance of these interactions and emphasize the imperative for their accurate and timely detection, particularly in these vulnerable patients.

Keywords

Clinical Decision Support Systems; CDSS; Drug-Disease Interactions; Patient Safety; Kidney Transplantation;

References

Lindblad CI, Artz MB, Pieper CF, Sloane RJ, Hajjar ER, Ruby CM, et al., Potential drug-disease interactions in frail, hospitalized elderly veterans. Ann Pharmacother. 2005; 39(3): 412-7. PMID: 15687479 DOI: 10.1345/aph.1E467

Hailu BY, Berhe DF, Gudina EK, Gidey K, Getachew M. Drug related problems in admitted geriatric patients: The impact of clinical pharmacist interventions. BMC Geriatr. 2020; 20(1): 13. PMID: 31931723 DOI: 10.1186/s12877-020-1413-7

Pirnejad H, Amiri P, Niazkhani Z, Shiva A, Makhdoomi K, Abkhiz S, et al. Preventing potential drug-drug interactions through alerting decision support systems: A clinical context based methodology. Int J Med Inform. 2019; 127: 18-26. PMID: 31128828 DOI: 10.1016/j.ijmedinf.2019.04.006

Hanlon JT, Fillenbaum GG, Kuchibhatla M, Artz MB, Boult C, Gross CR, et al. Impact of inappropriate drug use on mortality and functional status in representative community dwelling elders. Med Care. 2002; 40(2): 166-76. PMID: 11802089 DOI: 10.1097/00005650-200202000-00011

Hanlon JT, Sloane RJ, Pieper CF, Schmader KE. Association of adverse drug reactions with drug–drug and drug–disease interactions in frail older outpatients. Age Ageing. 2011; 40(2): 274-7. PMID: 21177281 DOI: 10.1093/ageing/afq158

Heringa M, Floor-Schreudering A, Tromp PC, de Smet PAGM, Bouvy ML. Nature and frequency of drug therapy alerts generated by clinical decision support in community pharmacy. Pharmacoepidemiol Drug Saf. 2016; 25(1): 82-9. PMID: 26602064 DOI: 10.1002/pds.3915

Kaufmann CP, Tremp R, Hersberger KE, Lampert ML. Inappropriate prescribing: A systematic overview of published assessment tools. Eur J Clin Pharmacol. 2014; 70(1): 1-11. PMID: 24019054 DOI: 10.1007/s00228-013-1575-8

Scott I, Anderson K, Freeman C. Review of structured guides for deprescribing. Eur J Hosp Pharm. 2017; 24(1): 51-7. PMID: 31156899 DOI: 10.1136/ejhpharm-2015-000864

van Tongeren JM, Harkes-Idzinga SF, van der Sijs H, Atiqi R, van den Bemt BJF,Draijer LW, et al. The development of practice recommendations for drug-disease interactions by literature review and expert opinion. Front Pharmacol. 2020; 11: 707. PMID: 32499701 DOI: 10.3389/fphar.2020.00707

Dumbreck S, Flynn A, Nairn M, Wilson M, Treweek S, Mercer SW, et al. Drug-disease and drug-drug interactions: systematic examination of recommendations in 12 UK national clinical guidelines. BMJ. 2015; 350: h949. PMID: 25762567 DOI: 10.1136/bmj.h949

Weersink RA, Bouma M, Burger DM, Drenth JPH, Hunfeld NGM, Kranenborg M, et al. Evaluating the safety and dosing of drugs in patients with liver cirrhosis by literature review and expert opinion. BMJ Open. 2016; 6(10): e012991. PMID: 27733414 DOI: 10.1136/bmjopen-2016-012991

Weersink RA, Timmermans L, Monster-Simons MH, Mol PGM, Metselaar HJ, Borgsteede SD, et al. Evaluation of information in summaries of product characteristics (SmPCs) on the use of a medicine in patients with hepatic impairment. Front Pharmacol. 2019; 10: 1031. PMID: 31607904 DOI: 10.3389/fphar.2019.01031

Keine D, Zelek M, Walker JQ, Sabbagh MN. Polypharmacy in an elderly population: Enhancing medication management through the use of clinical decision support software platforms. Neurol Ther. 2019; 8(1): 79-94. PMID: 30900186 DOI: 10.1007/s40120-019-0131-6

Jia P, Zhang L, Chen J, Zhao P, Zhang M. The effects of clinical decision support systems on medication safety: An overview. PLoS One. 2016; 11(12): e0167683. PMID: 27977697 DOI: 10.1371/journal.pone.0167683

Diesveld MME, de Klerk S, Cornu P, Strobach D, Taxis K, Borgsteede SD. Management of drug-disease interactions: A best practice from the Netherlands. Int J Clin Pharm. 2021; 43(6): 1437-50. PMID: 34273048 DOI: 10.1007/s11096-021-01308-0

Chernoby K, Lucey MF, Hartner CL, Dehoorne M, Edwin SB. Impact of a clinical decision support tool targeting QT-prolonging medications. Am J Health Syst Pharm. 2020; 77(Suppl 4): S111-7. PMID: 32839818 DOI: 10.1093/ajhp/zxaa269

Tawadrous D, Shariff SZ, Haynes RB, Iansavichus AV, Jain AK, Garg AX. Use of clinical decision support systems for kidney-related drug prescribing: A systematic review. Am J Kidney Dis. 2011; 58(6): 903-14. PMID: 21944664 DOI: 10.1053/j.ajkd.2011.07.022

Hanlon JT, Perera S, Newman AB, Thorpe JM, Donohue JM, Simonsick EM, et al. Potential drug–drug and drug–disease interactions in well‐functioning community‐dwelling older adults. J Clin Pharm Ther. 2017; 42(2): 228-33. PMID: 28111765 DOI: 10.1111/jcpt.12502

Niazkhani Z, Amiri P, Pirnejad H. Drug-drug interaction clinical decision support systems: Advantages, challenges and barriers, and strategies to overcome them. Journal of Health and Biomedical Informatics. 2020; 6(4): 333-42.

Niazkhani Z, Fereidoni M, Rashidi Khazaee P, Shiva A, Makhdoomi K, Georgiou A, et al. Translation of evidence into kidney transplant clinical practice: Managing drug-lab interactions by a context-aware clinical decision support system. BMC Med Inform Decis Mak. 2020; 20(1): 196. PMID: 32819359 DOI: 10.1186/s12911-020-01196-w

UpToDate [Internet]. 2019 [cited: 10 Aug 2023]. Available from: https://uptodatefree.ir

Prescriber’s digital reference [Internet]. 2023 [cited: 12 Aug 2023]. Available from: https://www.pdr.net

Medscape interaction checker [Internet]. 1994 [cited: 25 Jul 2023]. Available from: https://reference.medscape.com/drug-interactionchecker

Drugs.com [Internet]. 2000 [cited: 28 Sep 2023]. Available from: https://www.drugs.com

Renom-Guiteras A, Meyer G, Thürmann PA. The EU (7)-PIM list: A list of potentially inappropriate medications for older people consented by experts from seven European countries. Eur J Clin Pharmacol. 2015; 71(7): 861-75. PMID: 25967540 DOI: 10.1007/s00228-015-1860-9

Niazkhani Z, Pirnejad H, Khazaee PR. The impact of health information technology on organ transplant care: A systematic review. Int J Med Inform. 2017; 100: 95-107. PMID: 28241943 DOI: 10.1016/j.ijmedinf.2017.01.015

Polidori P, Di Giorgio C, Provenzani A. Incidence of potential drug interactions in a transplant centre setting and relevance of electronic alerts for clinical practice support. Inform Prim Care. 2012; 20(4): 257-62. PMID: 23890337 DOI: 10.14236/jhi.v20i4.15

Sinnige J, Korevaar JC, van Lieshout J, Westert GP, Schellevis FG, Braspenning JC. Medication management strategy for older people with polypharmacy in general practice: A qualitative study on prescribing behaviour in primary care. Br J Gen Pract. 2016; 66(649): e540-51. PMID: 27266862 DOI: 10.3399/bjgp16X685681

Kheshti R, Aalipour M, Namazi S. A comparison of five common drug–drug interaction software programs regarding accuracy and comprehensiveness. J Res Pharm Pract. 2016; 5(4): 257-63. PMID: 27843962 DOI: 10.4103/2279-042X.192461

Glassman PA, Simon B, Belperio P, Lanto A. Improving recognition of drug interactions: benefits and barriers to using automated drug alerts. Med Care. 2002; 40(12): 1161-71. PMID: 12458299 DOI: 10.1097/00005650-200212000-00004

Niazkhani Z, Pirnejad H, de Bont A, Aarts J. Evaluating inter-professional work support by a computerized physician order entry (CPOE) system. Stud Health Technol Inform. 2008; 136: 321-6. PMID: 18487751

Niazkhani Z, van der Sijs H, Pirnejad H, Redekop WK, Aarts J. Same system, different outcomes: comparing the transitions from two paper-based systems to the same computerized physician order entry system. Int J Med Inform. 2009; 78(3): 170-81. PMID: 18760660 DOI: 10.1016/j.ijmedinf.2008.06.012

Turgeon J, Michaud V. Clinical decision support systems: great promises for better management of patients’ drug therapy. Expert Opin Drug Metab Toxicol. 2016; 12(9): 993-5. PMID: 27021287 DOI: 10.1517/17425255.2016.1171317

Mlakar I, Lin S, Aleksandraviča I, Arcimoviča K, Eglītis J, Leja M, et al. Patients-centered survivorship care plan after cancer treatments based on big data and artificial intelligence technologies (PERSIST): A multicenter study protocol to evaluate efficacy of digital tools supporting cancer survivors. BMC Med Inform Decis Mak. 2021; 21(1): 243. PMID: 34391413 DOI: 10.1186/s12911-021-01603-w

Floor-Schreudering A, Heringa M, Buurma H, Bouvy ML, De Smet PA. Missed drug therapy alerts as a consequence of incomplete electronic patient records in Dutch community pharmacies. Ann Pharmacother. 2013; 47(10): 1272-9. PMID: 24259691 DOI: 10.1177/1060028013501992

Freidooni M, Pirnejad H, Niazkhani Z. Clinical decision support system: An effective tool to detect and manage drug-laboratory interactions. Journal of Health and Biomedical Informatics. 2021; 7(4): 466-73.

Lindblad CI, Hanlon JT, Gross CR, Sloane RJ, Pieper CF, Hajjar ER, et al. Clinically important drug-disease interactions and their prevalence in older adults. Clin Ther. 2006; 28(8): 1133-43. PMID: 16982290 DOI: 10.1016/j.clinthera.2006.08.006

Wilchesky M, Tamblyn RM, Huang A. Validation of diagnostic codes within medical services claims. J Clin Epidemiol. 2004; 57(2): 131-41. PMID: 15125622 DOI: 10.1016/S0895-4356(03)00246-4

Echeverry D, Duran P, Bonds C, Lee M, Davidson MB. Effect of pharmacological treatment of depression on A1C and quality of life in low-income Hispanics and African Americans with diabetes: A randomized, double-blind, placebo-controlled trial. Diabetes Care. 2009; 32(12): 2156-60. PMID: 19729522 DOI: 10.2337/dc09-0785

Derijks HJ, Heerdink ER, De Koning FH, Janknegt R, Klungel OH, Egberts AC. The association between antidepressant use and hypoglycaemia in diabetic patients: a nested case–control study. Pharmacoepidemiol Drug Saf. 2008; 17(4): 336-44. PMID: 18302302 DOI: 10.1002/pds.1562

Luna B, Feinglos MN. Drug-induced hyperglycemia. JAMA. 2001; 286(16): 1945-8. PMID: 11667913 DOI: 10.1001/jama.286.16.1945

Oshima Lee E, Emanuel EJ. Shared decision making to improve care and reduce costs. N Engl J Med. 2013; 368(1): 6-8. PMID: 23281971 DOI: 10.1056/NEJMp1209500

Bingel U. Avoiding nocebo effects to optimize treatment outcome. JAMA. 2014; 312(7): 693-4. PMID: 25003609 DOI: 10.1001/jama.2014.8342

Toni E, Pirnejad H, Makhdoomi K, Mivefroshan A, Niazkhani Z. Patient empowerment through a user-centered design of an electronic personal health record: A qualitative study of user requirements in chronic kidney disease. BMC Med Inform Decis Mak. 2021; 21(1): 329. PMID: 34819050 DOI: 10.1186/s12911-021-01689-2

Brabers A, Van Dijk L, Bouvy ML, De Jong JD. Where to buy OTC medications? A cross-sectional survey investigating consumers’ confidence in over-the-counter (OTC) skills and their attitudes towards the availability of OTC painkillers. BMJ Open. 2013; 3(9): e003455. PMID: 24071460 DOI: 10.1136/bmjopen-2013-003455

Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J Am Coll Cardiol. 2020; 76(25): 2982-3021. PMID: 33309175 DOI: 10.1016/j.jacc.2020.11.010

Wong A, Rehr C, Seger DL, Amato MG, Beeler PE, Slight SP, et al. Evaluation of harm associated with high dose-range clinical decision support overrides in the intensive care unit. Drug Saf. 2019; 42(4): 573-9. PMID: 30506472 DOI: 10.1007/s40264-018-0756-x

Heringa M, Siderius H, Floor-Schreudering A, de Smet PA, Bouvy ML. Lower alert rates by clustering of related drug interaction alerts. J Am Med Inform Assoc. 2017; 24(1): 54-9. PMID: 27107437 DOI: 10.1093/jamia/ocw049

Nanji KC, Slight SP, Seger DL, Cho I, Fiskio JM, Redden LM, et al. Overrides of medication-related clinical decision support alerts in outpatients. J Am Med Inform Assoc. 2014; 21(3): 487-91. PMID: 24166725 DOI: 10.1136/amiajnl-2013-001813

Wilkinson B, van Boxtel R. The medical device regulation of the European Union intensifies focus on clinical benefits of devices. Ther Innov Regul Sci. 2020; 54(3): 613-7. PMID: 33301157 DOI: 10.1007/s43441-019-00094-2

Eickhoff C, Griese-Mammen N, Müeller U, Said A, Schulz M. Primary healthcare policy and vision for community pharmacy and pharmacists in Germany. Pharm Pract (Granada). 2021; 19(1): 2248. PMID: 33520040 DOI: 10.18549/PharmPract.2021.1.2248




DOI: https://doi.org/10.30699/fhi.v13i0.547

Refbacks

  • There are currently no refbacks.