The Potential Use of Digital Health in Iran: A Systematic Mapping Review

Hassan Shojaee-Mend, Mostafa Mahi, Abdoljavad Khajavi, Mohsen Saheban Maleki, Abdolahad Nabiolahi
168

Views


Abstract

Introduction: Digital health technologies are transforming healthcare delivery globally. The purpose of the current study was to identify and map the current status of digital health applications in Iran through providing graphical/tabular classifications on the studies conducted in this field.

Material and Methods: Following PRISMA guidelines, relevant English-language papers on digital health in Iran published from 2012 until 2023 in online scientific databases, including PubMed, Scopus, Web of Science and IEEE Xplore were screened. A total of 97 papers were selected for data extraction data including digital heath technologies, medical fields, application areas and users.

Results: The number of publications has grown considerably since 2016. The most common digital health technologies were artificial intelligence including machine learning (34%), mobile health (25%) and telehealth (16%). These were mostly applied in infections (16%), nutrition/metabolism disorders (13%), mental health (20%) and cancers (12%). The key application areas were education (21%), therapy (16%) and diagnosis (15%). The primary users were patients (45%) and healthcare professionals (42%).

Conclusion: Digital health studies in Iran are continuously evolving. The activities are focused on a few technologies like artificial intelligence, with applications in diverse medical subfields for objectives like education and diagnosis. These results help identify research gaps and future directions for advancing digital health in Iran.

Keywords

Digital Health; Healthcare; Iran; Systematic Mapping Review;

References

Fatehi F, Samadbeik M, Kazemi A. What is digital health? Review of definitions. Stud Health Technol Inform. 2020; 275: 67-71. PMID: 33227742 DOI: 10.3233/SHTI200696

O'Reilly-Jacob M, Mohr P, Ellen M, Petersen C, Sarkisian C, Attipoe S, et al. Digital health & low-value care. Healthc (Amst). 2021; 9(2): 100533. PMID: 33714891 DOI: 10.1016/j.hjdsi.2021.100533

Røttingen J-A, Farrar J. Targeted health innovation for global health. BMJ. 2019; 366: l5601. PMID: 31541005 DOI: 10.1136/bmj.l5601

World Health Organization. Global strategy on digital health 2020–2025 [Internet]. 2021 [cited: 10 Aug 2023]. Availale from: https://www.who.int/publications/i/item/97892400209240.

Manyazewal T, Woldeamanuel Y, Blumberg HM, Fekadu A, Marconi VC. The potential use of digital health technologies in the African context: A systematic review of evidence from Ethiopia. NPJ Digit Med. 2021; 4(1): 125. PMID: 34404895 DOI: 10.1038/s41746-021-00487-4

Burki T. Developing countries in the digital revolution. Lancet. 2018; 391(10119): 417. PMID: 29407022 DOI: 10.1016/S0140-6736(18)30191-0

Niakan Kalhori SR, Bahaadinbeigy K, Deldar K, Gholamzadeh M, Hajesmaeel-Gohari S, Ayyoubzadeh SM. Digital health solutions to control the COVID-19 pandemic in countries with high disease prevalence: Literature review. J Med Internet Res. 2021; 23(3): e19473. PMID: 33600344 DOI: 10.2196/19473

Solomon DH, Rudin RS. Digital health technologies: opportunities and challenges in rheumatology. Nat Rev Rheumatol. 2020; 16(9): 525-35. PMID: 32709998 DOI: 10.1038/s41584-020-0461-x

Zwack CC, Haghani M, Hollings M, Zhang L, Gauci S, Gallagher R, et al. The evolution of digital health technologies in cardiovascular disease research. NPJ Digit Med. 2023; 6(1): 1. PMID: 36596833 DOI: 10.1038/s41746-022-00734-2

Hinchliffe N, Capehorn MS, Bewick M, Feenie J. The potential role of digital health in obesity care. Adv Ther. 2022; 39(10): 4397-412. PMID: 35925469 DOI: 10.1007/s12325-022-02265-4

Sadoughi F, Behmanesh A, Sayfouri N. Internet of things in medicine: A systematic mapping study. J Biomed Inform. 2020; 103: 103383. PMID: 32044417 DOI: 10.1016/j.jbi.2020.103383

Petersen K, Feldt R, Mujtaba S, Mattsson M. Systematic mapping studies in software engineering. International Conference on Evaluation and Assessment in Software Engineering. BCS Learning & Development Ltd; 2008.

US Food and Drug Administration. What is digital health? [Internet] 2020 [cited: 15 Aug 2023]. Available from: https://www.fda.gov/medical-devices/digital-health-center-excellence/what-digital-health

Goodarzi M, Ebrahimzadeh I, Rabi A, Saedipoor B, Jafarabadi MA. Impact of distance education via mobile phone text messaging on knowledge, attitude, practice and self efficacy of patients with type 2 diabetes mellitus in Iran. J Diabetes Metab Disord. 2012; 11(1): 10. PMID: 23497632 DOI: 10.1186/2251-6581-11-10

Tapak L, Mahjub H, Hamidi O, Poorolajal J. Real-data comparison of data mining methods in prediction of diabetes in Iran. Healthc Inform Res. 2013; 19(3): 177-85. PMID: 24175116 DOI: 10.4258/hir.2013.19.3.177

Faghanipour S, Hajikazemi E, Nikpour S, Shariatpanahi SAS, Hosseini AF. Mobile phone short message service (SMS) for weight management in Iranian overweight and obese women: A pilot study. Int J Telemed Appl. 2013; 2013: 785654. PMID: 24163692 DOI: 10.1155/2013/785654

Morowatisharifabad MA, Karimiankakolaki Z, Bokaie M, Fallahzadeh H, Gerayllo S. The effects of training married men about premenstrual syndrome by pamphlets and short messages on marital satisfaction. Health Educ Res. 2014; 29(6): 1005-14. PMID: 25214514 DOI: 10.1093/her/cyu052

Mohammadpour RA, Abedi SM, Bagheri S, Ghaemian A. Fuzzy rule-based classification system for assessing coronary artery disease. Comput Math Methods Med. 2015; 2015: 564867. PMID: 26448783 DOI: 10.1155/2015/564867

Kolifarhood G, Khorasani-Zavareh D, Salarilak S, Shoghli A, Khosravi N. Spatial and non-spatial determinants of successful tuberculosis treatment outcomes: An implication of geographical information systems in health policy-making in a developing country. J Epidemiol Glob Health. 2015; 5(3): 221-30. PMID: 26231398 DOI: 10.1016/j.jegh.2014.11.001

Shourab N, Zagami S, Golmakhani N, Mazlom S, Nahvi A, Pabarja F, et al. Virtual reality and anxiety in primiparous women during episiotomy repair. Iran J Nurs Midwifery Res. 2016; 21(5): 521-6. PMID: 27904638 DOI: 10.4103/1735-9066.193417

Hajiabolhasani-Nargani Z, Najafi M, Mehrabi T. Effect of mobile parenting skills education on anxiety of the mothers with autistic children. Iran J Nurs Midwifery Res. 2016; 21(6): 572-6. PMID: 28194195 DOI: 10.4103/1735-9066.197668

Azizi A, Aboutorabi R, Mazloum-Khorasani Z, Afzal-Aghaea M, Tabesh H, Tara M. Evaluating the effect of web-based iranian diabetic personal health record app on self-care status and clinical indicators: Randomized controlled trial. JMIR Med Inform. 2016; 4(4): e32. PMID: 27769953 DOI: 10.2196/medinform.6433

Taleban R, Zamani A, Moafi M, Jiryaee N, Khadivi R. Applications of text messaging, and bibliotherapy for treatment of patients affected by depressive symptoms. Int J Prev Med. 2016; 7: 46. PMID: 27076884 DOI: 10.4103/2008-7802.177889

Safdari R, Mokhtaran M, Tahmasebian S. Designing and implementation of retina image drawing system and automatic report generation from retina examinations. Acta Inform Med. 2016; 24(5): 308-12. PMID: 28077885 DOI: 10.5455/aim.2016.24.308-312

Jahromi MK, Poorgholami F, Rahmanian F, Rahmanian E. Effects of self-care education with telephone follow-up on self-efficacy level in hemodialysis patients. Biosciences Biotechnology Research Asia. 2016; 13(1): 375-81.

Safdari R, Jafarpour M, Mokhtaran M, Naderi N. Designing and implementation of a heart failure telemonitoring system. Acta Inform Med. 2017; 25(3): 156-62. PMID: 29114106 DOI: 10.5455/aim.2017.25.156-162

Maslakpak MH, Razmara S, Niazkhani Z. Effects of face-to-face and telephone-based family-oriented education on self-care behavior and patient outcomes in type 2 diabetes: A randomized controlled trial. J Diabetes Res. 2017; 2017: 8404328. PMID: 29359166 DOI: 10.1155/2017/8404328

Pourahmadi MR, Ebrahimi Takamjani I, Sarrafzadeh J, Bahramian M, Mohseni-Bandpei MA, Rajabzadeh F, et al. Reliability and concurrent validity of a new iPhone® goniometric application for measuring active wrist range of motion: A cross-sectional study in asymptomatic subjects. J Anat. 2017; 230(3): 484-95. PMID: 27910103 DOI: 10.1111/joa.12568

Taheri A, Meghdari A, Alemi M, Pouretemad HR. Clinical interventions of social humanoid robots in the treatment of a pair of high- and low-functioning autistic Iranian twins. Scientia Iranica. 2018; 25(3B): 1197-214.

Shahrokhi A, Azimian J, Amouzegar A, Oveisi S. The effect of telenursing on referral rates of patients with head trauma and their family's satisfaction after discharge. J Trauma Nurs. 2018; 25(4): 248-53. PMID: 29985860 DOI: 10.1097/JTN.0000000000000382

Noor R, Olyaei G, Hadian MR, Talebian S, Bashir MS. A reliable and accurate system of joint position sense measurement. Biomedical Research. 2018; 29(12): 2528-31.

Zargarzadeh P, Ehteshami A, Mohammadi-Sichani M. A contribution into developing a model for prostate cancer self-care mobile application. Med Arch. 2018; 72(5): 344-7. PMID: 30524166 DOI: 10.5455/medarh.2018.72.344-347

Safdari R, Ghazisaeidi M, Goodini A. Sweet care against sugar bitterness, designing health-based electronic game. Health Informatics J. 2019; 25(4): 1825-45. PMID: 30295108 DOI: 10.1177/1460458218799444

Gilavand A. The impact of using the Iranian red crescent society educational mobile app on improving the students' awareness of first AIDS. Journal of Comprehensive Pediatrics. 2019; 10(1): e67828.

Mortezagholi A, Khosravizadehorcid O, Menhaj MB, Shafigh Y, Kalhor R. Make intelligent of gastric cancer diagnosis error in Qazvin's medical centers: Using data mining method. Asian Pac J Cancer Prev. 2019; 20(9): 2607-10. PMID: 31554353 DOI: 10.31557/APJCP.2019.20.9.2607

Negarandeh R, Zolfaghari M, Bashi N, Kiarsi M. Evaluating the effect of monitoring through telephone (tele-monitoring) on self-care behaviors and readmission of patients with heart failure after discharge. Appl Clin Inform. 2019; 10(2): 261-8. PMID: 30995686 DOI: 10.1055/s-0039-1685167

Ganjali R, Taherzadeh Z, Ghorban Sabbagh M, Nazemiyan F, Mamdouhi F, Tabesh H, et al. Effect of an interactive voice response system on self-management in kidney transplant recipients: Protocol for a randomized controlled trial. Medicine (Baltimore). 2019; 98(6): e14291. PMID: 30732143 DOI: 10.1097/MD.0000000000014291

Soltanimehr E, Bahrampour E, Imani MM, Rahimi F, Almasi B, Moattari M. Effect of virtual versus traditional education on theoretical knowledge and reporting skills of dental students in radiographic interpretation of bony lesions of the jaw. BMC Med Educ. 2019; 19(1): 233. PMID: 31238927 DOI: 10.1186/s12909-019-1649-0

Kashef A, Khatibi T, Mehrvar A. Treatment outcome classification of pediatric acute lymphoblastic leukemia patients with clinical and medical data using machine learning: A case study at MAHAK hospital. Informatics in Medicine Unlocked. 2020; 20: 100399.

Samadi SA, Bakhshalizadeh-Moradi S, Khandani F, Foladgar M, Poursaid-Mohammad M, McConkey R. Using hybrid telepractice for supporting parents of children with asd during the COVID-19 lockdown: A feasibility study in Iran. Brain Sci. 2020; 10(11): 892. PMID: 33266429 DOI: 10.3390/brainsci10110892

Asadi F, Salehnasab C, Ajori L. Supervised algorithms of machine learning for the prediction of cervical cancer. J Biomed Phys Eng. 2020; 10(4): 513-22. PMID: 32802799 DOI: 10.31661/jbpe.v0i0.1912-1027

Niazkar HR, Niazkar M. Application of artificial neural networks to predict the COVID-19 outbreak. Glob Health Res Policy. 2020; 5(1): 50. PMID: 33292780 DOI: 10.1186/s41256-020-00175-y

Niazkar M, Niazkar HR. COVID-19 outbreak: Application of multi-gene genetic programming to country-based prediction models. Electronic Journal of General Medicine. 2020; 17(5): em247.

Mahmoodi SA, Mirzaie K, Mahmoodi MS, Mahmoudi SM. A Medical Decision Support System to Assess Risk Factors for Gastric Cancer Based on Fuzzy Cognitive Map. Computational and Mathematical Methods in Medicine. 2020;2020.

Rahmani Pour E, Aliyari S, Farsi Z, Ghelich Y. Comparing the effects of interactive and noninteractive education using short message service on treatment adherence and blood pressure among patients with hypertension. Nursing and Midwifery Studies. 2020; 9(2): 68-76.

Ahorsu DK, Lin CY, Imani V, Carlbring P, Nygårdh A, Broström A, et al. Testing an app-based intervention to improve insomnia in patients with epilepsy: A randomized controlled trial. Epilepsy Behav. 2020; 112: 107371. PMID: 32861897 DOI: 10.1016/j.yebeh.2020.107371

Kashef A, Khatibi T, Mehrvar A. Prediction of cranial radiotherapy treatment in pediatric acute lymphoblastic leukemia patients using machine learning: A case study at MAHAK hospital. Asian Pac J Cancer Prev. 2020; 21(11): 3211-9. PMID: 33247677 DOI: 10.31557/APJCP.2020.21.11.3211

Farhadian M, Shokouhi P, Torkzaban P. A decision support system based on support vector machine for diagnosis of periodontal disease. BMC Res Notes. 2020; 13(1): 337. PMID: 32660549 DOI: 10.1186/s13104-020-05180-5

Rangraz Jeddi F, Nabovati E, Hamidi R, Sharif R. Mobile phone usage in patients with type II diabetes and their intention to use it for self-management: A cross-sectional study in Iran. BMC Med Inform Decis Mak. 2020; 20(1): 24. PMID: 32033560 DOI: 10.1186/s12911-020-1038-y

Salehnasab C, Hajifathali A, Asadi F, Parkhideh S, Kazemi A, Roshanpoor A, et al. An intelligent clinical decision support system for predicting acute graft-versus-host disease (aGvHD) following allogeneic hematopoietic stem cell transplantation. J Biomed Phys Eng. 2021; 11(3): 345-56. PMID: 34189123 DOI: 10.31661/jbpe.v0i0.2012-1244

Ahmadi M, Karimi M, Mojarad TB. Developing a dashboard for alzheimer's disease registry system. Journal of Health Administration. 2021; 24(2): 70-82.

Pourteimour S, Kazemi S. The effectiveness of the robotic game kit on anxiety among hospitalized preschool children: A non-randomized controlled trial. Nursing Practice Today. 2021; 8(4): 273-83.

Razavi‐Termeh SV, Sadeghi‐Niaraki A, Choi SM. Spatial modeling of asthma‐prone areas using remote sensing and ensemble machine learning algorithms. Remote Sensing. 2021; 13(16): 3222.

Ershad Sarabi R, Ebnehoseini Z, Sarafi Nejad A, Akbarzadeh F, Ziaee M, Hashemi Z. The investigation of the effectiveness of mobile-based psychoeducation in patients with bipolar disorder: A randomized controlled trial (RCT). Shiraz E-Medical Journal. 2021; 22(7): e105674.

Jamshidnezhad A, Anjomshoa Z, Hosseini SA, Azizi A. The impact coenzyme Q10 supplementation on the inflammatory indices of women with breast cancer using a machine learning prediction model. Informatics in Medicine Unlocked. 2021; 24: 100614.

Lotfnezhad Afshar H, Jabbari N, Khalkhali HR, Esnaashari O. Prediction of breast cancer survival by machine learning methods: An application of multiple imputation. Iran J Public Health. 2021; 50(3): 598-605. PMID: 34178808 DOI: 10.18502/ijph.v50i3.5606

Ebrahimabadi M, Rafiei F, Nejat N. Can tele-nursing affect the supportive care needs of patients with cancer undergoing chemotherapy? A randomized controlled trial follow-up study. Support Care Cancer. 2021; 29(10): 5865-72. PMID: 33758968 DOI: 10.1007/s00520-021-06056-5

Pakrad F, Ahmadi F, Grace SL, Oshvandi K, Kazemnejad A. Traditional vs extended hybrid cardiac rehabilitation based on the continuous care model for patients who have undergone coronary artery bypass surgery in a middle-income country: A randomized controlled trial. Arch Phys Med Rehabil. 2021; 102(11): 2091-101. PMID: 34175270 DOI: 10.1016/j.apmr.2021.04.026

Toni E, Pirnejad H, Makhdoomi K, Mivefroshan A, Niazkhani Z. Patient empowerment through a user-centered design of an electronic personal health record: A qualitative study of user requirements in chronic kidney disease. BMC Med Inform Decis Mak. 2021; 21(1): 329. PMID: 34819050 DOI: 10.1186/s12911-021-01689-2

Nobari H, Rezaei S, Sheikh M, García JPF, Pérez-Gómez J. Effect of virtual reality exercises on the cognitive status and dual motor task performance of the aging population. Int J Environ Res Public Health. 2021; 18(15): 8005. PMID: 34360294 DOI: 10.3390/ijerph18158005

Jannati N, Nakhaee N, Yazdi-Feyzabadi V, Tjondronegoro D. A cross-sectional online survey on patients’ satisfaction using store-and-forward voice and text messaging teleconsultation service during the COVID‑19 pandemic. Int J Med Inform. 2021; 151: 104474. PMID: 33965682 DOI: 10.1016/j.ijmedinf.2021.104474

Shirazi MT, Karimi M, Fattahi Masoom SM, Mardi R, Kamyabnezhad MM, Eghbalian F. COVID-19 telephone consultation by Iranian traditional medicine as an integrative medicine: Benefits and challenges. Traditional and Integrative Medicine. 2021; 6(3): 193-203.

Farhadi R, Mehrpisheh S, Philip RK. Mobile-assisted virtual bonding enables breast milk supply in critically ill mothers with COVID-19: A reflection on the feasibility of telelactation. Cureus. 2021; 13(3): e13699. PMID: 33833919 DOI: 10.7759/cureus.13699

Ardakani AA, Kwee RM, Mirza Aghazadeh Attari M, Castro HM, Kuzan TY, Altintoprak KM, et al. A practical artificial intelligence system to diagnose COVID-19 using computed tomography: A multinational external validation study. Pattern Recognit Lett. 2021; 152: 42-9. PMID: 34580550 DOI: 10.1016/j.patrec.2021.09.012

Soltanmohamadi Borujeni E, Sarshar F, Nasiri M, Sarshar S, Jazi L. Effect of teledentistry on the oral heath status of patients undergoing fixed orthodontic treatment at the first three follow-up visits. Dent Med Probl. 2021; 58(3): 299-304. PMID: 34516051 DOI: 10.17219/dmp/134750

Majidi E, Manshaee G. Effects of virtual reality exposure therapy on dentophobia in clients of dental offices in Isfahan, Tehran, and Shahrekord (Iran). Iranian Journal of Psychiatry and Behavioral Sciences. 2021; 15(4): e115684.

Doaltabadi Z, Amiri-Farahani L, Hasanpoor-Azghady SB. Implementation of virtual and face-to-face childbirth preparation training for the spouses of the primiparous women to reduce the fear of childbirth, improve the pregnancy experience, and enhance mother- and father-infant attachment: Protocol for a quasiexperimental clinical trial. Obstet Gynecol Int. 2021; 2021: 6686934. PMID: 33936209 DOI: 10.1155/2021/6686934

Farzandipour M, Nabovati E, Farrokhian A, Akbari H, Rezaei Hasanvand F, Sharif R. Designing and usability assessing an electronic personal health record for patients with chronic heart failure in a developing country. Informatics in Medicine Unlocked. 2021; 27: 100804.

Najafi-Vosough R, Faradmal J, Hosseini SK, Moghimbeigi A, Mahjub H. Predicting hospital readmission in heart failure patients in Iran: A comparison of various machine learning methods. Healthc Inform Res. 2021; 27(4): 307-14. PMID: 34788911 DOI: 10.4258/hir.2021.27.4.307

Hajian S, Rastgoo N, Jamshidi S. Assessment of the diagnostic accuracy of home blood pressure monitoring by patients. Journal of Renal Injury Prevention. 2021; 10(4): e31.

Chen X, Zhao JX, Iselin KC, Borroni D, Romano D, Gokul A, et al. Keratoconus detection of changes using deep learning of colour-coded maps. BMJ Open Ophthalmol. 2021; 6(1): e000824. PMID: 34337155 DOI: 10.1136/bmjophth-2021-000824

Arfaei Chitkar SS, Mohaddes Hakkak HR, Saadati H, Hosseini SH, Jafari Y, Ganji R. The effect of mobile-app-based instruction on the physical function of female patients with knee osteoarthritis: A parallel randomized controlled trial. BMC Womens Health. 2021; 21(1): 349. PMID: 34610846 DOI: 10.1186/s12905-021-01491-2

Amir-Behghadami M, Janati A. Tele-mental health support community during the COVID-19 pandemic in Iran: Action of State Welfare Organization. Inform Med Unlocked. . 2021; 24: 100615. PMID: 34075342 DOI: 10.1016/j.imu.2021.100615

Hosseini-Esfahani F, Alafchi B, Cheraghi Z, Doosti-Irani A, Mirmiran P, Khalili D, et al. Using machine learning techniques to predict factors contributing to the incidence of metabolic syndrome in tehran: Cohort study. JMIR Public Health Surveill. 2021; 7(9): e27304. PMID: 34473070 DOI: 10.2196/27304

Didehban S, Dehdari T, Janani L, Masoudkabir F. Employees’ behaviors concerning metabolic syndrome prevention: A cellphone-based text message education intervention. J Tehran Heart Cent. 2021; 16(4): 162-8. PMID: 35935555 DOI: 10.18502/jthc.v16i4.8602

Hosseini Nezhad M, Langarizadeh M, Hosseini S. Mortality Prediction of Mitral Valve Replacement Surgery by Machine Learning. Research in Cardiovascular Medicine. 2021; 10(4): 106-11.

Sheikhtaheri A, Zarkesh MR, Moradi R, Kermani F. Prediction of neonatal deaths in NICUs: Development and validation of machine learning models. BMC Med Inform Decis Mak. 2021; 21(1): 131. PMID: 33874944 DOI: 10.1186/s12911-021-01497-8

Zolfaghari M, Shirmohammadi M, Shahhosseini H, Mokhtaran M, Mohebbi SZ. Development and evaluation of a gamified smart phone mobile health application for oral health promotion in early childhood: A randomized controlled trial. BMC Oral Health. 2021; 21(1): 18. PMID: 33413304 DOI: 10.1186/s12903-020-01374-2

Khatibi T, Hanifi E, Sepehri MM, Allahqoli L. Proposing a machine-learning based method to predict stillbirth before and during delivery and ranking the features: Nationwide retrospective cross-sectional study. BMC Pregnancy Childbirth. 2021; 21(1): 202. PMID: 33706701 DOI: 10.1186/s12884-021-03658-z

Nafisi VR, Ghods R. A telecare system for use in traditional Persian medicine. Open Biomedical Engineering Journal. 2021; 15: 105-14.

Mehdizadeh H, Asadi F, Emami H, Mehrvar A, Nazemi E. An mHealth self-management system for support children with acute lymphocytic leukemia and their caregivers: Qualitative co-design study. JMIR Form Res. 2022; 6(4): e36721. PMID: 35228195 DOI: 10.2196/36721

Jebraeily M, Eghtedar S, Ayatollahi H, Mohammadzadeh Z. Identifying educational contents and technical features of a self-management smartphone application for women with breast cancer. Journal of Advances in Medical and Biomedical Research. 2022; 30(139): 129-37.

Rabiei R, Ayyoubzadeh SM, Sohrabei S, Esmaeili M, Atashi A. Prediction of breast cancer using machine learning approaches. J Biomed Phys Eng. 2022; 12(3): 297-308. PMID: 35698545 DOI: 10.31661/jbpe.v0i0.2109-1403

Abdollahi M, Valizadeh GA, Bazrafkan L, Dehghani M, Bijani M. A comparative study on effectiveness of workshop education versus education via mobile learning (m-learning) in developing medical students’ knowledge and skill about cardiopulmonary resuscitation. Disaster and Emergency Medicine Journal. 2022; 7(2): 83-9.

Nopour R, Erfannia L, Mehrabi N, Mashoufi M, Mahdavi A, Shanbehzadeh M. Comparison of two statistical models for predicting mortality in COVID-19 patients in Iran. Shiraz E-Medical Journal. 2022; 23(6): e119172.

Jafari N, Besharati MR, Izadi M, Talebpour A. COVID and nutrition: A machine learning perspective. Inform Med Unlocked. 2022; 28: 100857. PMID: 35071732 DOI: 10.1016/j.imu.2022.100857

Nasiri R, Akbarpour S, Zali A, Khodakarami N, Boochani M, Noory A, et al. Spatio-temporal analysis of COVID-19 incidence rate using GIS: A case study- Tehran metropolitan, Iran. GeoJournal. 2022; 87(4): 3291-305. PMID: 33994652 DOI: 10.1007/s10708-021-10438-x

Shanbehzadeh M, Nopour R, Kazemi-Arpanahi H. Using decision tree algorithms for estimating ICU admission of COVID-19 patients. Inform Med Unlocked. 2022; 30: 100919. PMID: 35317245 DOI: 10.1016/j.imu.2022.100919

Jamshidi E, Asgary A, Tavakoli N, Zali A, Setareh S, Esmaily H, et al. Using machine learning to predict mortality for COVID-19 patients on day 0 in the ICU. Front Digit Health. 2022; 3: 681608. PMID: 35098205 DOI: 10.3389/fdgth.2021.681608

Moslehi S, Rabiei N, Soltanian AR, Mamani M. Application of machine learning models based on decision trees in classifying the factors affecting mortality of COVID-19 patients in Hamadan, Iran. BMC Med Inform Decis Mak. 2022; 22(1): 192. PMID: 35871639 DOI: 10.1186/s12911-022-01939-x

Behnam A, Jahanmahin R. A data analytics approach for COVID-19 spread and end prediction (with a case study in Iran). Model Earth Syst Environ. 2022; 8(1): 579-89. PMID: 33553577 DOI: 10.1007/s40808-021-01086-8

Saadatmand S, Salimifard K, Mohammadi R, Marzban M, Naghibzadeh-Tahami A. Predicting the necessity of oxygen therapy in the early stage of COVID-19 using machine learning. Med Biol Eng Comput. 2022; 60(4): 957-68. PMID: 35147843 DOI: 10.1007/s11517-022-02519-x

Sabetian G, Azimi A, Kazemi A, Hoseini B, Asmarian N, Khaloo V, et al. Prediction of patients with COVID-19 requiring intensive care: A cross-sectional study based on machine-learning approach from Iran. Indian J Crit Care Med. 2022; 26(6): 688-95. PMID: 35836646 DOI: 10.5005/jp-journals-10071-24226

Shabanpour N, Razavi-Termeh SV, Sadeghi-Niaraki A, Choi SM, Abuhmed T. Integration of machine learning algorithms and GIS-based approaches to cutaneous leishmaniasis prevalence risk mapping. International Journal of Applied Earth Observation and Geoinformation. 2022; 112: 102854.

Rahimi F, Shakibazadeh E, Ashoorkhani M, Hosseini H, Foroughan M. Effect of “Mehrpishegan” web-based support group on depression, anxiety, and stress among elderly informal caregivers: A protocol for a randomized-controlled trial. Trials. 2022; 23(1): 413. PMID: 35581609 DOI: 10.1186/s13063-022-06351-4

Ghaffari SF, Elyasi F, Mousavinasab SN, Shahhosseini Z. The effect of midwifery-led counseling on expectant fathers’ fear of childbirth: A smartphone- based randomized controlled trial. BMC Pregnancy Childbirth. 2022; 22(1): 285. PMID: 35382772 DOI: 10.1186/s12884-022-04638-7

Langarizadeh M, Fatemi Aghda SA, Nadjarzadeh A. Design and evaluation of a mobile-based nutrition education application for infertile women in Iran. BMC Med Inform Decis Mak. 2022; 22(1): 58. PMID: 35246119 DOI: 10.1186/s12911-022-01793-x

Pakpour AH, Fazeli S, Zeidi IM, Alimoradi Z, Georgsson M, Brostrom A, et al. Effectiveness of a mobile app-based educational intervention to treat internet gaming disorder among Iranian adolescents: Study protocol for a randomized controlled trial. Trials. 2022; 23(1): 229. PMID: 35313935 DOI: 10.1186/s13063-022-06131-0

Ebrahimian A, Rahmani Bilandi R, Rahmani Bilandī MR, Sabzeh Z. Comparison of the effectiveness of virtual reality and chewing mint gum on labor pain and anxiety: A randomized controlled trial. BMC Pregnancy Childbirth. 2022; 22(1): 49. PMID: 35045813 DOI: 10.1186/s12884-021-04359-3

Akbarzadeh M, Alipour N, Moheimani H, Zahedi AS, Hosseini-Esfahani F, Lanjanian H, et al. Evaluating machine learning-powered classification algorithms which utilize variants in the GCKR gene to predict metabolic syndrome: Tehran cardio-metabolic genetics study. J Transl Med. 2022; 20(1): 164. PMID: 35397593 DOI: 10.1186/s12967-022-03349-z

Talebi V, Fallah Mohammadi Z, Hosseininejad SE, Falah Mohammadi H. A machine learning-based model to evaluate multiple sclerosis predictor factors with emphasis on neurophysiological indices of physical activity. Medicine in Drug Discovery. 2022; 15: 100132.

Shirmohammadi M, Razeghi S, Shamshiri AR, Mohebbi SZ. Impact of smartphone application usage by mothers in improving oral health and its determinants in early childhood: A randomised controlled trial in a paediatric dental setting. Eur Arch Paediatr Dent. 2022; 23(4): 629-39. PMID: 35841512 DOI: 10.1007/s40368-022-00731-9

Ordikhani M, Abadeh MS, Prugger C, Hassannejad R, Mohammadifard N, Sarrafzadegan N. An evolutionary machine learning algorithm for cardiovascular disease risk prediction. PLoS One. 2022; 17(7): e0271723. PMID: 35901181 DOI: 10.1371/journal.pone.0271723

Mazaheri Asadi D, Zahedi Tajrishi K, Gharaei B. Mindfulness training intervention with the Persian version of the mindfulness training mobile app for premenstrual syndrome: A randomized controlled trial. Front Psychiatry. 2022; 13: 922360. PMID: 35782413 DOI: 10.3389/fpsyt.2022.922360

Rahimi SA, Kolahdoozi M, Mitra A, Salmeron JL, Navali AM, Sadeghpour A, et al. Quantum-inspired interpertable AI-empowered decision support system for detection of early-stage rheumatoid arthritis in primary care using scarce dataset. Mathematics. 2022; 10(3): 496.

Soltanmohammadlou S, Farani AR, Shariat SV, Habibi M. Effectiveness of technology-based interventions for scrupulous obsessions and compulsions: A case report. Iranian Journal of Psychiatry and Behavioral Sciences. 2022; 16(2): e118186.

Mousavi MS, Fararouei M, Afsar-Kazerooni P, Nasirian M, Ghaem H. Evaluation of conducting phone interviews on sexual behavior: An Iranian population-based study. Shiraz E-Medical Journal. 2022; 23(6): e118708.

Nourelahi M, Dadboud F, Khalili H, Niakan A, Parsaei H. A machine learning model for predicting favorable outcome in severe traumatic brain injury patients after 6 months. Acute Crit Care. 2022; 37(1): 45-52. PMID: 34762793 DOI: 10.4266/acc.2021.00486

Esferjani SV, Naghizadeh E, Albokordi M, Zakerkish M, Araban M. Effectiveness of a mobile-based educational intervention on self-care activities and glycemic control among the elderly with type 2 diabetes in southwest of Iran in 2020. Arch Public Health. 2022; 80(1): 201. PMID: 36057609 DOI: 10.1186/s13690-022-00957-5

Molavynejad S, Miladinia M, Jahangiri M. A randomized trial of comparing video telecare education vs. in-person education on dietary regimen compliance in patients with type 2 diabetes mellitus: A support for clinical telehealth providers. BMC Endocr Disord. 2022; 22(1): 116. PMID: 35501846 DOI: 10.1186/s12902-022-01032-4

Tuckson RV, Edmunds M, Hodgkins ML. Telehealth. N Engl J Med. 2017; 377(16): 1585-92. PMID: 29045204 DOI: 10.1056/NEJMsr1503323

Fadaizadeh L, Sanaat M, Yousefi E, Alizadeh N. Mobile health: A comparative study of medical and health applications in Iran. Biomedical and Biotechnology Research Journal. 2022; 6(2): 249-54.

Groh F. Gamification: State of the art definition and utilization. Seminar on Research Trends in Media Informatics. Scientific Research; 2012.

Kyrarini M, Lygerakis F, Rajavenkatanarayanan A, Sevastopoulos C, Nambiappan HR, Chaitanya KK, et al. A survey of robots in healthcare. Technologies. 2021; 9(1): 8.

Krupinski EA, Bernard J, editors. Standards and guidelines in telemedicine and telehealth. Healthcare (Basel). 2014; 2(1): 74-93. PMID: 27429261 DOI: 10.3390/healthcare2010074

Awad A, Trenfield SJ, Pollard TD, Ong JJ, Elbadawi M, McCoubrey LE, et al. Connected healthcare: Improving patient care using digital health technologies. Adv Drug Deliv Rev. 2021; 178: 113958. PMID: 34478781 DOI: 10.1016/j.addr.2021.113958

Mehrolhassani MH, Yazdi-Feyzabadi V, Dehnavieh R, Bahaadinbeigy K. Barriers to telemedicine establishment and development in Iran: A systematic review. Research Square; 2022.




DOI: https://doi.org/10.30699/fhi.v13i0.583

Refbacks

  • There are currently no refbacks.